Cross-sectional GMM estimation under a common data shock

Serguey Khovansky Oleksandr Zhylyevskyy
Clark University Iowa State University
2011 Midwest Econometrics Group Meetings

October 6, 2011

Common Shocks in Cross-Sectional Data

Cross-sectional econometricians typically assume observations are independent

However, independence breaks down if population units are affected by a common shock

Examples:

- oil price shocks affect production costs of many firms
- interest rate shocks affect consumption of many households
- common factors affect individual stock returns

Localized and Non-Localized Shocks

Localized shock:

- dependence between observations diminishes with distance
- distance may be geographical, socioeconomic, time-wise, etc.

Non-localized shock:

- dependence between observations need not diminish

Consider observations $X_{1}, X_{2}, \ldots, X_{100}, \ldots$:

- localized shock: X_{1}, X_{100} are "less dependent" than X_{1}, X_{2}
- non-localized shock: no such relationship exists

Contribution

We propose GMM estimators for a cross-sectional model with a non-localized common shock

We specify conditions under which estimators are:

- consistent
- asymptotically mixed normal

We show that conventional Wald and OIR tests are still applicable

Data Structure

Probability space (Ω, \mathcal{F}, P)
D.g.p. provides observations $X_{0}, X_{1}, X_{2}, \ldots$

Data structure:

- X_{0} is driven by common shock
- $X_{i}, i=1,2, \ldots$, is driven by common and idiosyncratic shock

Examples:

- aggregate income vs. individual incomes
- average crop yield vs. individual farm crop yields
- stock market portfolio return vs. individual stock returns

Conditionally I.I.D. Observations

Assumption:

X_{1}, X_{2}, \ldots are conditionally i.i.d. given σ-field $\mathcal{F}_{0} \equiv \sigma\left(X_{0}\right)$
$\sigma\left(X_{0}\right): \sigma$-field generated by X_{0} (i.e., by common shock)
This assumption is very mild (Andrews, 2005):
When sample units are randomly drawn, it is compatible with:

- arbitrary dependence across population units
- different effects of common shock on population units
- heterogeneity across population units

Parameters and Moment Restrictions

Goal:

- estimate, do inference on $\underset{(p \times 1)}{\boldsymbol{\theta}_{0}}$: true parameter underlying d.g.p.

Parameter set is $\boldsymbol{\Theta} \subset \mathcal{R}^{p}$:

- $\boldsymbol{\theta}_{0} \in \boldsymbol{\Theta}$
- $\boldsymbol{\Theta}$ is compact and convex

Economic model provides k moment restrictions $(k \geq p)$:

$$
g\left(\underset{(k \times 1)}{\left(X_{i} ; \theta, X_{0}\right)} \text { for } i=1,2, \ldots\right.
$$

For example, j th component of $g(\cdot)$ may be:

$$
\boldsymbol{g}^{(j)}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)=X_{i}^{\xi}-E_{\boldsymbol{\theta}}\left[X_{i}^{\xi} \mid X_{0}\right], \text { where } \xi \text { is a constant }
$$

Estimators

One-step estimation using nonstochastic pos. def. $\boldsymbol{\Sigma}$:

$$
\begin{gathered}
Q_{1, n}(\boldsymbol{\theta})=\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)\right)^{\prime} \boldsymbol{\Sigma}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)\right) \\
\widehat{\boldsymbol{\theta}}_{1, n}=\arg \min _{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q_{1, n}(\boldsymbol{\theta})
\end{gathered}
$$

Two-step using $\widehat{\boldsymbol{\Sigma}}_{1, n}=\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{1, n}, X_{0}\right) \cdot \boldsymbol{g}\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{1, n}, X_{0}\right)^{\prime}$:

$$
\begin{gathered}
Q_{2, n}(\boldsymbol{\theta})=\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)\right)^{\prime} \widehat{\boldsymbol{\Sigma}}_{1, n}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)\right) \\
\widehat{\boldsymbol{\theta}}_{2, n}=\arg \min _{\boldsymbol{\theta} \in \Theta} Q_{2, n}(\boldsymbol{\theta})
\end{gathered}
$$

