Stock Delistings and Average Cross-Sectional Idiosyncratic Stock Volatility

Serguey Khovansky[†] Oleksandr Zhylyevskyy*

†Northeastern University

* Iowa State University

Annual Meeting of the Midwest Economics Association
Minneapolis, MN
March 28, 2015

Subject of This Study

Log-return on stock i is represented as:

$$In(R^i) = drift + \underbrace{Systematic \ Risk}_{\beta_i \times \sigma_m \times W_t} + \underbrace{Idiosyncratic \ Risk}_{\sigma_i \times Z^i_t}$$

- W_t: source of systematic risk (common across stocks)
- Z_t^i : source of idiosyncratic risk (specific to stock i)

• We study average of σ_i 's over all stocks and call it average idiosyncratic volatility (AIVOL)

AIVOL and Market Volatility

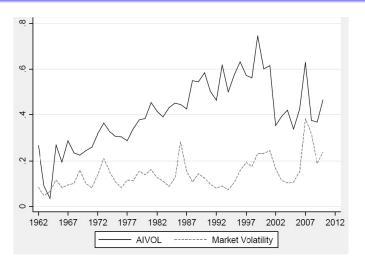


Figure: AIVOL and Market Volatility, 1962–2011

Reasons to Study AIVOL

Average idiosyncratic volatility (AIVOL):

- Influences effectiveness of portfolio diversification and performance of portfolio managers (Campbell et al., 2001; Bennett & Sias, 2006)
- Affects efficiency of capital allocation via stock market (Durnev et al., 2003; Hamao et al., 2007)
- Predicts future stock market returns (Goyal & Santa-Clara, 2003; Guo & Savickas, 2006)
- Reflects intensity of "creative destruction" (Chun et al., 2008)
- Is a priced risk factor (Ang et al., 2006; Fu, 2009; Guo & Savickas, 2010)

Literature Review

Time-series behavior of AIVOL:

- Campbell et al. (2001): positive trend between 1962 and 1997
- Bennett & Sias (2006), Brandt et al. (2010): reversal in trend around 2000
- Bekaert et al. (2012): no evidence of positive trend

Factors influencing AIVOL:

- Xu & Malkiel (2003): institutional stock ownership
- Fama & French (2004): number of new stock listings
- Bennett & Sias (2006): stock market composition
- Wei & Zhang (2006): level and volatility of return on equity
- Brown & Kapadia (2007): riskiness of publicly traded subsample of the economy
- Cao et al. (2008): level and variance of corporate growth options
- Irvine & Pontiff (2009): idiosyncratic volatility of cash flows, intensity of competition
- Bekaert et al. (2012): industry turnover, growth options, R&D spending, market variance, industrial production shocks, bond yield spread

Main Findings

- AIVOL is positively associated with contemporaneous number of:
 - Newly listed stocks
 - Delisted stocks
- AIVOL is positively associated with lagged number of:
 - Newly listed stocks
 - Delisted stocks
- The results for stock delistings are novel, strong, and robust:
 - We account for autocorrelation of AIVOL
 - We control for aggregate financial/economic variables
 - We perform several specification tests

Important Attributes of AIVOL Estimation Approach

- AIVOL $_{t,t+\tau}$ is average cross-sectional idiosyncratic stock volatility over time period $[t,t+\tau]$
- AIVOL_{t,t+\tau} is unobservable and must be estimated
- To estimate AIVOL $_{t,t+\tau}$, stock prices need to be observed only at two time moments: t and $t+\tau$
- We use stock prices adjusted for stock splits, reverse splits, etc.
- When estimating AIVOL $_{t,t+\tau}$, we do not consider stocks that were:
 - Newly listed between t and $t + \tau$
 - Delisted between t and $t + \tau$

