A Bad Peace or a Good War:

A Model of Spousal Conflict

Oleksandr Zhylyevskyy

University of Virginia

September 27th, 2007

Background

Introduction

- Spousal conflict and divorce are empirically relevant
- Limited research on spousal conflict
- Unexplored richness of data: National Survey of Families and Households (NSFH)

Introduction

NSFH Questions about Spousal Conflict

Dispute areas and frequencies:

"The following is a list of subjects on which couples often have disagreements. How often, if at all, in the past year have you had open disagreements about each of the following:

household tasks, money, spending time together, sex, in-laws, children?"

responses: "never", "once a month or less",..., "almost every day"

Dispute resolution process:

"There are various ways that married couples deal with serious disagreements. When you have a serious disagreement with your husband/wife, how often do you:

discuss your disagreements calmly, argue heatedly or shout at each other?"

responses: "never", "seldom",..., "always"

NSFH Evidence on Spousal Conflict

Dispute frequencies:

Introduction

- once a week +: 39 percent
- several times a week +: 23 percent
- almost everyday: 11 percent

Dispute resolution process:

- seldom/never calmly discuss disputes: 27 percent
- often/always heatedly argue or shout: 10 percent

Research Focus

Introduction

Research goals:

- explain conflict in intact marriage, along with cooperation and divorce
- quantify welfare effect of conflict
- evaluate impact of separation requirements and child support enforcement on spousal bargaining outcomes

Model does not address:

- selection into marriage
- bargaining dynamics

Effects of Spousal Conflict

Impact on spouses (Booth et al., 2001):

depression

Introduction

- alcoholism, bad health
- poor parent-child relationship

Impact on children (Grych & Fincham, 2001):

- low self-esteem, depression
- bad health
- conduct problems, trouble with law enforcement
- poor school performance
- low social competence

Amato et al. (1995), Jekielek (1998), Hanson (1999):

• conflict may be more detrimental to children than divorce

Family Economics Literature

Introduction

Spousal conflict as outcome is absent in:

- unitary models (Becker, 1974)
- cooperative bargaining models (Manser & Brown, 1980)
- collective models (Chiappori, 1988)

Models with noncooperation or violence:

- Lundberg & Pollak (1993)
- Tartari (2005)
- Bowlus & Seitz (2006)

Novelty and Contribution

Novel features:

Introduction

- three outcomes of bargaining: cooperation, conflict, divorce
- noncooperative framework (e.g., Friedberg & Stern, 2006):
 allows for Pareto inferior outcomes
- two sources of asymmetric information: differential impacts of conflict and divorce
- adequate measure of "destructive" conflict: combines information on dispute frequency and resolution process
- detailed specification of divorce payoffs: marriage market conditions, separation requirements, child support enforcement

Preview of Results

Introduction

Divorce payoffs:

- positive effect of favorable marriage market conditions
- negative effect of separation periods
- effect of child support enforcement varies with education

Policy simulations:

- ullet elimination of separation periods: divorce share rises by 8.4%
- stronger child support enforcement: conflict and divorce shares fall by 18.4% and 9.2%

Intact marriage payoffs:

 results are intuitive: e.g., young common children have positive effect, spousal age difference has negative effect

Outline

- Model
- Data and Variables
- Specification and Estimation
- Results
- Conclusion

Preview of Simplified Game Structure

Model 000000000

Spousal Types and Husband's Beliefs

Two sources of unobserved heterogeneity:

- ullet Bargaining "strength": "soft" (S) vs. "hard" (H) bargainer
- Divorce prospect: "pessimist" (P) vs. "optimist" (O)

Husband's type (k) and wife's type (l) combine trait levels:

- $k, l \in \{HO, HP, SO, SP\}$
- e.g., type HO stands for "hard bargainer optimist"

Knowledge about types:

- type is private information
- ullet husband has beliefs $\left(\delta^{HO},\delta^{HP},\delta^{SO},\delta^{SP}\right)'$

Payoffs

Cooperation: payoffs are type invariant:

$$u_h\left(-\tau\right)$$
 and $u_w\left(\tau\right)$

Conflict: bargaining "strength" matters:

$$v_h^k = \left\{egin{array}{l} v_h^H, k = HO, HP \ v_h^S, k = SO, SP \end{array}
ight.$$

Divorce: optimism matters:

$$y_h^k = \left\{ egin{array}{l} y_h^O, k = HO, SO \ y_h^P, k = HP, SP \end{array}
ight.$$
 $y_h^O > y_h^P$

Payoffs

Cooperation: payoffs are type invariant:

$$u_h(-\tau)$$
 and $u_w(\tau)$

Conflict: bargaining "strength" matters:

$$v_h^k = \left\{ egin{array}{l} v_h^H, k = HO, HP \\ v_h^S, k = SO, SP \end{array}
ight. \quad v_w^l = \left\{ egin{array}{l} v_w^H, l = HO, HP \\ v_w^S, l = SO, SP \end{array}
ight.$$
 $v_w^H > v_w^S$

