Cross-sectional GMM estimation under a common data shock

Serguey Khovansky Oleksandr Zhylyevskyy

Clark University

Iowa State University

5th CSDA International Conference on Computational and Financial Econometrics (CFE'11)

December 17, 2011

Common Shocks in Cross-Sectional Data

Cross-sectional econometricians typically assume observations are **independent**

However, **independence breaks down** if population units are affected by a **common shock**

Examples:

- oil price shocks affect production costs of many firms
- interest rate shocks affect consumption of many households
- common factors affect individual stock returns

Localized and Non-Localized Shocks

Localized shock:

- dependence between observations diminishes with distance
- distance may be geographical, socioeconomic, time-wise, etc.

Non-localized shock:

• dependence between observations need not diminish

Consider observations $X_1, X_2, ..., X_{100}, ...$:

- ullet localized shock: X_1, X_{100} are "less dependent" than X_1, X_2
- non-localized shock: no such relationship exists

Contribution

We propose GMM estimators for a cross-sectional model with a non-localized common shock

We specify conditions under which estimators are:

- consistent
- asymptotically mixed normal

We show that conventional Wald and OIR tests are still applicable

Data Structure

Probability space (Ω, \mathcal{F}, P)

D.g.p. provides observations $X_0, X_1, X_2, ...$

Data structure:

- \bullet X_0 is driven by common shock
- ullet X_i , i=1,2,..., is driven by common and idiosyncratic shock

Examples:

- aggregate income vs. individual incomes
- average crop yield vs. individual farm crop yields
- stock market portfolio return vs. individual stock returns

Conditionally I.I.D. Observations

Assumption:

 $X_1, X_2, ...$ are **conditionally i.i.d.** given σ -field $\mathcal{F}_0 \equiv \sigma\left(X_0\right)$

 $\sigma\left(X_{0}\right)$: σ -field generated by X_{0} (i.e., by common shock)

This assumption is very mild (Andrews, 2005):

When sample units are randomly drawn, it is compatible with:

- arbitrary dependence across population units
- different effects of common shock on population units
- heterogeneity across population units

Parameters and Moment Restrictions

Goal:

 $oldsymbol{ heta}$ estimate, do inference on $oldsymbol{ heta}_0$: true parameter underlying d.g.p. $(p{ imes}1)$

Parameter set is $\Theta \subset \mathcal{R}^p$:

- $\theta_0 \in \Theta$
- ullet Θ is compact and convex

Economic model provides k moment restrictions $(k \ge p)$:

$$g\left(X_{i};oldsymbol{ heta},X_{0}
ight)$$
 for $i=1,2,...$

For example, *j*th component of $g(\cdot)$ may be:

$$m{g}^{(j)}\left(X_i;m{ heta},X_0
ight)=X_i^{m{\xi}}-E_{m{ heta}}\left[X_i^{m{\xi}}|X_0
ight]$$
 , where $m{\xi}$ is a constant

Estimators

One-step estimation using nonstochastic pos. def. Σ :

$$Q_{1,n}(\boldsymbol{\theta}) = \left(\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}; \boldsymbol{\theta}, X_{0}\right)\right)^{\prime} \boldsymbol{\Sigma}^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}; \boldsymbol{\theta}, X_{0}\right)\right)$$
$$\widehat{\boldsymbol{\theta}}_{1,n} = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q_{1,n}\left(\boldsymbol{\theta}\right)$$

Two-step using
$$\widehat{\Sigma}_{1,n} = \frac{1}{n} \sum_{i=1}^{n} g\left(X_i; \widehat{\theta}_{1,n}, X_0\right) \cdot g\left(X_i; \widehat{\theta}_{1,n}, X_0\right)'$$
:

$$Q_{2,n}\left(\boldsymbol{\theta}\right) = \left(\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{g}\left(X_{i};\boldsymbol{\theta},X_{0}\right)\right)^{\prime}\widehat{\boldsymbol{\Sigma}}_{1,n}^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\boldsymbol{g}\left(X_{i};\boldsymbol{\theta},X_{0}\right)\right)$$

$$\widehat{\boldsymbol{\theta}}_{2,n} = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q_{2,n} \left(\boldsymbol{\theta} \right)$$

Consistency

Suppose:

- $g(X_i; \theta, X_0)$ is measurable w.r.t. $\sigma(X_0, X_i)$ for all θ
- ullet $g\left(X_{i};oldsymbol{ heta},X_{0}
 ight)$ is a.s. differentiable in $oldsymbol{ heta}$
- $E\left[\sup_{\boldsymbol{\theta}} \|\boldsymbol{g}\left(X_i; \boldsymbol{\theta}, X_0\right)\|^2\right] < \infty, E\left[\sup_{\boldsymbol{\theta}} \left\|\frac{\partial \boldsymbol{g}(X_i; \boldsymbol{\theta}, X_0)}{\partial \boldsymbol{\theta}}\right\|^2\right] < \infty$
- $E[g(X_i; \theta_0, X_0) | \mathcal{F}_0] = \mathbf{0}$ a.s.
- ullet $E\left[oldsymbol{g}\left(X_{i};oldsymbol{ heta},X_{0}
 ight)|\mathcal{F}_{0}
 ight]
 eq oldsymbol{0}$ a.s. for all $oldsymbol{ heta}
 eq oldsymbol{ heta}_{0}$
- $\Sigma_{\mathcal{F}_0} \equiv E\left[g\left(X_i; \theta_0, X_0\right) \cdot g\left(X_i; \theta_0, X_0\right)' | \mathcal{F}_0\right]$ is a.s. pos. def.

Theorem: As $n \to \infty$, $\widehat{\theta}_{1,n} \to^p \theta_0$ and $\widehat{\theta}_{2,n} \to^p \theta_0$

Asymptotic Mixed Normality

In addition, suppose:

- ullet open ball $\mathcal N$ centered at $m{ heta}_0$ s.t. $g\left(X_i; m{ heta}, X_0
 ight)$ is a.s. twice differentiable in $m{ heta}$ on $\mathcal N$ and $E\left[\sup_{m{ heta}\in\mathcal N}\left\|rac{\partial^2 g(X_i; m{ heta}, X_0)}{\partial m{ heta}\partial m{ heta}'}
 ight]
 ight]<\infty$
- $\mathbf{G}_{\mathcal{F}_0} \equiv E\left[rac{\partial \mathbf{g}(X_i; m{ heta}_0, X_0)}{\partial m{ heta}'} | \mathcal{F}_0
 ight]$ has full column rank a.s.

Theorem: As $n \to \infty$:

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{1,n} - \boldsymbol{\theta}_{0}\right) \rightarrow^{d} MN\left(\mathbf{0}, \mathbf{V}_{1,\mathcal{F}_{0}}\right)$$

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{2,n} - \boldsymbol{\theta}_{0}\right) \rightarrow^{d} MN\left(\mathbf{0}, \mathbf{V}_{2,\mathcal{F}_{0}}\right)$$

 V_{1,\mathcal{F}_0} and V_{2,\mathcal{F}_0} are a.s. pos. def. **stochastic** matrices

Asymptotic Inference and Specification Test

Consider testing r parametric restrictions:

$$H_0: \mathbf{a}(\boldsymbol{\theta}_0) = \mathbf{0}$$

Let $\mathbf{A}(\cdot)$ be Jacobian of $\mathbf{a}(\cdot)$. Under H_0 , Wald test statistic

$$W_n \equiv n \cdot \mathbf{a} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right)' \left[\mathbf{A} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right) \mathbf{V}_{2,n} \mathbf{A} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right)' \right]^{-1} \mathbf{a} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right) \rightarrow^d \chi^2(r)$$

If the model is correctly specified, **OIR test** statistic

$$J_n \equiv n \cdot Q_{2,n} \left(\widehat{\boldsymbol{\theta}}_{2,n} \right) \rightarrow^d \chi^2 \left(k - p \right)$$

Financial Model Setup

Financial assets:

- many risky assets called stocks
- a diversified portfolio of stocks called market index
- a riskless asset

Asset prices are quoted continuously, but we eventually focus only on a cross-section of returns between t=0 and t=T

Market Index Price Dynamics

Dynamics of market index:

$$\frac{dM_t}{M_t} = \mu_m dt + \sigma_m dW_t$$

where drift μ_m is

$$\mu_m = r + \delta \sigma_m$$

- r: risk-free rate
- σ_m : market volatility, $\sigma_m > 0$
- ullet δ : Sharpe ratio of market index
- $\{W_t\}$: Brownian motion; source of common shock

Stock Price Dynamics

Dynamics of stock i for i = 1, 2, ...:

$$\frac{dS_t^i}{S_t^i} = \mu_i dt + \beta_i \sigma_m dW_t + \sigma_i dZ_t^i$$

where drift μ_i is

$$\mu_i = r + \delta \beta_i \sigma_m + \gamma \sigma_i$$

- $\beta_i \sim UNI\left[\kappa_\beta, \kappa_\beta + \lambda_\beta\right]$: beta of stock i
- $\sigma_i \sim UNI[0, \lambda_{\sigma}]$: idiosyncratic volatility of stock i
- ullet γ : idiosyncratic volatility premium
- ullet $\{Z_t^i\}$: Brownian motion; source of idiosyncratic shock

