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Common Shocks in Cross-Sectional Data

Cross-sectional econometricians typically assume observations are
independent

However, independence breaks down if population units are
affected by a common shock

Examples:

oil price shocks affect production costs of many firms

interest rate shocks affect consumption of many households

common factors affect individual stock returns
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Localized and Non-Localized Shocks

Localized shock:

dependence between observations diminishes with distance

distance may be geographical, socioeconomic, time-wise, etc.

Non-localized shock:

dependence between observations need not diminish

Consider observations X1, X2, ..., X100, ...:

localized shock: X1, X100 are “less dependent” than X1, X2

non-localized shock: no such relationship exists
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Contribution

We propose GMM estimators for a cross-sectional model
with a non-localized common shock

We specify conditions under which estimators are:

consistent

asymptotically mixed normal

We show that conventional Wald and OIR tests are still applicable
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Data Structure

Probability space (Ω,F , P)

D.g.p. provides observations X0, X1, X2, ...

Data structure:

X0 is driven by common shock

Xi, i = 1, 2, ..., is driven by common and idiosyncratic shock

Examples:

aggregate income vs. individual incomes

average crop yield vs. individual farm crop yields

stock market portfolio return vs. individual stock returns
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Conditionally I.I.D. Observations

Assumption:
X1, X2, ... are conditionally i.i.d. given σ-field F0 ≡ σ (X0)

σ (X0): σ-field generated by X0 (i.e., by common shock)

This assumption is very mild (Andrews, 2005):

When sample units are randomly drawn, it is compatible with:

arbitrary dependence across population units

different effects of common shock on population units

heterogeneity across population units
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Parameters and Moment Restrictions

Goal:

estimate, do inference on θ0
(p×1)

: true parameter underlying d.g.p.

Parameter set is Θ ⊂ Rp:

θ0 ∈ Θ

Θ is compact and convex

Economic model provides k moment restrictions (k ≥ p):

g (Xi; θ, X0)
(k×1)

for i = 1, 2, ...

For example, jth component of g (·) may be:

g(j) (Xi; θ, X0) = Xξ
i − Eθ

[
Xξ

i |X0

]
, where ξ is a constant
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Estimators

One-step estimation using nonstochastic pos. def. Σ:

Q1,n (θ) =

(
1
n

n

∑
i=1

g (Xi; θ, X0)

)′
Σ−1

(
1
n

n

∑
i=1

g (Xi; θ, X0)

)

θ̂1,n = arg min
θ∈Θ

Q1,n (θ)

Two-step using Σ̂1,n =
1
n

n
∑

i=1
g
(

Xi; θ̂1,n, X0

)
· g
(

Xi; θ̂1,n, X0

)′
:

Q2,n (θ) =

(
1
n

n

∑
i=1

g (Xi; θ, X0)

)′
Σ̂
−1
1,n

(
1
n

n

∑
i=1

g (Xi; θ, X0)

)

θ̂2,n = arg min
θ∈Θ

Q2,n (θ)
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Consistency

Suppose:

g (Xi; θ, X0) is measurable w.r.t. σ (X0, Xi) for all θ

g (Xi; θ, X0) is a.s. differentiable in θ

E
[

sup
θ

‖g (Xi; θ, X0)‖2
]
< ∞, E

[
sup

θ

∥∥∥ ∂g(Xi;θ,X0)
∂θ

∥∥∥2
]
< ∞

E [g (Xi; θ0, X0) |F0] = 0 a.s.

E [g (Xi; θ, X0) |F0] 6= 0 a.s. for all θ 6= θ0

ΣF0 ≡ E
[
g (Xi; θ0, X0) · g (Xi; θ0, X0)

′ |F0
]
is a.s. pos. def.