Model Structure and Market Index Price Dynamics

- Our financial model features three types of assets:
 - Many risky assets called stocks
 - A diversified portfolio of stocks called market index
 - A riskless asset (e.g., T-Bill) with risk-free interest rate r > 0
- Market index's price, M_t , follows a geometric Brownian motion:

$$\frac{dM_t}{M_t} = \mu_m dt + \sigma_m dW_t$$

- Drift $\mu_m = r + \delta \sigma_m$
- δ : market risk premium
- $\sigma_m > 0$: market volatility
- *W_t*: standard Brownian motion, source of systematic risk

Stock Price Dynamics

• Price of stock i, S_t^i , follows a geometric Brownian motion:

$$rac{dS_t^i}{S_t^i} = \mu_i dt + eta_i \sigma_m dW_t + \sigma_i dZ_t^i$$

- W_t: standard Brownian motion, source of systematic risk
- Z_t^i : standard Brownian motion, source of idiosyncratic risk
- W_t and Z_t^i are mutually independent
- Drift $\mu_i = r + \delta \beta_i \sigma_m + \gamma \sigma_i$
- γ : idiosyncratic volatility premium
- β_i : beta of stock i, $\beta_i \sim i.i.d.UNI[\kappa_\beta, \kappa_\beta + \lambda_\beta]$
- σ_i : idiosyncratic volatility of stock i, $\sigma_i \sim i.i.d.UNI[0, \lambda_{\sigma}]$
- AIVOL = $\lambda_{\sigma}/2$, where λ_{σ} is estimated using GMM-based approach of Khovansky & Zhylyevskyy (2013)

Data

- Source: Center for Research in Security Prices (CRSP)
- Time frame: 1962–2011
- We construct 12 time series of annual AIVOL estimates. Each series has 49 observations and is based on non-overlapping periods falling on a particular month:
 - January series, 49 periods:
 - first Wednesday of January 1962–first Wednesday of January 1963
 - first Wednesday of January 1963–first Wednesday of January 1964
 - first Wednesday of January 2010–first Wednesday of January 2011
 - ...
 - December series, 49 periods:
 - first Wednesday of December 1962–first Wednesday of December 1963
 - first Wednesday of December 2010–first Wednesday of December 2011
- For same periods, we construct time series of numbers of new stock listings and delistings using CRSP stock header files

Contemporaneous Regression Results

- Before running regressions, we test all time series for unit root and find them to be stationary
- Contemporaneous regressions have following form:

$$\ln\left(AIVOL_{t}\right) = a_{0} + a_{1} \cdot \ln\left(\frac{n_{t}}{t}\right) + a_{2} \cdot \ln\left(AIVOL_{t-1}\right) + a_{3} \cdot nasdaq_{t} + \epsilon_{t}$$

 n_t : number of new listings OR number of delistings during period t

	Log of Stock Numbers			
	Newly Listed		Delisted	
	Coeff.(a ₁) (Std.Err.)		Coeff.(a ₁)	(Std.Err.)
January series	0.1903**	(0.0756)	0.4350***	(0.0848)
February series	0.1812**	(0.0682)	0.3304***	(0.0795)
March series	0.2510**	(0.0998)	0.3591***	(0.1036)
 December series	 0.2032**	 (0.0861)	 0.3972***	 (0.0935)

Lagged Regression Results

We regress AIVOL on first lag of number of new listings or delistings.
 Regressions have following form:

$$\ln (AIVOL_t) = b_0 + b_1 \cdot \ln (n_{t-1}) + b_2 \cdot \ln (AIVOL_{t-1}) + b_3 \cdot nasdaq_{t-1} + \varepsilon_t$$

 n_{t-1} : number of new listings OR number of delistings during $t-1$

	First Lag of Log of Stock Numbers				
	Newly Listed		Delis	Delisted	
	Coeff.(b ₁)	(Std.Err.)	Coeff.(b ₁)	(Std.Err.)	
January series	0.1418*	(0.0734)	0.4429***	(0.0778)	
February series	0.1645**	(0.0663)	0.3639***	(0.0718)	
March series	0.2671***	(0.0963)	0.3604***	(0.0977)	
 December series	 0.2561***	 (0.0850)	 0.3566***	 (0.0965)	

