Estimating Idiosyncratic Volatility and Its Effects on a Cross-Section of Returns

Serguey Khovansky Oleksandr Zhylyevskyy

Clark University

Iowa State University

Midwest Economics Association Annual Meeting

March 31, 2012

Research Objective and Novelty

Goals:

- Develop a method to consistently estimate parameters of a financial model using a single cross-section of return data
- Apply the method to compute idiosyncratic volatility parameters, including idiosyncratic volatility premium

Novelty:

- Estimation method differs from the two-pass regression approach of Fama & MacBeth (1973)
- GMM estimation is implemented under strong cross-sectional data dependence

Finance Literature

Why focus on stock-specific idiosyncratic volatility (IV)?

- Classical finance models (e.g., Sharpe, 1964; Lintner, 1965):
 - IV commands no premium in capital market equilibrium
- Growing literature indicates that IV may be priced:
 - Levy (1978), Merton (1987), Malkiel & Xu (2006)
 - Epstein & Schneider (2008)
 - Guo & Savickas (2010), Chabi-Yo (2011), Bhootra & Hur (2011)
- No consensus on IV premium in empirical literature:
 - Fu (2009), Huang et al. (2010): positive premium
 - Ang et al. (2006), Jiang et al. (2009): negative premium

Financial Model Structure

Financial assets:

- many risky assets called stocks
- one diversified portfolio of stocks called market index
- one riskless asset such as T-Bill

Asset prices are quoted continuously, but we will ultimately focus on only two dates: t=0 and t=T

Simplifying assumption:

Between 0 and T, risk-free rate r is constant

Market Index Price Dynamics

Dynamics of market index:

$$\frac{dM_t}{M_t} = \mu_m dt + \sigma_m dW_t$$

where drift μ_m is:

$$\mu_m = r + \delta \sigma_m$$

- σ_m : market volatility, $\sigma_m > 0$
- ullet δ : Sharpe ratio of market index, non-identifiable
- $\{W_t\}$: systematic risk source, modeled as Brownian motion

Stock Price Dynamics

Dynamics of stock i for i = 1, 2, ...:

$$\frac{dS_t^i}{S_t^i} = \mu_i dt + \beta_i \sigma_m dW_t + \sigma_i dZ_t^i$$

where drift μ_i is:

$$\mu_i = r + \delta \beta_i \sigma_m + \gamma \sigma_i$$

- $\beta_i \sim UNI\left[\kappa_\beta, \kappa_\beta + \lambda_\beta\right]$: beta of stock i
- $\sigma_i \sim UNI[0, \lambda_{\sigma}]$: idiosyncratic volatility of stock i
- ullet γ : idiosyncratic volatility premium
- ullet $\{Z_t^i\}$: idiosyncratic risk source, modeled as Brownian motion

Estimation Challenge

Using Itô's lemma:

$$\begin{split} \frac{S_T^i}{S_0^i} &= \exp\left[\left(\mu_i - 0.5\beta_i^2 \sigma_m^2 - 0.5\sigma_i^2\right)T + \beta_i \sigma_m \mathbf{W}_T + \sigma_i Z_T^i\right] \\ \frac{M_T}{M_0} &= \exp\left[\left(\mu_m - 0.5\sigma_m^2\right)T + \sigma_m W_T\right] \end{split}$$

 W_T, Z_T^i for $i = 1, 2, ... \sim i.i.d. \ N(0, T)$

Common shock W_T induces **dependence** among $\frac{S_T^1}{S_0^1}, \frac{S_T^2}{S_0^2}, ... \Rightarrow$

 \Rightarrow standard LLNs and CLTs are **not applicable**

But $\frac{S_T^1}{S_0^1}, \frac{S_T^2}{S_0^2}, \dots$ are **conditionally i.i.d.** given $\frac{M_T}{M_0}$

GMM Implementation

Let $\boldsymbol{\theta} = (\sigma_m, \gamma, \kappa_\beta, \lambda_\beta, \lambda_\sigma)'$. We construct a function $g_i(\xi; \boldsymbol{\theta})$:

$$g_{i}\left(\xi;\boldsymbol{\theta}\right)=\left(S_{T}^{i}/S_{0}^{i}\right)^{\xi}-E_{\boldsymbol{\theta}}\left[\left(S_{T}^{i}/S_{0}^{i}\right)^{\xi}|M_{T}/M_{0}\right]$$

Given constants $\xi_1,...,\xi_k$, $k \times 1$ vector of moment restrictions is:

$$g_i(\boldsymbol{\theta}) = (g_i(\xi_1; \boldsymbol{\theta}), ..., g_i(\xi_k; \boldsymbol{\theta}))'$$