Theorem: As n→ ∞, θ̂1,n →p θ0 and θ̂2,n →p θ0
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Asymptotic Mixed Normality

In addition, suppose:

∃ open ball N centered at θ0 s.t. g (Xi; θ, X0) is a.s. twice

differentiable in θ on N and E

[
sup
θ∈N

∥∥∥ ∂2g(Xi;θ,X0)
∂θ∂θ′

∥∥∥] < ∞

GF0 ≡ E
[

∂g(Xi;θ0,X0)
∂θ′

|F0

]
has full column rank a.s.

Theorem: As n→ ∞:
√

n
(

θ̂1,n − θ0

)
→d MN (0, V1,F0)

√
n
(

θ̂2,n − θ0

)
→d MN (0, V2,F0)

V1,F0 and V2,F0 are a.s. pos. def. stochastic matrices
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Asymptotic Inference and Specification Test

Consider testing r parametric restrictions:

H0 : a (θ0)
(r×1)

= 0

Let A (·) be Jacobian of a (·). Under H0, Wald test statistic

Wn ≡ n · a
(

θ̂2,n

)′ [
A
(

θ̂2,n

)
V2,nA

(
θ̂2,n

)′]−1

a
(

θ̂2,n

)
→d χ2 (r)

If the model is correctly specified, OIR test statistic

Jn ≡ n ·Q2,n

(
θ̂2,n

)
→d χ2 (k− p)
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Financial Model Setup

Financial assets:

many risky assets called stocks

a diversified portfolio of stocks called market index

a riskless asset

Asset prices are quoted continuously, but we eventually focus only
on a cross-section of returns between t = 0 and t = T
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Market Index Price Dynamics

Dynamics of market index:

dMt

Mt
= µmdt+ σmdWt

where drift µm is
µm = r+ δσm

r: risk-free rate

σm: market volatility, σm > 0

δ: Sharpe ratio of market index

{Wt}: Brownian motion; source of common shock
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Stock Price Dynamics

Dynamics of stock i for i = 1, 2, ...:

dSi
t

Si
t
= µidt+ βiσmdWt + σidZi

t

where drift µi is
µi = r+ δβiσm + γσi

βi ∼ UNI
[
κβ, κβ + λβ

]
: beta of stock i

σi ∼ UNI [0, λσ]: idiosyncratic volatility of stock i

γ: idiosyncratic volatility premium{
Zi

t
}
: Brownian motion; source of idiosyncratic shock
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Dependence Among Returns

Applying Itô’s lemma:

Si
T

Si
0
= exp

[(
µi − 0.5β2

i σ2
m − 0.5σ2

i

)
T+ βiσmWT + σiZi

T

]
MT

M0
= exp

[(
µm − 0.5σ2

m

)
T+ σmWT

]
WT, Zi

T ∼ i.i.d. N (0, T)

WT induces dependence among
S1

T
S1

0
, S2

T
S2

0
, ...

However, S1
T

S1
0
, S2

T
S2

0
, ... are conditionally i.i.d. given MT

M0

Khovansky/Zhylyevskyy MEG 2011 15



Monte Carlo Design

Inputs:

σm = 0.20, γ = 0.50

κβ = −0.20, λβ = 3.40; λσ = 0.50

δ = 0.50, r = 0.01, T = 1/12

Identifiable parameters are θ =
(
σm, γ, κβ, λβ, λσ

)′
Moment restrictions are of the form:

gi (ξ; θ) =
(

Si
T/Si

0

)ξ
− Eθ

[(
Si

T/Si
0

)ξ
|MT/M0

]
vector g

(
Si

T/Si
0; θ, MT/M0

)
= (gi (ξ1; θ) , ..., gi (ξ6; θ))′

vector ξ = (−1.5,−1,−0.5, 0.5, 1, 1.5)′
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Monte Carlo Results

Sample size n (thousands)
25 50 250 1, 000 10, 000 True value

Panel A: Means
σm 0.2526 0.2382 0.2205 0.2116 0.2011 0.2000
γ 0.5560 0.5339 0.5161 0.5076 0.5020 0.5000
κβ −0.1316 −0.1484 −0.1476 −0.1817 −0.1978 −0.2000
λβ 3.6166 3.5798 3.4874 3.4722 3.4303 3.4000
λσ 0.4989 0.4996 0.4998 0.4999 0.5000 0.5000