 Regressions are also run for delistings differentiated by delisting reason: merger, stock-issue exchange, pre-announced liquidation, drop

Selected Aggregate Variables That May Affect AIVOL

- MABA: average ratio of market value of assets to book value of assets among publicly traded firms
- RD: average ratio of research and development expenditures to sales
- Small: percentage of total market capitalization attributable to smallest (by market value) quartile of firms
- Std(SP500): standard deviation of daily returns on S&P 500 index
- VIX: VIX index (measures implied volatility of S&P 500 index options)

Contemporaneous Regression with New Listings and AV Controls

Estimated regressions:

$$\ln\left(AIVOL_{t}\right) = a_{0} + a_{1} \cdot \ln\left(\frac{n_{t}}{n_{t}}\right) + a_{2} \cdot \frac{av_{t}}{n_{t}} + a_{3} \cdot \ln\left(AIVOL_{t-1}\right) + a_{4} \cdot nasdaq_{t} + \epsilon_{t}$$

 n_t : number of newly listed stocks during period t

 av_t : aggregate variable for period t

	Aggregate Variable		Log # of No	Log # of New Listings		
	Coeff.(a ₂)	(Std.Err.)	Coeff.(a ₁)	(Std.Err.)		
In(MABA)	-0.0470	(0.1331)	0.1951**	(0.0868)		
In(RD)	0.0871**	(0.0331)	0.1397**	(0.0655)		
Small	-0.6094**	(0.2803)	0.2089**	(0.0784)		
Std(SP500)	0.4216***	(0.1508)	0.2733***	(0.0926)		
VIX	0.0296**	(0.0121)	0.2511***	(0.0897)		

Note: We use time series for annual periods starting in January

 Each regression fails at least one specification test: RESET, alternative Durbin, or Fan & Li (1999) test

Contemporaneous Regression with Delistings and AV Controls

Estimated regressions:

$$\ln\left(AIVOL_{t}\right) = a_{0} + a_{1} \cdot \ln(n_{t}) + a_{2} \cdot av_{t} + a_{3} \cdot \ln\left(AIVOL_{t-1}\right) + a_{4} \cdot nasdaq_{t} + \epsilon_{t}$$

 n_t : number of delisted stocks during period t

 av_t : aggregate variable for period t

	Aggregate Variable		Log # of D	Log # of Delistings		
	Coeff.(a ₂)	(Std.Err.)	Coeff.(a ₁)	(Std.Err.)		
In(MABA)	-0.0777	(0.1299)	0.4425***	(0.1445)		
In(RD)	0.0476**	(0.0233)	0.3563***	(0.1234)		
Small	0.0633	(0.2417)	0.4474**	(0.1695)		
Std(SP500)	0.1840***	(0.0600)	0.4015***	(0.1277)		
VIX	0.0142*	(0.0075)	0.4137***	(0.1250)		

- Log # of delistings remains statistically significant in all cases
- Regressions for In(MABA) and Small fail alternative Durbin test at 5% level

Lagged Regression with New Listings and AV Controls

Estimated regressions:

$$\ln (AIVOL_t) = b_0 + b_1 \cdot \ln(n_{t-1}) + b_2 \cdot av_{t-1} + b_3 \cdot \ln (AIVOL_{t-1}) + a_4 \cdot nasdaq_{t-1} + \varepsilon_t$$

 n_{t-1} : number of newly listed stocks during period $t-1$
 av_{t-1} : aggregate variable for period $t-1$

Lagged:	Aggregate Variable		Log # of N	Log # of New Listings		
	Coeff.(b ₂)	(Std.Err.)	Coeff.(b ₁)	(Std.Err.)		
In(MABA)	0.2643	(0.1823)	0.1115	(0.1199)		
In(RD)	0.0871**	(0.0343)	0.1022	(0.1031)		
Small	-0.4768**	(0.2002)	0.1506	(0.1187)		
Std(SP500)	0.0956	(0.2161)	0.1594	(0.1531)		
VIX	0.0073	(0.0153)	0.1553	(0.1377)		