Divorce: optimism matters:

$$\begin{aligned} y_h^k &= \left\{ \begin{array}{l} y_h^O, k = HO, SO \\ y_h^P, k = HP, SP \end{array} \right. \text{ and } \quad y_w^l &= \left\{ \begin{array}{l} y_w^O, l = HO, SO \\ y_w^P, l = HP, SP \end{array} \right. \\ y_h^O &> y_w^P \end{aligned}$$

Solution Approach

Backward recursion:

- stage 2: wife maximizes her utility
- stage 1: husband anticipates wife's best response, maximizes his *expected* utility

Husband's strategies and expected utilities:

- strategies: $(\tau; C)$, \mathcal{R} , \mathcal{D}
- ullet expected utilities: $\hat{E}\mathcal{V}_{h}^{k}\left(au;\mathcal{C}\right)$, $\hat{E}\mathcal{V}_{h}^{k}\left(\mathcal{R}\right)$, $\hat{E}\mathcal{V}_{h}^{k}\left(\mathcal{D}\right)$ expressions

Technical issues:

- uncountably many transfers: game is infinite
- $\hat{E}\mathcal{V}_{h}^{k}(\tau;\mathcal{C})$ is discontinuous in τ

Game Properties

Theorem

All strategies $(\tau; C)$ with $\tau : u_h(-\tau) < y_h^k$ are dominated.

$\mathsf{Theorem}$

Strategy R is dominated.

Theorem

Let $T^k = \{\tau : u_h(-\tau) \ge y_h^k\}$. Solution to husband's problem:

$$\max_{\left\{\mathcal{C},\;\mathcal{D}\right\}}\left\{ \max_{\tau\in T^{k}}\hat{\mathcal{E}}\mathcal{V}_{h}^{k}\left(\tau;\mathcal{C}\right)\text{, }\hat{\mathcal{E}}\mathcal{V}_{h}^{k}\left(\mathcal{D}\right)\right\}$$

always exists.

Simplified Game Structure

Model

Simplified Game Structure

Numerical Example: Setup

- Actual couple from NSFH:
 - husband: 43 y.o., white, protestant, high school degree, availability ratio: 1.27
 - wife: 40 y.o., white, protestant, high school degree, availability ratio: 0.99
 - spouses own home, have 12 y.o. child, live in a state with no separation requirements and 13% CSE collection rate
- Payoffs are computed using estimated parameters
- Assumption: husband's type is HP, wife's type is HP
- Two cases:
 - "uninformed" husband: $\delta^{HO} = \delta^{HP} = \delta^{SO} = \delta^{SP} = 0.25$
 - "informed" husband: $\delta^{HP}=0.85$. $\delta^{HO}=\delta^{SO}=\delta^{SP}=0.05$

Numerical Example: "Uninformed" Husband

"Uninformed" husband: $\delta^{HO}=\delta^{HP}=\delta^{SO}=\delta^{SP}=0.25$

Numerical Example: "Uninformed" Husband

Model

Spousal Conflict Job Talk

Numerical Example: "Informed" Husband

"Informed" husband: $\delta^{HP}=0.85,\,\delta^{HO}=\delta^{SO}=\delta^{SP}=0.05$

Numerical Example: "Informed" Husband

Model

NSFH Sample

National Survey of Families and Households (NSFH):

- nationally representative panel of households
- 2 data collection waves: 1987-88 and 1992-94
- variety of information on family life
- spouses answered separate questionnaires
- initial sample: 5,270 married couples

Analyzed sample:

- 3,878 married couples
- reasons for exclusion from initial sample:
 - missing data (575 couples)
 - attrition (477 couples)
 - spousal death (340 couples)

Location-Specific Variables

- Availability ratio (Goldman et al., 1984):
 - specific to county, sex, race, age, and education
 - source: 1990 Census (5-percent PUMS)
- State-specific separation period requirements:
 - sources: Friedberg (1998), Freed & Walker (1991)
- State-specific CSE collection rate (Nixon, 1997):
 - sources: Office of CSE reports to Congress

Variable	Mean	Std. Dev.	Min	Max
male-specific availability ratio	1.25	(0.24)	0.56	2.43
female-specific availability ratio	0.84	(0.16)	0.22	1.45
separation, ≤ 1 year	0.18	(0.39)	0	1
separation, >1 year	0.33	(0.47)	0	1
collection rate	0.19	(0.06)	0.06	0.35