For any finite ξ , $E_{\theta}\left[\left(S_{T}^{i}/S_{0}^{i}\right)^{\xi}|M_{T}/M_{0}\right]$ exists and can be expressed analytically

GMM Estimation

GMM objective function:

$$Q_{n}\left(\boldsymbol{\theta}\right) = \left(\frac{1}{n}\sum_{i}g_{i}\left(\boldsymbol{\theta}\right)\right)^{\prime}\boldsymbol{\Sigma}^{-1}\left(\frac{1}{n}\sum_{i}g_{i}\left(\boldsymbol{\theta}\right)\right)$$

 Σ is a $k \times k$ positive definite matrix

GMM estimator:

$$\widehat{\boldsymbol{\theta}}_{n} = \arg\min_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q_{n}\left(\boldsymbol{\theta}\right)$$

As $n \to \infty$, $Q_n(\theta)$ converges to a **stochastic** function dependent on common shock

Properties of Estimator

Under general regularity conditions:

$$\widehat{\boldsymbol{\theta}}_n \rightarrow^p \boldsymbol{\theta}_0$$

 $\widehat{\boldsymbol{\theta}}_n$ is **consistent** as $n \to \infty$

Note: two-pass regression requires $T \rightarrow \infty$ (Shanken, 1992)

Under additional regularity conditions:

$$\sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right)\rightarrow^{d}MN\left(\mathbf{0},\mathbf{V}_{M_{T}/M_{0}}\right)$$

 $\widehat{m{ heta}}_n$ is asymptotically mixed normal. \mathbf{V}_{M_T/M_0} is stochastic

▶ jump to data

▶ inference

▶ mixed normality

Monte Carlo Design

Inputs:

- $\sigma_m = 0.20, \ \gamma = 0.50$
- $\kappa_{\beta} = -0.20$, $\lambda_{\beta} = 3.40$; $\lambda_{\sigma} = 0.50$
- $\delta = 0.50$, r = 0.01, T = 1/12

Identifiable parameters are $oldsymbol{ heta} = ig(\sigma_{m}, \gamma, \kappa_{eta}, \lambda_{eta}, \lambda_{\sigma}ig)'$

Moment restrictions are of the form:

$$g_i(\xi; \boldsymbol{\theta}) = \left(S_T^i / S_0^i\right)^{\xi} - E_{\boldsymbol{\theta}} \left[\left(S_T^i / S_0^i\right)^{\xi} | M_T / M_0 \right]$$

- vector $\mathbf{g}_{i}(\mathbf{\theta}) = (g_{i}(\xi_{1}; \mathbf{\theta}), ..., g_{i}(\xi_{6}; \mathbf{\theta}))'$
- vector $\boldsymbol{\xi} = (-1.5, -1, -0.5, 0.5, 1, 1.5)'$

Monte Carlo Results

	25	50	250	1,000	10,000	True value		
Panel A:	Panel A: Means							
σ_m	0.2526	0.2382	0.2205	0.2116	0.2011	0.2000		
γ	0.5560	0.5339	0.5161	0.5076	0.5020	0.5000		
κ_{β}	-0.1316	-0.1484	-0.1476	-0.1817	-0.1978	-0.2000		
λ_{β}	3.6166	3.5798	3.4874	3.4722	3.4303	3.4000		
λ_{σ}	0.4989	0.4996	0.4998	0.4999	0.5000	0.5000		
Panel B:	RMSEs							
σ_m	0.2327	0.2102	0.1382	0.1279	0.0658			
γ	0.2105	0.1582	0.0836	0.0488	0.0182			
κ_{β}	0.9925	0.8817	0.7330	0.4077	0.1410			
$\lambda_{\beta}^{'}$	1.4086	1.2965	0.8896	0.8310	0.4298			
λ_{σ}	0.0063	0.0046	0.0020	0.0010	0.0003			
Panel C:	Panel C: Test sizes, H_0 : parameter = true value, %							
σ_m	15.80	13.20	8.00	7.10	5.70	5.00		
γ	7.30	5.50	5.40	5.60	5.30	5.00		
κ_{β}	8.30	6.40	5.70	5.40	4.60	5.00		
λ_{β}	10.60	9.60	5.60	5.50	4.70	5.00		
$\lambda_{\sigma}^{'}$	3.80	3.10	4.60	3.80	4.50	5.00		