Panel B: RMSEs
σm 0.2327 0.2102 0.1382 0.1279 0.0658
γ 0.2105 0.1582 0.0836 0.0488 0.0182
κβ 0.9925 0.8817 0.7330 0.4077 0.1410
λβ 1.4086 1.2965 0.8896 0.8310 0.4298
λσ 0.0063 0.0046 0.0020 0.0010 0.0003

Panel C: Test sizes, H0 : parameter = true value, %
σm 15.80 13.20 8.00 7.10 5.70 5.00
γ 7.30 5.50 5.40 5.60 5.30 5.00
κβ 8.30 6.40 5.70 5.40 4.60 5.00
λβ 10.60 9.60 5.60 5.50 4.70 5.00
λσ 3.80 3.10 4.60 3.80 4.50 5.00

Panel D: OIR test size, H0 : correct specification, %
19.50 15.50 11.30 8.70 8.50 5.00
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Thank you!

Questions?



Econometric Literature

Localized common shock:

general approach: Conley (1999)

spatial effects: e.g., Kelejian & Prucha (1999)

group effects: e.g., Lee (2007)

social effects: e.g., Bramoullé et al. (2009)

Non-localized common shock:

Andrews (2003)

Andrews (2005)
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Consistency: Proof Sketch

We adapt argument due to Andrews (2003) but clarify several
details

Sketch:

infer existence and measurability of estimator from standard
theorem

show pointwise convergence of objective

show stochastic equicontinuity of objective

establish uniform convergence of objective

establish unique minimum of objective in the limit at θ0 a.s.

use the above results to prove convergence of estimator to θ0
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Stochastic Variance Terms

V1,F0 and V2,F0 are a.s. pos. def. stochastic matrices:

V1,F0 =
[
G′F0

Σ−1GF0

]−1
G′F0

Σ−1ΣF0 Σ−1GF0

[
G′F0

Σ−1GF0

]−1

V2,F0 =
[
G′F0

Σ−1
F0

GF0

]−1
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Asymptotic Mixed Normality: Proof Sketch

Proof utilizes conventional techniques:

show that g (X1; θ0, X0) , g (X2; θ0, X0) , ... is m.d.s.

mean-value expand 1
n ∑n

i=1 g
(

Xi; θ̂1,n, X0

)
around θ0

show that Gn

(
θ̂1,n

)
≡ 1

n ∑n
i=1

∂g(Xi;θ̂1,n,X0)
∂θ′

→p GF0

invoke c.l.t. for m.d.s. to show that

1√
n

n

∑
i=1

g (Xi; θ0, X0)→d [ΣF0 ]
1
2 Zk

invoke standard arguments to establish final result with V1,F0

repeat steps for θ̂2,n and simplify to obtain V2,F0
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Inference: Formulas

Wn ≡ na
(

θ̂2,n

)′ [
A
(

θ̂2,n

)
V2,nA

(
θ̂2,n

)′]−1

a
(

θ̂2,n

)
V2,n =

[
G′2,nΣ̂

−1
2,nG2,n

]−1

G2,n = n−1 ∑i ∂g
(

Xi; θ̂2,n, X0

)
/∂θ′

Σ̂2,n = n−1 ∑i g
(

Xi; θ̂2,n, X0

)
· g
(

Xi; θ̂2,n, X0

)′
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Finance Literature

Recall:
µi = r+ δβiσm+γσi

If γ = 0, our price dynamics are in line with:

ICAPM with constant invest. opportunity set: Merton (1973)

APT with a single market factor: Ross (1976)

But idiosyncratic volatility may be priced:

Merton (1987), Malkiel & Xu (2006): incomplete diversification

Epstein & Schneider (2008): ambiguity premium

Bhootra & Hur (2011): risk-seeking in capital loss domain

Ang et al. (2006, 2009), Fu (2009):
idiosyncratic premium 6= 0, but no consensus about sign
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Martingale Difference Sequence

Sequence of random variables {Yi} on probability space
(Ω,F , P) is martingale difference sequence (m.d.s.) with
respect to filtration {Fi} if:

(i) Yi is measurable with respect to Fi for all i

(ii) E [|Yi|] < ∞ for all i

(iii) E[Yj|Fi] = 0 a.s. for all j > i
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Mixed Normal Distribution

Random variable Y has a mixed normal distribution

Y ∼ MN
(

0, η2
)

if characteristic function of Y is

φY (t) ≡ E [exp (itY)] = E
[

exp
(
−1

2
η2t2

)]
where η is a random variable

Y can be represented as
Y = ηZ

where Z ∼ N (0, 1) and Z is independent of η
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Law of Large Numbers for Conditionally I.I.D. R.V.’s

Let random variables X1, X2, ... be defined on probability space
(Ω,F , P). Suppose there exists σ-field F0 ⊂ F such that,
conditional on F0, X1, X2, ... are i.i.d. Let h (·) be vector-valued
function that satisfies E ‖h (Xi)‖ < ∞, where ‖·‖ is Euclidean
norm. Then:

1
n

n

∑
i=1

h (Xi)→p E (h (Xi) |F0) as n→ ∞

Remark:

E (h (Xi) |F0) is a random variable

See Andrews (2005, p. 1557), Hall & Heyde (1980, p. 202)
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Central Limit Theorem for M.D.S.

Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be zero-mean, square-integrable
martingale array with differences Xni, and let η2 be a.s. finite
r.v. Suppose that:

(i) maxi |Xni| →p 0
(ii) ∑i X2

ni →p η2

(iii) E
(
maxi X2

ni
)
is bounded in n

and σ-fields are nested: Fn,i ⊆ Fn+1,i. Then:

Snkn = ∑
i

Xni →d Z,

where r.v. Z has characteristic function E
[
exp

(
− 1

2 η2t2)]
Remark: Z has a mixed normal distribution

See Hall & Heyde (1980, pp. 58-59)
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Stochastic Equicontinuity (I)

Let B (θ, δ) denote closed ball of radius δ > 0 centered at θ.
Sequence of functions {Gn (θ)} is stochastically equicontinuous
on Θ if for any ε > 0 there exists δ > 0 such that

lim sup
n→∞

P

(
sup
θ∈Θ

sup
θ′∈B(θ,δ)

∣∣Gn
(
θ′
)
−Gn (θ)

∣∣ > ε

)
< ε

Assumption SE-1 of Andrews (1992, p. 246):

(a) Gn (θ) = Q̂n (θ)−Qn (θ), where Qn (·) is nonrandom function
that is continuous in θ uniformly over Θ

(b)
∣∣Q̂n

(
θ′
)
− Q̂n (θ)

∣∣ ≤ Bnh
(
d
(
θ′, θ

))
for any θ′,θ ∈ Θ a.s. for

some random variable Bn and some nonrandom function h such
that h (y) ↓ 0 as y ↓ 0, where d is metric on Θ

(c) Bn = Op (1)
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Stochastic Equicontinuity (II)

Lemma 1 of Andrews (1992, p. 246). If {Gn (θ)} satisfies
Assumption SE-1, then {Gn (θ)} is stochastically equicontinuous
on Θ

Theorem 1 of Andrews (1992, p. 244). Suppose that:

(i) Θ is totally bounded metric space

(ii) Gn (θ)→p 0 for all θ ∈ Θ (pointwise)

(iii) {Gn (θ)} is stochastically equicontinuous on Θ

then Gn (θ) converges uniformly in probability to 0:

sup
θ∈Θ
|Gn (θ)| →p 0

Remark: total boundedness is weaker than compactness
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