Dependence Among Returns

Applying Itô's lemma:

$$\frac{S_T^i}{S_0^i} = \exp\left[\left(\mu_i - 0.5\beta_i^2 \sigma_m^2 - 0.5\sigma_i^2\right)T + \beta_i \sigma_m W_T + \sigma_i Z_T^i\right]$$

$$\frac{M_T}{M_0} = \exp\left[\left(\mu_m - 0.5\sigma_m^2\right)T + \sigma_m W_T\right]$$

$$W_T$$
, $Z_T^i \sim i.i.d. N(0,T)$

 W_T induces **dependence** among $\frac{S_T^1}{S_0^1}, \frac{S_T^2}{S_0^2}, \dots$

However, $\frac{S_T^1}{S_0^1}$, $\frac{S_T^2}{S_0^2}$, ... are **conditionally i.i.d.** given $\frac{M_T}{M_0}$

Monte Carlo Design

Inputs:

- $\sigma_m = 0.20, \ \gamma = 0.50$
- $\kappa_{\beta} = -0.20$, $\lambda_{\beta} = 3.40$; $\lambda_{\sigma} = 0.50$
- $\delta = 0.50$, r = 0.01, T = 1/12

Identifiable parameters are $oldsymbol{ heta} = ig(\sigma_m, \gamma, \kappa_eta, \lambda_eta, \lambda_\sigmaig)'$

Moment restrictions are of the form:

$$g_i(\xi; \boldsymbol{\theta}) = \left(S_T^i / S_0^i\right)^{\xi} - E_{\boldsymbol{\theta}} \left[\left(S_T^i / S_0^i\right)^{\xi} | M_T / M_0 \right]$$

- ullet vector $g\left(S_T^i/S_0^i;m{ heta},M_T/M_0
 ight)=\left(g_i\left(\xi_1;m{ heta}
 ight),...,g_i\left(\xi_6;m{ heta}
 ight)
 ight)'$
- vector $\boldsymbol{\xi} = (-1.5, -1, -0.5, 0.5, 1, 1.5)'$

Monte Carlo Results

	Sample size n (thousands)					
	25	50	250	1,000	10,000	True value
Panel A: Means						
σ_m	0.2526	0.2382	0.2205	0.2116	0.2011	0.2000
γ	0.5560	0.5339	0.5161	0.5076	0.5020	0.5000
κ_{β}	-0.1316	-0.1484	-0.1476	-0.1817	-0.1978	-0.2000
$\lambda_{\beta}^{'}$	3.6166	3.5798	3.4874	3.4722	3.4303	3.4000
λ_{σ}	0.4989	0.4996	0.4998	0.4999	0.5000	0.5000
Panel B: RMSEs						
σ_m	0.2327	0.2102	0.1382	0.1279	0.0658	
γ	0.2105	0.1582	0.0836	0.0488	0.0182	
κ_{β}	0.9925	0.8817	0.7330	0.4077	0.1410	
λ_{β}	1.4086	1.2965	0.8896	0.8310	0.4298	
λ_{σ}	0.0063	0.0046	0.0020	0.0010	0.0003	
Panel C: Test sizes, H_0 : parameter = true value, %						
σ_m	15.80	13.20	8.00	7.10	5.70	5.00
γ	7.30	5.50	5.40	5.60	5.30	5.00
κ_{β}	8.30	6.40	5.70	5.40	4.60	5.00
$\lambda_{\beta}^{'}$	10.60	9.60	5.60	5.50	4.70	5.00
λ_{σ}	3.80	3.10	4.60	3.80	4.50	5.00
Panel D: OIR test size, H ₀ : correct specification, %						
	19.50	15.50	11.30	8.70	8.50	5.00

Thank you! Questions?