Individual Characteristics

Variable	Mean	Std. Dev.	Min	Max
children, < 6 year old	0.45	(0.73)	0	5
children, \geq 6 year old	0.57	(0.94)	0	5
children, wife's	0.14	(0.47)	0	5
marital duration	14.51	(13.23)	0	63.58
home ownership	0.75	(0.43)	0	1
age, husband's	41.02	(13.75)	17	90
age, absolute difference	3.62	(3.84)	0	38
black husband	0.09	(0.29)	0	1
catholic husband	0.23	(0.42)	0	1
religion, difference	0.33	(0.47)	0	1
high school, husband	0.51	(0.50)	0	1
college, husband	0.33	(0.47)	0	1
education, difference	0.38	(0.48)	0	1

Beliefs and Opinions

- Husband reports what he believes about his wife's overall happiness after divorce
- Spouses report what they think about their own happiness after divorce

Variable	Mean	Std. Dev.	Min	Max
same happiness, belief	0.19	(0.39)	0	1
more happy, belief	0.08	(0.27)	0	1
same happiness, husband	0.17	(0.38)	0	1
more happy, husband	0.06	(0.23)	0	1
worthy person, husband	0.38	(0.49)	0	1
same happiness, wife	0.15	(0.36)	0	1
more happy, wife	0.07	(0.26)	0	1
worthy person, wife	0.42	(0.49)	0	1

Marital State

Dispute areas and frequencies:

"The following is a list of subjects on which couples often have disagreements. How often, if at all, in the past year have you had open disagreements about each of the following:

household tasks, money, spending time together, sex, in-laws, children?"

responses: "never", "once a month or less",..., "almost every day"

Dispute resolution process:

"There are various ways that married couples deal with serious disagreements. When you have a serious disagreement with your husband/wife, how often do you:

discuss your disagreements calmly, argue heatedly or shout at each other?"

responses: "never", "seldom",..., "always"

Marital State

- Conflict:
 - disagree about at least one aspect of marriage as of wave 2
 - disputes occur several times a week or more often
 - seldom/never calmly discuss disputes or often/always shout
- Cooperation:
 - intact couples not in state of conflict
- Divorce:
 - legally divorced or separated as of wave 2

Marital State	Frequency	Share (%)
Cooperation	2,948	76.02
Conflict	416	10.73
Divorce	514	13.25
Total	3,878	100.00

Overview of Estimation and Identification

Estimation strategy:

- use data as of wave 1 to predict marital state in wave 2
- express marital state probabilities in easy to simulate way
- find parameters by maximum simulated likelihood method

Identification strategy:

- use covariation of explanatory variables in wave 1 with observable marital states in wave 2
- helpful data variation for parameter identification:
 - individual characteristics ⇒ intact marriage payoffs
 - location-specific variables ⇒ divorce payoffs
 - spouses' opinions about themselves ⇒ type probabilities
 - husband's opinion about wife's happiness ⇒ beliefs

Parameterized Payoffs

Cooperation: payoffs are type invariant:

$$u_h(-\tau)$$
 and $u_w(\tau)$

Conflict: bargaining "strength" matters:

$$\begin{aligned} v_h^k &= \left\{ \begin{array}{l} v_h^H, k = HO, HP \\ v_h^S, k = SO, SP \end{array} \right. & \text{and} \end{aligned} \quad v_w^l &= \left\{ \begin{array}{l} v_w^H, l = HO, HP \\ v_w^S, l = SO, SP \end{array} \right. \\ v_h^H &> v_h^S \end{aligned} \quad v_w^H > v_w^S \end{aligned}$$

Divorce: optimism matters:

$$y_h^k = \begin{cases} y_h^O, k = HO, SO \\ y_h^P, k = HP, SP \end{cases} \quad \text{and} \quad y_w^l = \begin{cases} y_w^O, l = HO, SO \\ y_w^P, l = HP, SP \end{cases}$$
$$y_h^O > y_h^P \qquad \qquad y_w^O > y_w^P$$

Parameterized Payoffs

- x: vector of individual characteristics → list of variables
- z_h, z_w : vectors of location-specific variables lists of variables
- type-specific constants: β_h^H , β_{vv}^H , γ_h^O , $\gamma_v^O > 0$
- cannot separately identify α_h and α_w ; estimate $\alpha \equiv \alpha_h + \alpha_w$

Parameterized Type Probabilities and Beliefs

Type probabilities (Degan & Merlo, 2006):

$$\pi_h^k = \frac{\exp\left(a_h'\lambda_h^k\right)}{\sum\limits_{j} \exp\left(a_h'\lambda_h^j\right)}, \ \pi_w^l = \frac{\exp\left(a_w'\lambda_w^l\right)}{\sum\limits_{j} \exp\left(a_w'\lambda_w^j\right)}$$

- a_h , a_w : vectors of spousal opinions lists of variables
- ullet normalization: $\lambda_h^{SP}=0$ and $\lambda_w^{SP}=0$