→ additional MC results

Empirical Implementation: Data

- Stock data are from CRSP database:
 - include stocks of operating companies
 - include only one share class per company
 - exclude bankruptcy cases, closed-end funds, ETFs, REITs
 - use weekly returns, computed by compounding daily returns
- Market index is approximated by S&P 500 index
- Risk-free rate is derived from 4-week T-Bill
- We evaluate estimation method on data from two months:
 - January 2008: a month of relatively low market volatility
 - October 2008: a month of relatively high market volatility

Selected Empirical Results: Full Model Estimates

	January 22	2-29, 2008	October 23-30, 2008
Parameter	Estimate	P-value	Estimate P-value
σ_m	0.0537	0.00	0.0672 0.00
γ	-2.1117	0.34	-1.2936 0.56
κ_{eta}	0.3417	0.74	-0.3058 0.74
$\lambda_{\mathcal{B}}^{'}$	3.0475	0.00	2.8367 0.00
λ_{σ}	1.0580	0.00	1.7478 0.00

Notes:

- σ_m : market volatility
- ullet γ : idiosyncratic volatility premium
- Beta of stock i, $\beta_i \sim i.i.d.UNI[\kappa_{\beta}, \kappa_{\beta} + \lambda_{\beta}]$
- Idiosyncratic volatility of stock i, $\sigma_i \sim i.i.d.UNI[0, \lambda_\sigma]$
- ullet Moment order vector $m{\xi} = (-2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2)'$

Selected Empirical Results: January 2008

	Idiosyncration	volatility	Average idiosyncratic volatility, $\lambda_{\sigma}/2$		
Interval	premiu	-			
	Estimate	P-value	Estimate	P-value	
January 02-09	-4.7251	0.00	0.5609	0.02	
03-10	-5.0907	0.00	0.5370	0.00	
04-11	-8.0336	0.00	0.4747	0.00	
07-14	-0.8656	0.00	0.5359	0.00	
08-15	-4.4627	0.00	0.5106	0.00	
09-16	-9.1830	0.00	0.4816	0.00	
:	:	• •	:	:	
Mean	-6.0666		0.5452		
Std. dev.	3.6396		0.0519		

return decomposition

Selected Empirical Results: October 2008

Interval	Idiosyncration	volatility	Average idiosyncratic volatility, $\lambda_{\sigma}/2$		
intervai	premiu	m, γ			
	Estimate	P-value	Estimate	P-value	
October 01-08	-8.5104	0.00	0.8095	0.00	
02-09	-8.4123	0.00	0.8858	0.00	
03-10	-8.4921	0.00	0.8999	0.00	
06-13	-7.8321	0.00	0.7532	0.00	
07-14	-5.9003	0.00	0.7949	0.00	
08-15	-0.8830	0.00	0.8595	0.01	
i i	:	:	:	:	
Mean	-5.5748		0.8372		
Std. dev.	3.9705		0.0725		

return decomposition

Summary

- We develop an econometric method to estimate a financial model featuring a common shock:
 - the method differs from the two-pass regression approach
 - ullet consistent and asymptotically mixed normal estimates are obtained as the number of stocks (n) grows
 - estimation is implemented on a single return cross-section
- Findings using returns from January and October 2008:
 - IV premium is estimated to be negative
 - average cross-sectional IV estimates increase by 50% between January and October

Thank you! Questions?

Relationship to Econometric Literature

Large literature on **localized** common shocks:

- general approach: Conley (1999)
- spatial, group, social effects: e.g., Kelejian & Prucha (1999),
 Lee (2007), Bramoullé et al. (2009)

Sparse literature on **non-localized** common shocks:

Andrews (2003, 2005)

We build on Andrews (2003) to develop GMM estimation theory under a non-localized common shock in cross-sectional data

◆ back to goals

Mixed Normal Distribution

Random variable Y has **mixed normal distribution**:

$$Y \sim MN\left(0, \eta^2\right)$$

if characteristic function of Y is:

$$\phi_Y(t) \equiv E\left[\exp\left(itY\right)\right] = E\left[\exp\left(-\frac{1}{2}\eta^2t^2\right)\right]$$

where η is random variable

Y can be represented as:

$$Y = \eta Z$$

where $Z \sim N(0,1)$ and Z is **independent** of η

◆ back to properties

Inference and Specification Test

Consider testing r parametric restrictions:

$$H_0: \mathbf{a}(\boldsymbol{\theta}_0) = \mathbf{0}$$

Let $\mathbf{A}(\cdot)$ be Jacobian of $\mathbf{a}(\cdot)$. Under H_0 , Wald test statistic

$$W_n \equiv n\mathbf{a} \left(\widehat{\boldsymbol{\theta}}_n\right)' \left[\mathbf{A} \left(\widehat{\boldsymbol{\theta}}_n\right) \mathbf{V}_n \mathbf{A} \left(\widehat{\boldsymbol{\theta}}_n\right)'\right]^{-1} \mathbf{a} \left(\widehat{\boldsymbol{\theta}}_n\right) \to^d \mathbf{\chi}^2 (r)$$