Consistency

Suppose:

- $\boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)$ is measurable w.r.t. $\sigma\left(X_{0}, X_{i}\right)$ for all $\boldsymbol{\theta}$
- $\boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)$ is a.s. differentiable in $\boldsymbol{\theta}$
- $E\left[\sup _{\boldsymbol{\theta}}\left\|\boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)\right\|^{2}\right]<\infty, E\left[\sup _{\boldsymbol{\theta}}\left\|\frac{\partial \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)}{\partial \boldsymbol{\theta}}\right\|^{2}\right]<\infty$
- $E\left[g\left(X_{i} ; \boldsymbol{\theta}_{0}, X_{0}\right) \mid \mathcal{F}_{0}\right]=\mathbf{0}$ a.s.
- $E\left[\boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right) \mid \mathcal{F}_{0}\right] \neq \mathbf{0}$ a.s. for all $\boldsymbol{\theta} \neq \boldsymbol{\theta}_{0}$
- $\boldsymbol{\Sigma}_{\mathcal{F}_{0}} \equiv E\left[\boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}_{0}, X_{0}\right) \cdot \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}_{0}, X_{0}\right)^{\prime} \mid \mathcal{F}_{0}\right]$ is a.s. pos. def.

Theorem: As $n \rightarrow \infty, \widehat{\boldsymbol{\theta}}_{1, n} \rightarrow^{p} \boldsymbol{\theta}_{0}$ and $\widehat{\boldsymbol{\theta}}_{2, n} \rightarrow^{p} \boldsymbol{\theta}_{0}$

Asymptotic Mixed Normality

In addition, suppose:

- \exists open ball \mathcal{N} centered at θ_{0} s.t. $g\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)$ is a.s. twice differentiable in $\boldsymbol{\theta}$ on \mathcal{N} and $E\left[\sup _{\boldsymbol{\theta} \in \mathcal{N}}\left\|\frac{\partial^{2} g\left(X_{i} ; \boldsymbol{\theta}, X_{0}\right)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}\right\|\right]<\infty$
- $\mathbf{G}_{\mathcal{F}_{0}} \equiv E\left[\left.\frac{\partial g\left(X_{i} ; \boldsymbol{\theta}_{0}, X_{0}\right)}{\partial \theta^{\prime}} \right\rvert\, \mathcal{F}_{0}\right]$ has full column rank a.s.

Theorem: As $n \rightarrow \infty$:

$$
\begin{aligned}
& \sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{1, n}-\boldsymbol{\theta}_{0}\right) \rightarrow^{d} M N\left(\mathbf{0}, \mathbf{V}_{1, \mathcal{F}_{0}}\right) \\
& \sqrt{n}\left(\widehat{\boldsymbol{\theta}}_{2, n}-\boldsymbol{\theta}_{0}\right) \rightarrow^{d} M N\left(\mathbf{0}, \mathbf{V}_{2, \mathcal{F}_{0}}\right)
\end{aligned}
$$

$\mathbf{V}_{1, \mathcal{F}_{0}}$ and $\mathbf{V}_{2, \mathcal{F}_{0}}$ are a.s. pos. def. stochastic matrices

Asymptotic Inference and Specification Test

Consider testing r parametric restrictions:

$$
H_{0}: \underset{(r \times 1)}{\mathbf{a}_{(}\left(\boldsymbol{\theta}_{0}\right)}=\mathbf{0}
$$

Let $\mathbf{A}(\cdot)$ be Jacobian of $\mathbf{a}(\cdot)$. Under H_{0}, Wald test statistic

$$
W_{n} \equiv n \cdot \mathbf{a}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right)^{\prime}\left[\mathbf{A}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right) \mathbf{V}_{2, n} \mathbf{A}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right)^{\prime}\right]^{-1} \mathbf{a}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right) \rightarrow^{d} \chi^{2}(r)
$$

If the model is correctly specified, OIR test statistic

$$
J_{n} \equiv n \cdot Q_{2, n}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right) \rightarrow^{d} \chi^{2}(k-p)
$$