Husband's beliefs:

$$\delta^l = rac{\exp\left(b'
ho^l + \eta^l
ight)}{\sum\limits_{j} \exp\left(b'
ho^j + \eta^j
ight)}$$

- b: vector of husband's reported beliefs list of variables
- ullet normalization: $ho^{SP}=0$ and $\eta^{SP}=0$

Distributions of Unobservables

Unobservable components of payoffs:

$$\underset{4\times1}{\theta}\sim i.i.d.\ N\left(0,\Sigma\right)$$

Unobservable components of beliefs:

$$\eta_{3\times 1} \sim i.i.d. \ N\left(0,\Omega\right)$$

Divorce Payoffs

	Husband		Wife	
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.
male-specific avail. ratio	0.2638	(0.2440)	_	
female-specific avail. ratio	_		1.3689**	(0.3415)
separation, ≤ 1 year	-0.2685^{*}	(0.1583)	0.0324	(0.0991)
separation, > 1 year	-0.3088**	(0.1344)	-0.1619	(0.1136)
collection rate	0.1647	(0.2525)	1.9384**	(0.8187)
coll. rate \times high sch., husband	-1.6325**	(0.6531)	_	
coll. rate $ imes$ college, husband	-0.8186	(0.5649)	_	
coll. rate $ imes$ high sch., wife	_		-1.8016**	(0.7129)
coll. rate $ imes$ college, wife	_		-0.8938	(0.6258)
optimist's constant	3.7098**	(0.2945)	0.6545**	(0.1029)

^{*} and ** denote significance at 10 and 5 percent levels, respectively.

Cooperation Payoff

Variable	Coeff.	Std. Err.
constant	4.7020**	(0.3030)
children, $<$ 6 y.o.	0.2740**	(0.1022)
children, \geq 6 y.o.	-0.0553	(0.0722)
children, wife's	-0.2613**	(0.1074)
duration	1.2258**	(0.1793)
home ownership	-0.1342	(0.1271)
age, husband's	0.4583**	(0.1413)
age, abs. diff.	-0.1582**	(0.0694)
black husband	0.5428**	(0.2537)
catholic husband	0.1821	(0.1245)
religion, diff.	0.0673	(0.0955)
high sch., husband	0.0104	(0.0479)
college, husband	0.1952	(0.1454)
education, diff.	-0.3780**	(0.1134)

^{*} and ** denote significance at 10 and 5 percent levels, respectively.

Conflict Payoffs

	Husband		Wife	
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.
constant	-2.6236**	(0.6775)	-1.6200**	(0.3191)
children, $<$ 6 y.o.	0.6232**	(0.1084)	0.5544**	(0.0948)
children, \geq 6 y.o.	0.4525^{**}	(0.0703)	0.4980^{**}	(0.0568)
children, wife's	0.3099**	(0.1078)	0.4064^{**}	(0.1475)
duration	0.1945	(0.1476)	-0.2243**	(0.0847)
home ownership	1.5444**	(0.2328)	-0.2609*	(0.1495)
age, husband's	1.5605**	(0.1566)	0.0040	(0.0256)
age, abs. diff.	-0.8617^{**}	(0.1055)	-0.0063	(0.0267)
black husband	-1.2738**	(0.3668)	0.5931**	(0.2281)
catholic husband	0.4954**	(0.1496)	0.3668**	(0.1308)
religion, diff.	-0.9291**	(0.1989)	-0.0188	(0.0534)
high sch., husband	0.2382^*	(0.1414)	-0.5003**	(0.1470)
college, husband	0.0085	(0.0420)	-0.9601**	(0.1752)
education, diff.	-0.0658	(0.0953)	0.2586**	(0.1162)
hard barg. constant	2.3910**	(0.5289)	4.1009**	(0.1248)

^{*} and ** denote significance at 10 and 5 percent levels, respectively.

Counterfactuals: Separation Period Requirements

Experiment 1: replace periods > 1 year with periods ≤ 1 year

Experiment 2: eliminate periods ≤ 1 year and

replace periods > 1 year with periods ≤ 1 year

Experiment 3: eliminate all periods

Distribution of Couples (%)

Marital State	Baseline	Exper. 1	Exper. 2	Exper. 3
Cooperation	78.65	78.81	78.53	77.97
Conflict	10.27	9.85	9.89	10.02
Divorce	11.08	11.34	11.58	12.01
Total	100.00	100.00	100.00	100.00

Counterfactuals: Child Support Enforcement

Experiment 4: double collection rate

Experiment 5: increase collection rate to 50%

Experiment 6: increase collection rate to 100%

Distribution of Couples (%)

Marital State	Baseline	Exper. 4	Exper. 5	Exper. 6
Cooperation	78.65	79.42	79.95	81.56
Conflict	10.27	9.85	9.52	8.38
Divorce	11.08	10.73	10.53	10.06
Total	100.00	100.00	100.00	100.00