Econometric Literature

Localized common shock:

- general approach: Conley (1999)
- spatial effects: e.g., Kelejian & Prucha (1999)
- group effects: e.g., Lee (2007)
- social effects: e.g., Bramoullé et al. (2009)

Non-localized common shock:

- Andrews (2003)
- Andrews (2005)

Consistency: Proof Sketch

We adapt argument due to Andrews (2003) but clarify several details

Sketch:

- infer existence and measurability of estimator from standard theorem
- show pointwise convergence of objective
- show stochastic equicontinuity of objective
- establish uniform convergence of objective
- ullet establish unique minimum of objective in the limit at $oldsymbol{ heta}_0$ a.s.
- ullet use the above results to prove convergence of estimator to $oldsymbol{ heta}_0$

Stochastic Variance Terms

 V_{1,\mathcal{F}_0} and V_{2,\mathcal{F}_0} are a.s. pos. def. **stochastic** matrices:

$$egin{aligned} \mathbf{V}_{1,\mathcal{F}_0} &= \left[\mathbf{G}_{\mathcal{F}_0}' \mathbf{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_0}
ight]^{-1} \mathbf{G}_{\mathcal{F}_0}' \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_{\mathcal{F}_0} \mathbf{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_0} \left[\mathbf{G}_{\mathcal{F}_0}' \mathbf{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_0}
ight]^{-1} \ & \mathbf{V}_{2,\mathcal{F}_0} &= \left[\mathbf{G}_{\mathcal{F}_0}' \mathbf{\Sigma}_{\mathcal{F}_0}^{-1} \mathbf{G}_{\mathcal{F}_0}
ight]^{-1} \end{aligned}$$

Asymptotic Mixed Normality: Proof Sketch

Proof utilizes conventional techniques:

- show that $g(X_1; \theta_0, X_0)$, $g(X_2; \theta_0, X_0)$, ... is m.d.s.
- ullet mean-value expand $rac{1}{n}\sum_{i=1}^n oldsymbol{g}\left(X_i;\widehat{oldsymbol{ heta}}_{1,n},X_0
 ight)$ around $oldsymbol{ heta}_0$
- show that $\mathbf{G}_n\left(\widehat{\boldsymbol{\theta}}_{1,n}\right) \equiv \frac{1}{n} \sum_{i=1}^n \frac{\partial g\left(X_i; \widehat{\boldsymbol{\theta}}_{1,n}, X_0\right)}{\partial \boldsymbol{\theta}'} \to^p \mathbf{G}_{\mathcal{F}_0}$
- invoke c.l.t. for m.d.s. to show that

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n} \mathbf{g}\left(X_{i};\boldsymbol{\theta}_{0},X_{0}\right) \rightarrow^{d} \left[\boldsymbol{\Sigma}_{\mathcal{F}_{0}}\right]^{\frac{1}{2}} \mathbf{Z}_{k}$$

- \bullet invoke standard arguments to establish final result with V_{1,\mathcal{F}_0}
- ullet repeat steps for $\widehat{oldsymbol{ heta}}_{2,n}$ and simplify to obtain $\mathbf{V}_{2,\mathcal{F}_0}$

$$W_{n} \equiv n\mathbf{a} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right)' \left[\mathbf{A} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right) \mathbf{V}_{2,n} \mathbf{A} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right)'\right]^{-1} \mathbf{a} \left(\widehat{\boldsymbol{\theta}}_{2,n}\right)$$

$$\mathbf{V}_{2,n} = \left[\mathbf{G}_{2,n}' \widehat{\boldsymbol{\Sigma}}_{2,n}^{-1} \mathbf{G}_{2,n}\right]^{-1}$$

$$\mathbf{G}_{2,n} = n^{-1} \sum_{i} \partial g \left(X_{i}; \widehat{\boldsymbol{\theta}}_{2,n}, X_{0}\right) / \partial \boldsymbol{\theta}'$$

$$\widehat{\boldsymbol{\Sigma}}_{2,n} = n^{-1} \sum_{i} g \left(X_{i}; \widehat{\boldsymbol{\theta}}_{2,n}, X_{0}\right) \cdot g \left(X_{i}; \widehat{\boldsymbol{\theta}}_{2,n}, X_{0}\right)'$$

Finance Literature

Recall:

$$\mu_i = r + \delta \beta_i \sigma_m + \gamma \sigma_i$$

If $\gamma = 0$, our price dynamics are in line with:

- ICAPM with constant invest. opportunity set: Merton (1973)
- APT with a single market factor: Ross (1976)

But idiosyncratic volatility may be priced:

- Merton (1987), Malkiel & Xu (2006): incomplete diversification
- Epstein & Schneider (2008): ambiguity premium
- Bhootra & Hur (2011): risk-seeking in capital loss domain

Ang et al. (2006, 2009), Fu (2009): idiosyncratic premium $\neq 0$, but no consensus about sign

Martingale Difference Sequence

Sequence of random variables $\{Y_i\}$ on probability space (Ω, \mathcal{F}, P) is **martingale difference sequence** (m.d.s.) with respect to filtration $\{\mathcal{F}_i\}$ if:

- (i) Y_i is measurable with respect to \mathcal{F}_i for all i
- (ii) $E[|Y_i|] < \infty$ for all i
- (iii) $E[Y_j|F_i] = 0$ a.s. for all j > i