OIR test can be implemented after two-step estimation. If the model is correctly specified:

$$J_n \equiv n \cdot Q_{2,n} \left(\widehat{\boldsymbol{\theta}}_{2,n} \right) \rightarrow^d \chi^2 \left(k - p \right)$$

◆ back to properties

Monte Carlo Results: 1-Step vs. 2-Step Estimation

	RMSE		Median=true value		Mean–tri	Mean-true value	
Parameter	1-step	2-step	1-step	2-step	1-step	2-step	value
σ_m	0.5631	0.7967	0.0916	0.1433	0.2770	0.2643	0.2000
γ	0.5337	0.7546	0.0014	0.0818	0.0223	0.1013	-2.0000
κ_{β}	1.3163	1.8470	0.0067	0.0514	0.0209	0.0611	0.5000
$\lambda_{\mathcal{B}}^{'}$	2.4048	3.3329	0.3979	0.4720	0.0862	0.1034	3.0000
λ_{σ}	0.0277	0.0394	0.0039	0.0049	0.0052	0.0060	1.0000

Notes:

• Number of stocks n = 5,500

• Number of simulation rounds: 1,000

• Risk-free rate r = 0.01

ullet Moment order vector $m{\xi} = (-2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2)'$

 $\bullet \text{ Moment restrictions of the form: } g_i\left(\xi; \pmb{\theta}\right) = \left(S_T^i/S_0^i\right)^\xi - E_{\pmb{\theta}}\left[\left(S_T^i/S_0^i\right)^\xi | M_T/M_0\right]$

◆ back to MC results

Conditional Return Decomposition: January 2008

Interval	Ε	${\mathcal S}$	${\mathcal I}$	$\frac{E-e^{rT}S}{E}$	$\frac{e^{rT}(S-I)}{E}$
January 02-09	0.9486	0.9988	0.9492	-0.0535	0.0523
03-10	0.9647	1.0173	0.9477	-0.0552	0.0722
04-11	0.9762	1.0512	0.9280	-0.0776	0.1263
07-14	0.9870	0.9955	0.9909	-0.0092	0.0047
08-15	0.9833	1.0277	0.9561	-0.0459	0.0729
09-16	0.9857	1.0741	0.9172	-0.0903	0.1593
:	:	:	:	:	:
Mean	0.9890	1.0488	0.9430	-0.0615	0.1071
Std. dev.	0.0311	0.0337	0.0311	0.0346	0.0571

Notes:

- ullet Conditional expected gross return $E=\exp\left(rT\right)\cdot\mathcal{S}\left(M_{T}/M_{0}
 ight)\cdot\mathcal{I}$
- Risk-free component: $\exp(rT)$
- ullet Market risk component: $\mathcal{S}\left(M_T/M_0
 ight)$
- ullet Idiosyncratic volatility component: ${\cal I}$

◆ back to January results

Conditional Return Decomposition: October 2008

Interval	Е	\mathcal{S}	\mathcal{I}	$\frac{E-e^{rT}S}{E}$	$\frac{e^{rT}(S-I)}{E}$
October 01-08	0.8211	0.9384	0.8750	-0.1429	0.0773
02-09	0.8022	0.9267	0.8657	-0.1551	0.0760
03-10	0.8163	0.9463	0.8626	-0.1593	0.1026
06-13	0.9455	1.0605	0.8916	-0.1216	0.1787
07-14	0.9852	1.0797	0.9125	-0.0959	0.1698
08-15	0.9352	0.9494	0.9851	-0.0151	-0.0382
<u>:</u>	:	:	:	:	:
Mean	0.9438	1.0270	0.9184	-0.0929	0.1162
Std. dev.	0.0834	0.0564	0.0574	0.0654	0.0778

Notes:

- ullet Conditional expected gross return $E=\exp\left(rT\right)\cdot\mathcal{S}\left(M_{T}/M_{0}
 ight)\cdot\mathcal{I}$
- Risk-free component: $\exp(rT)$
- ullet Market risk component: $\mathcal{S}\left(M_T/M_0
 ight)$
- ullet Idiosyncratic volatility component: ${\cal I}$

◆ back to October results