Conclusion

Key contributions:

- spousal conflict is outcome of bargaining
- model allows for Pareto inferior outcomes and information asymmetry
- conflict indicator incorporates data on dispute resolution
- policy variables in divorce payoffs

Directions for future research:

- multi-issue bargaining
- bargaining dynamics

Appendix Outline I

- Appendix
 - Responses about Dispute Areas
 - Responses about Dispute Resolution Process
 - Husband's Expected Utilities
 - Explanatory Vectors
 - Vectors of Opinions and Beliefs
 - Data Vector
 - Parameter Vector
 - Implementation of Estimation Strategy
 - Integration Bounds
 - Integration Bounds Example
 - Integration Bounds Example (Continued)
 - Type Probabilities and Beliefs
 - Welfare Effect of Conflict
 - Divorce Payoffs (No P.E. Vars)

Appendix Outline II

- Cooperation Payoff (No P.E. Vars)
- Conflict Payoffs (No P.E. Vars)
- Type Probabilities and Beliefs (No P.E. Vars)
- Reduced Form Trinomial Model
- Reduced Form Trinomial Model (No P.E. Vars)

Responses about Dispute Areas

Area	Same Category*	Same or Adjacent [†]
Household tasks	48.09	84.66
Money	47.40	84.96
Spending time together	45.90	81.38
Sex	51.39	84.45
In-laws	57.86	90.05
Children	40.95	79.76

^{*}Percentage of couples where husband and wife chose same category for disagreement frequency

[†]Percentage of couples where husband and wife chose same or adjacent categories for disagreement frequency

Responses about Dispute Resolution Process

Method	Same Category*	Same or Adjacent [†]
Calmly discuss	36.07	80.22
Heatedly argue	45.08	88.81

^{*}Percentage of couples where husband and wife chose same category for resolution frequency

[†]Percentage of couples where husband and wife chose same or adjacent categories for resolution frequency

Husband's Expected Utilities

Action $(\tau; C)$:

$$\hat{E}\mathcal{V}_{h}^{k}(\tau;\mathcal{C}) = \sum_{l} \delta^{l} \left[y_{h}^{k} \cdot \mathbf{1} \begin{pmatrix} y_{w}^{l} > v_{w}^{l}, \\ y_{w}^{l} > u_{w}(\tau) \end{pmatrix} + \\
+ v_{h}^{k} \cdot \mathbf{1} \begin{pmatrix} v_{w}^{l} \geq y_{w}^{l}, \\ v_{w}^{l} > u_{w}(\tau) \end{pmatrix} + \\
+ u_{h}(-\tau) \cdot \mathbf{1} \begin{pmatrix} u_{w}(\tau) \geq y_{w}^{l}, \\ u_{w}(\tau) \geq v_{w}^{l} \end{pmatrix} \right].$$

Action \mathcal{R} :

$$\hat{E}\mathcal{V}_{h}^{k}\left(\mathcal{R}\right) = \sum_{l} \delta^{l} \left[y_{h}^{k} \cdot \mathbf{1} \left(y_{w}^{l} > v_{w}^{l} \right) + v_{h}^{k} \cdot \mathbf{1} \left(v_{w}^{l} \geq y_{w}^{l} \right) \right]$$

Action \mathcal{D} :

$$\hat{\mathcal{E}}\mathcal{V}_{h}^{k}\left(\mathcal{D}\right)=y_{h}^{k}$$

◆ back to solution approach

Explanatory Vectors

x	z_h	z_w
constant	male-spec. av. ratio	female-spec. av. ratio
children, $<$ 6 y.o.	separation, ≤ 1 year	separation, ≤ 1 year
children, \geq 6 y.o.	separation, >1 year	separation, >1 year
children, wife's	collection rate	collection rate
duration (std)	coll. rate \times h.s., husb.	coll. rate $ imes$ h.s., wife
home ownership	coll. rate \times col., husb.	coll. rate $ imes$ col., wife
age, husb.'s (std)		
age, abs. diff. (std)		
black husb.		
catholic husb.		
religion, diff.		
high sch., husb.		
college, husb.		
education, diff.		 ◆ back to parameterized payoffs

Vectors of Opinions and Beliefs

a_h	a_w	Ь
constant	constant	constant
same happiness, husb.	same happiness, wife	same happiness
more happy, husb.	more happy, wife	more happy
worthy person, husb.	worthy person, wife	
	◆ back to param	eterized types and beliefs

Data Vector

- z_h location-specific characteristics of husband
- z_w location-specific characteristics of wife
- a_h husband's own divorce prospect and opinions
- a_w wife's own divorce prospect and opinions
- b husband's beliefs about wife's divorce prospect