- Lagged log # of new listings loses statistical significance when a lagged aggregate variable is added to a regression
- Each regression fails at least two specification tests out of three performed

Lagged Regression with Delistings and AV Controls

Estimated regressions:

$$\ln (AIVOL_t) = b_0 + b_1 \cdot \ln(n_{t-1}) + b_2 \cdot av_{t-1} + b_3 \cdot \ln(AIVOL_{t-1}) + b_4 \cdot nasdaq_{t-1} + \varepsilon_t$$

 n_{t-1} : number of delisted stocks during period $t-1$

 av_{t-1} : aggregate variable for period t-1

Lagged:	Aggregate Variable		Log # of D	Log # of Delistings	
	Coeff.(b ₂)	(Std.Err.)	Coeff.(b ₁)	(Std.Err.)	
In(MABA)	0.0791	(0.1231)	0.4310***	(0.1368)	
In(RD)	0.0343	(0.0226)	0.3869***	(0.1215)	
Small	0.1775	(0.2597)	0.4736***	(0.1533)	
Std(SP500)	-0.0054	(0.1142)	0.4429***	(0.1276)	
VIX	-0.0018	(0.0096)	0.4440***	(0.1263)	

- Lagged log # of delistings remains statistically significant in all cases
- Each regression passes all specification tests performed

Conclusion

- Number of delistings is positively associated with AIVOL of surviving stocks, both contemporaneously and with a lag
- Results for delistings are robust to accounting for other variables that can influence AIVOL, including aggregate variables
- Possible mechanism underlying our results:
 - Delistings can indicate changes in economic environment, including changes in the number of competitors. Under Cournot competition, such changes can contribute to variability of firm profits and stock valuations
 - Delistings can increase investor uncertainty about future firm profitability.
 The model of Pástor & Veronesi (2003) would then predict a rise in individual idiosyncratic volatilities and an increase in AIVOL as a result
- Number of delistings is an important variable to keep track of for financial practitioners and investors

Thank you! Questions?

Appendix: Number of New Stock Listings, 1962–2011

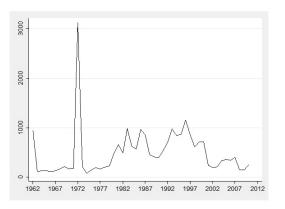


Figure: # of new listings for annual periods starting in December

Appendix: Number of Stock Delistings, 1962–2011

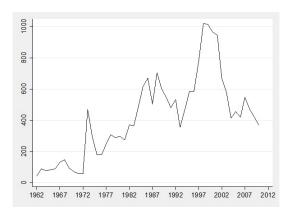


Figure: # of delistings for annual periods starting in December

Appendix: Selected Aggregate Variables and AIVOL

These regressions focus on aggregate variables and do **not** include log numbers of new listings and delistings as regressors

Contemporaneous regressions:

$$\ln (AIVOL_t) = a_0 + a_1 \cdot av_t + a_2 \cdot \ln (AIVOL_{t-1}) + a_3 \cdot nasdaq_t + \epsilon_t$$

Lagged regressions:

$$\ln\left(AIVOL_{t}\right) = b_{0} + b_{1} \cdot av_{t-1} + b_{2} \cdot \ln\left(AIVOL_{t-1}\right) + b_{3} \cdot nasdaq_{t-1} + \varepsilon_{t}$$

	Contemporaneous		Lagged		
	Coeff.(a ₁)	(Std.Err.)		Coeff. (b_1)	(Std.Err.)
In(MABA)	0.0945	(0.1336)		0.3672**	(0.1497)
In(RD)	0.0997***	(0.0360)		0.0936**	(0.0354)
Small	-0.5328**	(0.2471)		-0.4306**	(0.1873)
Std(SP500)	0.2877***	(0.1031)		0.0015	(0.1418)
VIX	0.0205*	(0.0107)		0.0010	(0.0124)