Financial Model Setup

Financial assets:

- many risky assets called stocks
- a diversified portfolio of stocks called market index
- a riskless asset

Asset prices are quoted continuously, but we eventually focus only on a cross-section of returns between $t=0$ and $t=T$

Market Index Price Dynamics

Dynamics of market index:

$$
\frac{d M_{t}}{M_{t}}=\mu_{m} d t+\sigma_{m} d W_{t}
$$

where drift μ_{m} is

$$
\mu_{m}=r+\delta \sigma_{m}
$$

- r : risk-free rate
- σ_{m} : market volatility, $\sigma_{m}>0$
- δ : Sharpe ratio of market index
- $\left\{W_{t}\right\}$: Brownian motion; source of common shock

Stock Price Dynamics

Dynamics of stock i for $i=1,2, \ldots$:

$$
\frac{d S_{t}^{i}}{S_{t}^{i}}=\mu_{i} d t+\beta_{i} \sigma_{m} d W_{t}+\sigma_{i} d Z_{t}^{i}
$$

where drift μ_{i} is

$$
\mu_{i}=r+\delta \beta_{i} \sigma_{m}+\gamma \sigma_{i}
$$

- $\beta_{i} \sim \operatorname{UNI}\left[\kappa_{\beta}, \kappa_{\beta}+\lambda_{\beta}\right]$: beta of stock i
- $\sigma_{i} \sim \operatorname{UNI}\left[0, \lambda_{\sigma}\right]$: idiosyncratic volatility of stock i
- γ : idiosyncratic volatility premium
- $\left\{Z_{t}^{i}\right\}$: Brownian motion; source of idiosyncratic shock

Dependence Among Returns

Applying Itô's lemma:

$$
\begin{gathered}
\frac{S_{T}^{i}}{S_{0}^{i}}=\exp \left[\left(\mu_{i}-0.5 \beta_{i}^{2} \sigma_{m}^{2}-0.5 \sigma_{i}^{2}\right) T+\beta_{i} \sigma_{m} W_{T}+\sigma_{i} Z_{T}^{i}\right] \\
\frac{M_{T}}{M_{0}}=\exp \left[\left(\mu_{m}-0.5 \sigma_{m}^{2}\right) T+\sigma_{m} W_{T}\right]
\end{gathered}
$$

$W_{T}, Z_{T}^{i} \sim$ i.i.d. $N(0, T)$
W_{T} induces dependence among $\frac{S_{T}^{1}}{S_{0}^{1}}, \frac{S_{T}^{2}}{S_{0}^{2}}, \ldots$
However, $\frac{S_{T}^{1}}{S_{0}^{1}}, \frac{S_{T}^{2}}{S_{0}^{2}}, \ldots$ are conditionally i.i.d. given $\frac{M_{T}}{M_{0}}$

Monte Carlo Design

Inputs:

- $\sigma_{m}=0.20, \gamma=0.50$
- $\kappa_{\beta}=-0.20, \lambda_{\beta}=3.40 ; \lambda_{\sigma}=0.50$
- $\delta=0.50, r=0.01, T=1 / 12$

Identifiable parameters are $\boldsymbol{\theta}=\left(\sigma_{m}, \gamma, \kappa_{\beta}, \lambda_{\beta}, \lambda_{\sigma}\right)^{\prime}$
Moment restrictions are of the form:

$$
g_{i}(\xi ; \boldsymbol{\theta})=\left(S_{T}^{i} / S_{0}^{i}\right)^{\xi}-E_{\boldsymbol{\theta}}\left[\left(S_{T}^{i} / S_{0}^{i}\right)^{\xi} \mid M_{T} / M_{0}\right]
$$

- vector $g\left(S_{T}^{i} / S_{0}^{i} ; \boldsymbol{\theta}, M_{T} / M_{0}\right)=\left(g_{i}\left(\xi_{1} ; \boldsymbol{\theta}\right), \ldots, g_{i}\left(\xi_{6} ; \boldsymbol{\theta}\right)\right)^{\prime}$
- vector $\boldsymbol{\xi}=(-1.5,-1,-0.5,0.5,1,1.5)^{\prime}$