◆ back to implementation

Parameter Vector

```
parameters of u_h + u_m
        parameters of v_h^S and v_h^H
\beta_h^H
        hard bargainer's constant for husband, \beta_h^H > 0
\beta_w
\beta_w^H
        parameters of v_{zv}^S and v_{zv}^H
        hard bargainer's constant for wife, \beta_{\pi}^{H} > 0
\gamma_h \\ \gamma_h^O
        parameters of y_k^P and y_k^O
        optimist's constant for husband, \gamma_{\scriptscriptstyle h}^{O}>0
        parameters of y_{zv}^P and y_{zv}^O
\gamma_w
\gamma_w^O
\lambda_h^k
\lambda_w^l
\rho^l
\Sigma
        optimist's constant for wife, \gamma_m^O>0
        parameters of \pi_h^k, k = \{HO, HP, SO, SP\}
        parameters of \pi_{vv}^l, l = \{HO, HP, SO, SP\}
        parameters of \delta^l, l = \{HO, HP, SO, SP\}
        covariance matrix of \theta
Ω
        covariance matrix of \eta
                                                         back to implementation
```

Implementation of Estimation Strategy

Notation:

- marital state: s
- data: X list of variables
- parameters: \(\Gamma\) list of parameters

Marital state probability:

$$\Pr\left[s = \textit{coop.}|X, \Gamma\right] = \sum_{k} \sum_{l} \pi_{h}^{k} \cdot \pi_{w}^{l} \cdot \Pr\left[s = \textit{coop.}|k, l, X, \Gamma\right]$$

Implementation of Estimation Strategy

Implementation of Estimation Strategy

Notation:

- marital state: s
- data: X list of variables
- parameters: Γ list of parameters

Marital state probability:

$$\Pr\left[s = coop.|X,\Gamma\right] = \sum_{k} \sum_{l} \pi_{h}^{k} \cdot \pi_{w}^{l} \cdot \Pr\left[s = coop.|k,l,X,\Gamma\right]$$

Conditional marital state probability:

$$\Pr\left[s = \textit{coop.}|k, l, X, \Gamma
ight] = E_{ heta, \eta} \mathbf{1} \left(egin{array}{l} au^* = rg \max_{ au} \hat{\mathcal{E}} \mathcal{V}_h^k\left(au; \mathcal{C}
ight), \ \hat{\mathcal{E}} \mathcal{V}_h^k\left(au^*; \mathcal{C}
ight) \geq y_h^k, \ u_w\left(au^*
ight) \geq v_w^l, \ u_w\left(au^*
ight) \geq y_w^l \end{array}
ight)$$

Integration Bounds

Simulation approach:

- transform $E_{\theta,\eta}\mathbf{1}(\theta,\eta\in S)=\int\limits_{S}f\left(\theta,\eta\right)d\theta d\eta$: solve for integration bounds that represent set S
- simulate $\int\limits_{S}f\left(\theta,\eta\right) d\theta d\eta$ with GHK

Transformation algorithm:

- step 1: partition θ_4 domain; then, on each interval:
- step 2: find discontinuity points of $\hat{E}\mathcal{V}_{h}^{k}\left(au;\mathcal{C}\right)$
- step 3: find acceptable transfer(s) to wife of type l
- step 4: write out inequalities when husband of type k chooses to offer such transfer(s)
- step 5: solve inequalities for integration bounds •••••
- step 6: repeat steps 2-5 for all θ_4 intervals

Integration Bounds Example

The example shows a small part of the integration region for the state of *cooperation* when husband's type is k (generic) and wife's type is SP (l = SP):

Definitions:

$$\begin{array}{rcl} f_{1} & = & y_{w}^{P} - \bar{v}_{w}^{H} \\ f_{2} & = & \min \left\{ y_{w}^{P} - \bar{v}_{w}^{S}, y_{w}^{O} - \bar{v}_{w}^{H} \right\} \\ f_{3} \left(\eta, \theta_{4} \right) & = & y_{h}^{k} - \bar{v}_{h}^{k} + \frac{\delta^{SP} \left(\eta \right)}{\delta^{HP} \left(\eta \right)} \left(y_{w}^{P} - \bar{v}_{w}^{H} \right) - \frac{\delta^{SP} \left(\eta \right)}{\delta^{HP} \left(\eta \right)} \theta_{4} \end{array}$$

◆ back to integration bounds

▶ continue example

Integration Bounds Example (Continued)

