The Mystery of the "Greenback Era" Interest Rates: What Does the New York Money Market Have to Tell?

## Oleksandr Zhylyevskyy

April 8 ${ }^{\text {th }}, 2005$

## Puzzle: Price Level Data



## Puzzle: Interest Rate Data



## Puzzle: Outline

- 1862-1865, inflation: 18-19 \%, nominal int. rate: 6 \%
- 1866-1873, deflation: $4 \%$, nominal int. rate: $7.5-8 \%$

Pattern of the nominal rates is very surprising

- 1860-1865: heavy borrowing, fed. debt $\uparrow 34$ times
- Massive short-term borrowing was frequent

Paradox of stable rates in 1862-1865
Puzzle noticed by: Mitchell (1903)

## Focus and Disambiguation

- I consider assets:
with maturity of 3 months
$\square$ that provide "fixed" income, but are not risk-free
$\square$ with nominal payoffs
- I do not consider:
$\square$ equity market
$\square$ long-term rates/yields (government bonds, railroad bonds)
$\square$ gold yields


## Plan of Talk

> Historical background
> Previous explanations of the puzzle
> Why arbitrage?
> Data
> Methodology
> Results

## History: Brief Overview I

- December 1861: panic in NY, great suspension
- Fall 1862: Treasury in trouble, large short-term borrowing
- February 1863: National Banking Act
- 1864 :
$\square$ Spring: bond-trade ceases
$\square$ Spring/summer: gold market crisis
$\square$ June/July: Treasury on verge of default
$\square$ Summer/fall: massive short-term borrowing


## History: Brief Overview II

- 1869: "gold corner" and money market problems
- National banking and money market "agricultural cycle":
$\square$ concentration of reserves in NYC
$\square$ railroad stock speculation and bank liquidity problems
$\square$ crises of fall 1872 and spring 1873
$\square$ financial disaster of September 1873


## Previous Explanations

- Mitchell (1903):
$\square$ price rise was unexpected
$\square$ weak bargaining power of money-lenders
$\square$ demand effect: cash business more important than credit
- Friedman and Schwartz (1963):
supply effect: inflow of loanable funds from abroad
- Others: Roll (1972), Calomiris (1988):
expectations played an important role


## Unexploited Arbitrage: Is It Possible?

- An arbitrage opportunity is an investment strategy that:
$\square$ has zero cost
$\square$ will never result in a loss
$\square$ has strictly positive expected benefit
- Market inefficiency?

Clark (1984) finds persistent violations of gold points in late $19^{\text {th }}$ century. He claims that the financial system was inefficient.

- "Patriotic" trading?


## Data and Notation

- Source of data: NBER, borrowed from Macaulay (1938)
- Call loans: $i_{t, t^{\prime}}^{1}$ (net rate)
$\square$ required collateral, callable by lender
$\square$ made to brokers to finance speculative operations
- Commercial paper: $i_{t, t^{t}}^{2}$ (net rate)
$\square$ no collateral, 90 day maturity
$\square$ made to merchants and manufacturers
- Bankable paper: $i_{t, t^{\prime}}^{3}$ (net rate), Martin (1898)
- Gold price: $g_{t}$
- Railroad stock index: $S_{t}$
- Banker's bill index (London): $i_{t, t^{\prime}}^{\ell}$ (net rate, 3-months)


## Methodology: Martingale Measure and SDF

- Insatiable investor:
$\square$ prefers more wealth to less
$\square$ may be risk-loving, risk-averse, or risk-neutral (no restriction)
- $1^{\text {st }}$ fundamental theorem: example


There exists positive SDF ( $\mathcal{M}_{t, t^{\prime}}$ ) that prices all assets:

$$
E_{0}\left[\mathcal{M}_{t, t^{\prime}} \cdot \mathbf{x}_{t, t^{\prime}}\right]=\mathbf{1} \text {, for every } t
$$

- Notation: $\mathbf{x}_{t, t^{\prime}}=\left(1+i_{t, t^{\prime}}^{1}, 1+i_{t, t^{\prime}}^{2}, 1+i_{t, t^{\prime}}^{3} \frac{g_{t^{\prime}}}{g_{t}}\left(1+i_{t, t^{\prime}}^{\ell}\right)^{\prime}\right.$


## Methodology: Hansen-Jagannathan SDF

- SDF as an affine function of shocks:

$$
\mathcal{M}_{t, t^{\prime}}=E_{0} \mathcal{M}_{t, t^{\prime}}+\left(\mathbf{x}_{t, t^{\prime}}-E_{0} \mathbf{x}_{t, t^{\prime}}\right)^{\prime} \mathbf{b}
$$

- Representation:

$$
\mathcal{M}_{t, t^{\prime}}=E_{0} \mathcal{M}_{t, t^{\prime}}+\left[\mathbf{1}-E_{0} \mathbf{x}_{t, t^{\prime}} E_{0} \mathcal{M}_{t, t^{\prime}}\right]^{\prime} \boldsymbol{\Sigma}^{-1}\left(\mathbf{x}_{t, t^{\prime}}-E_{0} \mathbf{x}_{t, t^{\prime}}\right)
$$