Monte Carlo Results

	Sample size n (thousands)					True value
	25	50	250	1,000	10,000	
Panel A: Means						
σ_{m}	0.2526	0.2382	0.2205	0.2116	0.2011	0.2000
γ	0.5560	0.5339	0.5161	0.5076	0.5020	0.5000
κ_{β}	-0.1316	-0.1484	-0.1476	-0.1817	-0.1978	-0.2000
λ_{β}	3.6166	3.5798	3.4874	3.4722	3.4303	3.4000
λ_{σ}	0.4989	0.4996	0.4998	0.4999	0.5000	0.5000
Panel B: RMSEs						
σ_{m}	0.2327	0.2102	0.1382	0.1279	0.0658	
γ	0.2105	0.1582	0.0836	0.0488	0.0182	
κ_{β}	0.9925	0.8817	0.7330	0.4077	0.1410	
λ_{β}	1.4086	1.2965	0.8896	0.8310	0.4298	
λ_{σ}	0.0063	0.0046	0.0020	0.0010	0.0003	
Panel C: Test sizes, H_{0} : parameter $=$ true value, $\%$						
σ_{m}	15.80	13.20	8.00	7.10	5.70	5.00
γ	7.30	5.50	5.40	5.60	5.30	5.00
κ_{β}	8.30	6.40	5.70	5.40	4.60	5.00
λ_{β}	10.60	9.60	5.60	5.50	4.70	5.00
λ_{σ}	3.80	3.10	4.60	3.80	4.50	5.00
Panel D: OIR test size, H_{0} : correct specification, \%						
	19.50	15.50	11.30	8.70	8.50	5.00

Thank you!
Questions?

Econometric Literature

Localized common shock:

- general approach: Conley (1999)
- spatial effects: e.g., Kelejian \& Prucha (1999)
- group effects: e.g., Lee (2007)
- social effects: e.g., Bramoullé et al. (2009)

Non-localized common shock:

- Andrews (2003)
- Andrews (2005)

Consistency: Proof Sketch

We adapt argument due to Andrews (2003) but clarify several details

Sketch:

- infer existence and measurability of estimator from standard theorem
- show pointwise convergence of objective
- show stochastic equicontinuity of objective
- establish uniform convergence of objective
- establish unique minimum of objective in the limit at $\boldsymbol{\theta}_{0}$ a.s.
- use the above results to prove convergence of estimator to $\boldsymbol{\theta}_{0}$

Stochastic Variance Terms

$\mathbf{V}_{1, \mathcal{F}_{0}}$ and $\mathbf{V}_{2, \mathcal{F}_{0}}$ are a.s. pos. def. stochastic matrices:

$$
\begin{gathered}
\mathbf{V}_{1, \mathcal{F}_{0}}=\left[\mathbf{G}_{\mathcal{F}_{0}}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_{0}}\right]^{-1} \mathbf{G}_{\mathcal{F}_{0}}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}_{\mathcal{F}_{0}} \boldsymbol{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_{0}}\left[\mathbf{G}_{\mathcal{F}_{0}}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{G}_{\mathcal{F}_{0}}\right]^{-1} \\
\mathbf{V}_{2, \mathcal{F}_{0}}=\left[\mathbf{G}_{\mathcal{F}_{0}}^{\prime} \boldsymbol{\Sigma}_{\mathcal{F}_{0}}^{-1} \mathbf{G}_{\mathcal{F}_{0}}\right]^{-1}
\end{gathered}
$$

Asymptotic Mixed Normality: Proof Sketch

Proof utilizes conventional techniques:

- show that $g\left(X_{1} ; \theta_{0}, X_{0}\right), g\left(X_{2} ; \theta_{0}, X_{0}\right), \ldots$ is m.d.s.
- mean-value expand $\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{1, n}, X_{0}\right)$ around $\boldsymbol{\theta}_{0}$
- show that $\mathbf{G}_{n}\left(\widehat{\boldsymbol{\theta}}_{1, n}\right) \equiv \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \boldsymbol{g}\left(X_{i} \cdot \hat{\boldsymbol{\theta}}_{1, n}, X_{0}\right)}{\partial \boldsymbol{\theta}^{\prime}} \rightarrow^{p} \mathbf{G}_{\mathcal{F}_{0}}$
- invoke c.l.t. for m.d.s. to show that

$$
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \boldsymbol{g}\left(X_{i} ; \boldsymbol{\theta}_{0}, X_{0}\right) \rightarrow^{d}\left[\boldsymbol{\Sigma}_{\mathcal{F}_{0}}\right]^{\frac{1}{2}} \mathbf{Z}_{k}
$$

- invoke standard arguments to establish final result with $\mathbf{V}_{1, \mathcal{F}_{0}}$
- repeat steps for $\widehat{\boldsymbol{\theta}}_{2, n}$ and simplify to obtain $\mathbf{V}_{2, \mathcal{F}_{0}}$

Inference: Formulas

$$
\begin{gathered}
W_{n} \equiv n \mathbf{a}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right)^{\prime}\left[\mathbf{A}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right) \mathbf{V}_{2, n} \mathbf{A}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right)^{\prime}\right]^{-1} \mathbf{a}\left(\widehat{\boldsymbol{\theta}}_{2, n}\right) \\
\mathbf{V}_{2, n}=\left[\mathbf{G}_{2, n}^{\prime} \widehat{\boldsymbol{\Sigma}}_{2, n}^{-1} \mathbf{G}_{2, n}\right]^{-1} \\
\mathbf{G}_{2, n}=n^{-1} \sum_{i} \partial \boldsymbol{g}\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{2, n}, X_{0}\right) / \partial \boldsymbol{\theta}^{\prime} \\
\widehat{\boldsymbol{\Sigma}}_{2, n}=n^{-1} \sum_{i} \boldsymbol{g}\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{2, n}, X_{0}\right) \cdot \boldsymbol{g}\left(X_{i} ; \widehat{\boldsymbol{\theta}}_{2, n}, X_{0}\right)^{\prime}
\end{gathered}
$$

Finance Literature

Recall:

$$
\mu_{i}=r+\delta \beta_{i} \sigma_{m}+\gamma \sigma_{i}
$$

If $\gamma=0$, our price dynamics are in line with:

- ICAPM with constant invest. opportunity set: Merton (1973)
- APT with a single market factor: Ross (1976)

But idiosyncratic volatility may be priced:

- Merton (1987), Malkiel \& Xu (2006): incomplete diversification
- Epstein \& Schneider (2008): ambiguity premium
- Bhootra \& Hur (2011): risk-seeking in capital loss domain

Ang et al. (2006, 2009), Fu (2009): idiosyncratic premium $\neq 0$, but no consensus about sign

Martingale Difference Sequence

Sequence of random variables $\left\{Y_{i}\right\}$ on probability space (Ω, \mathcal{F}, P) is martingale difference sequence (m.d.s.) with respect to filtration $\left\{\mathcal{F}_{i}\right\}$ if:
(i) Y_{i} is measurable with respect to \mathcal{F}_{i} for all i
(ii) $E\left[\left|Y_{i}\right|\right]<\infty$ for all i
(iii) $E\left[Y_{j} \mid F_{i}\right]=0$ a.s. for all $j>i$

Mixed Normal Distribution

Random variable Y has a mixed normal distribution

$$
Y \sim M N\left(0, \eta^{2}\right)
$$

if characteristic function of Y is

$$
\phi_{Y}(t) \equiv E[\exp (i t Y)]=E\left[\exp \left(-\frac{1}{2} \eta^{2} t^{2}\right)\right]
$$

where η is a random variable
Y can be represented as

$$
Y=\eta Z
$$

where $\mathrm{Z} \sim N(0,1)$ and Z is independent of η

Law of Large Numbers for Conditionally I.I.D. R.V.'s

Let random variables X_{1}, X_{2}, \ldots be defined on probability space (Ω, \mathcal{F}, P). Suppose there exists σ-field $\mathcal{F}_{0} \subset \mathcal{F}$ such that, conditional on $\mathcal{F}_{0}, X_{1}, X_{2}, \ldots$ are i.i.d. Let $h(\cdot)$ be vector-valued function that satisfies $E\left\|h\left(X_{i}\right)\right\|<\infty$, where $\|\cdot\|$ is Euclidean norm. Then:

$$
\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) \rightarrow^{p} E\left(h\left(X_{i}\right) \mid \mathcal{F}_{0}\right) \text { as } n \rightarrow \infty
$$