Definitions (continued):

$$\begin{split} f_4\left(\eta,\theta_2,\theta_3\right) &= -\bar{u}_h - \bar{u}_w - \theta_3 + \\ &+ \max \left\{ \begin{array}{c} y_h^k + y_w^P, \\ y_w^P + \frac{\left(\delta^{HP}(\eta) + \delta^{SP}(\eta)\right)y_h^k - \delta^{HP}(\eta)\left(\bar{v}_h^k + \theta_2\right)}{\delta^{SP}(\eta)} \end{array} \right\} \end{split}$$

$$\begin{split} f_{5}\left(\eta,\theta_{2},\theta_{3},\theta_{4}\right) &= -\bar{u}_{h} - \bar{u}_{w} - \theta_{3} + \\ &+ \min \left\{ \begin{array}{l} \bar{v}_{h}^{k} + \theta_{2} + \frac{\left(\delta^{HP}(\eta) + \delta^{SP}(\eta)\right)\left(\bar{v}_{w}^{H} + \theta_{4}\right) - \delta^{SP}(\eta)y_{w}^{P}}{\delta^{HP}(\eta)}, \\ \frac{\left(\delta^{HO}(\eta) + \delta^{SO}(\eta)\right)y_{h}^{k} + \delta^{HP}(\eta)\left(\bar{v}_{h}^{k} + \theta_{2}\right) + y_{w}^{O} - \delta^{SP}(\eta)y_{w}^{P}}{1 - \delta^{SP}(\eta)} \end{array} \right\} \end{split}$$

◆ back to integration bounds

Type Probabilities and Beliefs

		True T	ypes	Beliefs
Spou	sal Type	Husband	Wife	Husband
НО	(hard bargainer – optimist)	0.1064	0.0396	0.1695
HP	(hard bargainer – pessimist)	0.1410	0.2490	0.0273
SO	(soft bargainer – optimist)	0.0191	0.0478	0.1121
SP	(soft bargainer – pessimist)	0.7335	0.6636	0.6911

Welfare Effect of Conflict

Lower bound:

$$LB = E \left[u_h + u_w - v_h^H - v_w^H \right]$$

• Upper bound:

$$UB = E\left[u_h + u_w - v_h^S - v_w^H\right]$$

Estimated sample averages:

$$\widehat{LB} = 1.45$$
 $\widehat{UB} = 3.84$

Note: unit of measurement is *util* (a standard deviation of normally distributed stochastic component of payoff)

Divorce Payoffs (No P.E. Vars)

	Husb	and	Wi	fe
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.
male-specific avail. ratio	0.3214	(0.3337)	-	
female-specific avail. ratio	-		0.9463**	(0.4814)
separation, ≤ 1 year	-0.2294	(0.1635)	0.0813	(0.1500)
separation, >1 year	-0.1777	(0.1321)	-0.2558	(0.1592)
collection rate	-0.1618	(0.2632)	1.9888**	(0.9009)
coll. rate \times high sch., husb.	-1.6447^{**}	(0.7340)	-	
coll. rate \times college, husb.	-0.8884	(0.6516)	-	
coll. rate \times high sch., wife	-		-1.8196**	(0.8228)
coll. rate \times college, wife	-		-0.8287	(0.6694)
optimist's constant	3.7498**	(0.4108)	0.6682**	(0.1600)

^{*} and ** denote significance at 10 and 5 percent levels, respectively.

Cooperation Payoff (No P.E. Vars)

Variable	Coeff.	Std. Err.
constant	4.4964**	(0.6894)
children, $<$ 6 y.o.	_	
children, \geq 6 y.o.	_	
children, wife's	-0.4508**	(0.1684)
duration	_	
home ownership	_	
age, husband's	1.2409**	(0.1950)
age, abs. diff.	-0.4254**	(0.1120)
black husband	0.4350	(0.3191)
catholic husband	0.2874	(0.2031)
religion, diff.	-0.0332	(0.1029)
high sch., husband	0.0670	(0.1473)
college, husband	0.1996	(0.2224)
education, diff.	-0.2308	(0.1666)

^{*} and ** denote significance at 10 and 5 percent levels, respectively.

Conflict Payoffs (No P.E. Vars)

	Husband		Wife		
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.	
constant	-2.5215**	(0.7528)	-1.1701**	(0.5919)	
children, $<$ 6 y.o.	_		_		
children, \geq 6 y.o.	_		_		
children, wife's	0.3330**	(0.1625)	0.6426**	(0.1754)	
duration	_		-		
home ownership	_		_		
age, husband's	1.4035**	(0.2663)	-0.4562**	(0.1172)	
age, abs. diff.	-0.4323**	(0.1591)	0.2340**	(0.0935)	
black husband	-0.9823^{*}	(0.5839)	0.8211**	(0.2868)	
catholic husband	0.6413^{*}	(0.3442)	0.2184	(0.1602)	
religion, diff.	-0.7994**	(0.3596)	0.2149	(0.1490)	
high sch., husband	0.1443	(0.1932)	-0.4160**	(0.2070)	
college, husband	0.2507	(0.2748)	-0.8183**	(0.2354)	
education, diff.	-0.1641	(0.2042)	0.1625	(0.1408)	
hard barg. constant	2.2738**	(0.6569)	3.5033**	(0.3963)	

 $^{^{\}ast}$ and ** denote significance at 10 and 5 percent levels, respectively.