Mixed Normal Distribution

Random variable Y has a mixed normal distribution

$$Y \sim MN\left(0, \eta^2\right)$$

if characteristic function of Y is

$$\phi_Y(t) \equiv E\left[\exp\left(itY\right)\right] = E\left[\exp\left(-\frac{1}{2}\eta^2t^2\right)\right]$$

where η is a random variable

Y can be represented as

$$Y = \eta Z$$

where $Z \sim N(0,1)$ and Z is **independent** of η

Law of Large Numbers for Conditionally I.I.D. R.V.'s

Let random variables $X_1, X_2, ...$ be defined on probability space (Ω, \mathcal{F}, P) . Suppose there exists σ -field $\mathcal{F}_0 \subset \mathcal{F}$ such that, **conditional on** $\mathcal{F}_0, X_1, X_2, ...$ are i.i.d. Let $h(\cdot)$ be vector-valued function that satisfies $E \|h(X_i)\| < \infty$, where $\|\cdot\|$ is Euclidean norm. Then:

$$\frac{1}{n}\sum_{i=1}^{n}h\left(X_{i}\right)\rightarrow^{p}E\left(h\left(X_{i}\right)|\mathcal{F}_{0}\right)\text{ as }n\rightarrow\infty$$

Remark:

 $E(h(X_i)|\mathcal{F}_0)$ is a random variable

See Andrews (2005, p. 1557), Hall & Heyde (1980, p. 202)

Central Limit Theorem for M.D.S.

Let $\{S_{ni}, \mathcal{F}_{ni}, 1 \leq i \leq k_n, n \geq 1\}$ be zero-mean, square-integrable martingale array with differences X_{ni} , and let η^2 be a.s. finite r.v. Suppose that:

- (i) $\max_i |X_{ni}| \to^p 0$
- (ii) $\sum_i X_{ni}^2 \rightarrow^p \eta^2$
- (iii) $E(\max_i X_{ni}^2)$ is bounded in n

and σ -fields are nested: $\mathcal{F}_{n,i} \subseteq \mathcal{F}_{n+1,i}$. Then:

$$S_{nk_n} = \sum_i X_{ni} \to^d Z,$$

where r.v. Z has characteristic function $E\left[\exp\left(-\frac{1}{2}\eta^2t^2\right)\right]$

Remark: Z has a mixed normal distribution

See Hall & Heyde (1980, pp. 58-59)

Stochastic Equicontinuity (I)

Let $B\left(\theta,\delta\right)$ denote closed ball of radius $\delta>0$ centered at θ . Sequence of functions $\left\{G_{n}\left(\theta\right)\right\}$ is **stochastically equicontinuous** on Θ if for any $\epsilon>0$ there exists $\delta>0$ such that

$$\limsup_{n\to\infty} P\left(\sup_{\theta\in\Theta}\sup_{\theta'\in B(\theta,\delta)}\left|G_n\left(\theta'\right)-G_n\left(\theta\right)\right|>\epsilon\right)<\epsilon$$

Assumption SE-1 of Andrews (1992, p. 246):

- (a) $G_n(\theta) = \hat{Q}_n(\theta) Q_n(\theta)$, where $Q_n(\cdot)$ is nonrandom function that is continuous in θ uniformly over Θ
- (b) $|\hat{Q}_n(\theta') \hat{Q}_n(\theta)| \leq B_n h\left(d\left(\theta',\theta\right)\right)$ for any $\theta',\theta \in \Theta$ a.s. for some random variable B_n and some nonrandom function h such that $h\left(y\right) \downarrow 0$ as $y \downarrow 0$, where d is metric on Θ

(c)
$$B_n = O_p(1)$$

Stochastic Equicontinuity (II)

Lemma 1 of Andrews (1992, p. 246). If $\{G_n\left(\theta\right)\}$ satisfies Assumption SE-1, then $\{G_n\left(\theta\right)\}$ is stochastically equicontinuous on Θ

Theorem 1 of Andrews (1992, p. 244). Suppose that:

- (i) Θ is totally bounded metric space
- (ii) $G_n(\theta) \rightarrow^p 0$ for all $\theta \in \Theta$ (pointwise)
- (iii) $\{G_n\left(\theta\right)\}$ is stochastically equicontinuous on Θ

then $G_n(\theta)$ converges **uniformly** in probability to 0:

$$\sup_{\theta\in\Theta}\left|G_{n}\left(\theta\right)\right|\rightarrow^{p}0$$

Remark: total boundedness is weaker than compactness