Remark:
$E\left(h\left(X_{i}\right) \mid \mathcal{F}_{0}\right)$ is a random variable
See Andrews (2005, p. 1557), Hall \& Heyde (1980, p. 202)

Central Limit Theorem for M.D.S.

Let $\left\{S_{n i}, \mathcal{F}_{n i}, 1 \leq i \leq k_{n}, n \geq 1\right\}$ be zero-mean, square-integrable martingale array with differences $X_{n i}$, and let η^{2} be a.s. finite r.v. Suppose that:
(i) $\max _{i}\left|X_{n i}\right| \rightarrow^{p} 0$
(ii) $\sum_{i} X_{n i}^{2} \rightarrow^{p} \eta^{2}$
(iii) $E\left(\max _{i} X_{n i}^{2}\right)$ is bounded in n
and σ-fields are nested: $\mathcal{F}_{n, i} \subseteq \mathcal{F}_{n+1, i}$. Then:

$$
S_{n k_{n}}=\sum_{i} X_{n i} \rightarrow^{d} Z
$$

where r.v. Z has characteristic function $E\left[\exp \left(-\frac{1}{2} \eta^{2} t^{2}\right)\right]$
Remark: Z has a mixed normal distribution
See Hall \& Heyde (1980, pp. 58-59)

Stochastic Equicontinuity (I)

Let $B(\theta, \delta)$ denote closed ball of radius $\delta>0$ centered at θ. Sequence of functions $\left\{G_{n}(\theta)\right\}$ is stochastically equicontinuous on Θ if for any $\epsilon>0$ there exists $\delta>0$ such that

$$
\limsup _{n \rightarrow \infty} P\left(\sup _{\theta \in \Theta} \sup _{\theta^{\prime} \in B(\theta, \delta)}\left|G_{n}\left(\theta^{\prime}\right)-G_{n}(\theta)\right|>\epsilon\right)<\epsilon
$$

Assumption SE-1 of Andrews (1992, p. 246):
(a) $G_{n}(\theta)=\hat{Q}_{n}(\theta)-Q_{n}(\theta)$, where $Q_{n}(\cdot)$ is nonrandom function that is continuous in θ uniformly over Θ
(b) $\left|\hat{Q}_{n}\left(\theta^{\prime}\right)-\hat{Q}_{n}(\theta)\right| \leq B_{n} h\left(d\left(\theta^{\prime}, \theta\right)\right)$ for any $\theta^{\prime}, \theta \in \Theta$ a.s. for some random variable B_{n} and some nonrandom function h such that $h(y) \downarrow 0$ as $y \downarrow 0$, where d is metric on Θ
(c) $B_{n}=O_{p}$ (1)

Stochastic Equicontinuity (II)

Lemma 1 of Andrews (1992, p. 246). If $\left\{G_{n}(\theta)\right\}$ satisfies Assumption SE-1, then $\left\{G_{n}(\theta)\right\}$ is stochastically equicontinuous on Θ

Theorem 1 of Andrews (1992, p. 244). Suppose that:
(i) Θ is totally bounded metric space
(ii) $G_{n}(\theta) \rightarrow^{p} 0$ for all $\theta \in \Theta$ (pointwise)
(iii) $\left\{G_{n}(\theta)\right\}$ is stochastically equicontinuous on Θ then $G_{n}(\theta)$ converges uniformly in probability to 0 :

$$
\sup _{\theta \in \Theta}\left|G_{n}(\theta)\right| \rightarrow^{p} 0
$$

Remark: total boundedness is weaker than compactness