Type Probabilities and Beliefs (No P.E. Vars)

		True Types		Beliefs
Spou	ısal Type	Husband	Wife	Husband
НО	(hard bargainer – optimist)	0.0970	0.0382	0.1484
HP	(hard bargainer – pessimist)	0.1484	0.2220	0.0372
SO	(soft bargainer – optimist)	0.0191	0.0534	0.1186
SP	(soft bargainer – pessimist)	0.7354	0.6864	0.6958

Reduced Form Trinomial Model

	Conflict		Divorce	
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.
constant	-2.3122**	(0.5583)	-2.6684**	(0.5743)
children, < 6 y.o.	0.0384	(0.0614)	-0.0610	(0.0606)
children, ≥ 6 y.o.	0.1152**	(0.0484)	0.0846	(0.0520)
children, wife's	0.1333	(0.0828)	0.1521**	(0.0771)
duration	-0.0835	(0.0860)	-0.4675**	(0.0936)
home ownership	-0.2201**	(0.0905)	-0.2722**	(0.0858)
age, husband's	-0.3468**	(0.1022)	-0.3684**	(0.0977)
age, abs. diff.	0.1097**	(0.0457)	0.1822**	(0.0444)
black husband	0.4037**	(0.1347)	0.4253**	(0.1402)
catholic husband	0.1692*	(0.0896)	-0.1207	(0.0931)
religion, diff.	0.1272	(0.0824)	0.1593**	(0.0797)
high sch., husband	-0.2981*	(0.1668)	-0.0909	(0.1865)
college, husband	-0.3530*	(0.1864)	-0.4089**	(0.2014)
education, diff.	0.1297	(0.0812)	0.1700**	(0.0809)
male-specific avail. ratio	0.8618**	(0.2806)	0.5375*	(0.3019)
female-specific avail. ratio	-0.3147	(0.3827)	0.7100*	(0.3716)
separation, ≤ 1 year	-0.1811*	(0.1095)	-0.1012	(0.1048)
separation, > 1 year	0.0210	(0.0855)	-0.2113**	(0.0870)
collection rate	2.2152*	(1.2347)	2.5051**	(1.2639)
coll. rate × high sch., husband	-0.4421	(1.1532)	-1.2152	(1.2114)
coll. rate × college, husband	-0.4525	(1.2973)	-0.5329	(1.3417)
coll. rate × high sch., wife	-0.9725	(0.8534)	-1.3771*	(0.8271)
coll. rate $ imes$ college, wife	-1.6117^*	(0.9696)	-1.6516*	(0.9352)

 $^{^{\}ast}$ and ** denote significance at 10 and 5 percent level, respectively.

Reduced Form Trinomial Model (No P.E. Vars)

	Conflict		Divorce	
Variable	Coeff.	Std. Err.	Coeff.	Std. Err.
constant	-2.3689**	(0.5425)	-3.0134**	(0.5544)
children, < 6 y.o.	_		_	
children, ≥ 6 y.o.	_		_	
children, wife's	0.1041	(0.0775)	0.2349**	(0.0713)
duration	_		_	
home ownership	_		_	
age, husband's	-0.4393**	(0.0709)	-0.7077**	(0.0724)
age, abs. diff.	0.1324**	(0.0399)	0.2826**	(0.0393)
black husband	0.4506**	(0.1330)	0.4600**	(0.1372)
catholic husband	0.1748**	(0.0892)	-0.1082	(0.0922)
religion, diff.	0.1177	(0.0813)	0.1947**	(0.0784)
high sch., husband	-0.2716*	(0.1644)	0.0050	(0.1804)
college, husband	-0.3479*	(0.1837)	-0.2926	(0.1956)
education, diff.	0.1195	(0.0808)	0.1713**	(0.0801)
male-specific avail. ratio	0.8183**	(0.2758)	0.5653*	(0.2936)
female-specific avail. ratio	-0.3449	(0.3796)	0.8134**	(0.3649)
separation, ≤ 1 year	-0.2003*	(0.1087)	-0.1083	(0.1034)
separation, > 1 year	0.0192	(0.0852)	-0.2011**	(0.0861)
collection rate	3.2900**	(1.1589)	3.0828**	(1.1895)
coll. rate $ imes$ high sch., husband	-0.8204	(1.1391)	-1.8573	(1.1833)
coll. rate × college, husband	-0.7136	(1.2856)	-1.1774	(1.3182)
coll. rate $ imes$ high sch., wife	-1.2623	(0.8420)	-1.6327**	(0.8176)
coll. rate \times college, wife	-2.0493**	(0.9489)	-1.8783**	(0.9183)

 $^{^{\}ast}$ and ** denote significance at 10 and 5 percent level, respectively.