$\Sigma$ is covariance matrix of gross returns
$E_{0} \mathcal{M}_{t, t^{\prime}}$ is the inverse of gross risk-free return (if traded)

## Methodology: Test and Estimation

- In theory: $E_{0}\left[\mathcal{M}_{t, t}, \frac{S_{t}}{S_{t}}-1\right]=0$

Check if $\frac{1}{T} \sum_{t}\left[\hat{\mathcal{M}}_{t, t^{\prime}} \frac{S_{f^{\prime}}}{S_{t}}-1\right]$ is statistically zero

- Estimate: $\boldsymbol{\Sigma}$ and $E_{0} \mathbf{x}_{t, t}$
$\square$ Method 1: full sample
$\square$ Method 2: all data up to period $t$
- $E_{0} \mathcal{M}_{t, t}$ cannot be estimated, but can be bounded:

Try a range for the risk-free rate: 3-6 percent

## Results: Months of Violations

| Method 1: full sample | Method 2: data up to $t$ | Comment |
| :--- | :--- | :--- |
| October, 1864 | March-May, 1864 <br> October, 1864 | Gold market <br> crisis |
| October, 1869 | October, 1869 | Gold "corner" |
| October, 1872 <br> November, 1872 | October, 1872 <br> November, 1872 | Financial market <br> crisis |
| October, 1873 <br> November, 1873 | October, 1873 <br> November, 1873 | Financial market <br> crash |

## Results: Pricing Hypothesis

- Is railroad stock price index adequately priced?
- Null: $E_{0}\left[\mathcal{M}_{t, t^{\prime}} \frac{S_{t^{\prime}}}{S_{t}}-1\right]=0$
- Test statistic: asy. normal; s.e.: Newey-West (2 lags)

| Method | Net $\mathrm{f}^{f}$, percent |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 |
|  | -0.046 | -0.218 | -0.534 | -1.230 |
| Sign. level | 0.96 | 0.83 | 0.59 | 0.22 |
| Method 2 | -0.960 | -0.729 | -0.228 | 0.534 |
| Sign. level | 0.34 | 0.47 | 0.82 | 0.59 |

## Conclusion

- Pattern of interest rates is puzzling
- Literature: expectations or capital inflow played a role
- This paper finds: arbitrage occurred unsystematically
- Investor expectations should be the focus of future research


## Questions?

## Methodology: SDF Example

- $1^{\text {st }}$ Fundamental Theorem:
suppose $g_{t}>0$
a financial market admits no arbitrage if and only if there exists an equivalent martingale probability measure, under which: all discounted price processes are martingales
- For call loans: $\frac{1}{g_{t}}=\tilde{E}_{t}\left[\frac{1+i_{t, t^{\prime}}^{1}}{g_{t^{\prime}}}\right]$
- Radon-Nikodym: $\tilde{E}_{t}\left[\frac{1+i_{t, t^{\prime}}^{1}}{g_{t^{\prime}}}\right]=E_{t}\left[\zeta_{t^{\prime}} \frac{1+i_{t, t^{\prime}}^{1}}{g_{t^{\prime}}}\right]$
- SDF prices assets: $1=E_{t}\left[\frac{g_{t} \zeta_{t^{\prime}}}{g_{t^{\prime}}}\left(1+i_{t, t^{\prime}}^{1}\right)\right] \equiv E_{t}\left[\mathcal{M}_{t, t^{\prime}}\left(1+i_{t, t^{\prime}}^{1}\right)\right]$


## Extras: Gold Premium



## Extras: Monthly Inflation and Interest



## Extras: More on Interest Rates: Means

| Asset | $1861-1866$ | $1867-1873^{\star}$ | $1874-1878$ |
| :---: | :---: | :---: | :---: |
| Call loans | 5.86 | 7.65 | 3.60 |
| Comm. paper | 6.53 | 8.13 | 5.31 |
| Boston paper | 6.03 | 7.05 | 4.84 |

Notes: Means of quotations in a given period.
*September, 1873 is excluded.

## Extras: Summary Statistics

Table 1: Data Summary Statistics

|  | Warren-- <br> Pearson <br> Index | Greenbacks <br> per <br> Gold $\$ 100$ | Call <br> Loan <br> Rate | Comm. <br> Paper <br> Rate | Boston <br> Paper <br> Rate | London <br> Bills <br> Rate | Stock <br> Index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mean | 126.77 | 127.47 | 6.15 | 6.85 | 6.43 | 3.62 | 30.82 |
| st. dev. | 32.04 | 27.42 | 4.63 | 2.31 | 2.57 | 1.84 | 9.39 |
| max | 225.00 | 280.50 | 61.23 | 24.00 | 30.00 | 9.75 | 45.20 |
| min | 83.00 | 100.00 | 1.70 | 3.60 | 3.00 | 0.91 | 12.83 |
| median | 124.00 | 115.44 | 5.50 | 6.49 | 6.00 | 3.10 | 32.68 |

