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Executive Summary 
 
 
This report lays the groundwork for modelling that forms part of the Rural Futures FRST 
research programme in New Zealand. The programme is a five-year FRST funded 
collaboration led by AgResearch. The Rural Futures programme includes the creation of an 
industry-level multi-agent simulation (MAS) model of New Zealand’s pastoral industries. 
This model will describe the strategic decisions and behaviours of individual farmers in 
response to changes in their operating environment, and link to the production, economic and 
environmental impacts of their management. The MAS will need to represent the 
heterogeneity that exists in farmers, their systems, their responses to interventions and 
environmental changes, and the resultant consequences for the industry. The MAS will 
provide an objective tool to assist strategy and policy setters to learn about the behaviour of 
this complex socio-economic/biophysical system before they intervene. 

A recent focus of research is complex systems whose properties cannot be modelled 
analytically. The theory is that emergent properties result from micro-level behaviour, from 
the interaction of simple agents. The interest has developed from work in physical sciences on 
systems behaviour, which has demonstrated the existence and importance of such systems. 
Systems are reduced to a few key relationships, and then the behaviour of the system under 
different conditions is explored by generating scenarios on computers. 

One consideration is the modelling of resources. For simulating water, labour and capital, 
models have been developed ranging from the simple to the complex. The complexity of the 
modelling is generally linked to the importance of the resource; more important resources 
receive more attention and more complex treatment in a model. In the present research, a key 
task will be to identify those elements that would benefit from complex specification, so as 
not to overbuild the model. 

A key part of MAS models is the agent. Agents in agricultural models can represent 
individual behaviour, making decisions and adapting to new information and experiences. 
MAS models can also simulate heterogeneity and interdependencies that occur among agents 
and their environment. This heterogeneity incorporates risk preferences and other personality 
traits of agents. Agent behaviour can also be described as optimising, essentially relying on an 
economic view of rationality, or heuristic, which relies more on descriptive or qualitative 
information about behaviour. 

When the model as a whole is considered, a number of issues become important. There are 
technical issues, such as the time-step in the model (how often a decision or action is made) 
and the method for simulating markets. Wider considerations include testing for the validity 
of the model – that it is simulating the appropriate things – and the verification of the model – 
that its simulations are accurate.  

Success can be assessed along several dimensions. A key concern for this FRST programme 
is that the model be usable and useful for end-users. Given the mixed success of MAS models 
with uptake by end-users, decisions will need to be taken about user involvement and 
influence on model development. Participatory modelling is one approach that provides a 
useful tool for involving stakeholders and end-users at each stage of the model development 
process.  
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This review is intended to provide some guidance on the essential components of a model, 
methods for modelling each component, and processes for assembling an appropriate and 
usable model. With a successful model, the programme should be able to assess the macro-
level emergent properties of New Zealand agriculture by simulating micro-level behaviour of 
farms and farmers.  



Chapter 1 
Introduction 

 
 
In recent years, there has been increasing interest in economics in systems that are not in 
equilibrium or that, indeed, have no apparent equilibrium state. This interest has developed 
from work in physical sciences on systems behaviour, which has demonstrated the existence 
and importance of such systems. Often, these are complex systems with multiple feedback 
loops and independent and interdependent actors. They are also adaptive, dynamically 
changing to respond to environmental conditions. Mathematical and computational tools have 
been developed to analyse these systems. An important tool is simulation, by which a system 
is reduced to a few key relationships, and then the behaviour of the system under different 
conditions is explored by generating scenarios on computers. 

These simulations are often agent-based models, in which individual agents are the basic unit 
of modelling for a complex system. The agents represent individuals’ behaviours in response 
to their local environment. They interact with each other and their environment, and make 
decisions and changes as a result of this interaction. The whole system behaviour depends on 
the aggregate behaviour of individual agents (Matthews, Gilbert, Roach, J.G., & Gotts, 2007). 
Agent-based modelling is a bottom-up method of modelling complex systems. Core premises 
for agent-based models are that agents are the decision-making components in complex 
adaptive systems. These systems are created by the independence of the agents’ cognitive 
behaviour, decision behaviour, and heterogeneity. Importantly, the behaviour of a complex 
adaptive system can be characterised by emergent properties, results that cannot be found 
analytically but rather are the result of the system’s behaviour (Matthews et al., 2007; North 
& Macal, 2007; Tesfatsion, 2006). 

Agriculture appears to be such a system. Whether from the farm perspective or the industry 
perspective, agriculture can be considered a complex adaptive system of multiple actors and 
nested levels responding to changes in the environment that its activities help produce. 
Researchers have begun to use simulation models with multiple, interacting agents to describe 
agriculture, and then use these models to examine the impacts of exogenous changes to 
agriculture. It has become a common method of modelling complex real world systems in the 
land-based sector. These systems range from cattleherders in North Cameroon (Rouchier, 
Bousquet, Requier-Desjardins, & Antona, 2001), to deforestation/afforestation in Indiana 
(Hoffmann, Kelley, & Evans, 2002), to farming in the German region of Hohenlohe 
(Balmann, Happe, Kellermann, & Kleingarn, 2002). 

This report reviews the literature on these models. It lays the groundwork for modelling to be 
undertaken as part of the Rural Futures FRST research programme in New Zealand, which is 
a five-year FRST funded collaboration including AgResearch, Lincoln University, Otago 
University, and The Agribusiness Group. The Rural Futures programme includes the creation 
of an industry-level multi-agent simulation (MAS) model of New Zealand’s pastoral 
industries. This model will describe the strategic decisions and behaviours of individual 
farmers in response to changes in their operating environment, and link to the production, 
economic and environmental impacts of their management. The MAS will need to represent 
the heterogeneity that exists in farmers, their systems, their responses to interventions and 
environmental changes, and the resultant consequences for the industry. The MAS will 
provide an objective tool to assist strategy and policy setters to learn about the behaviour of 
this complex socio-economic/biophysical system before they intervene. 
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Figure 1.1 shows the process of agent-based model construction and iteration (feedback) 
between considered core model components. Underlying this simplistic representation is a 
complex mathematical and model logic, with associated coding and algorithms designed to 
represent phenomena associated with agent interaction and bottom up emergent property 
outputs. 
 

Figure 1.1: Spatial data representation of a multi-agent system 
(adapted from Pahl-Wostl, 2002)

 

 
 

Berger (2001, p. 246) defines MAS as ‘computer systems composed of autonomous entities 
or agents which have only limited knowledge and information processing capacities ... 
typically they are larger entities with some sort of persistent control’. Many MAS models 
have been developed for understanding and modelling land based systems, such as AgriPoliS 
(Happe, Kellermann, & Balmann, 2006), MPMAS (Berger, Schreinemachers, & Arnold, 
2007) and SYPRIA (Manson, 2005). The structures of these models are varied, but generally 
fit an actor–institution–environment conceptual model as in SYPRIA (Manson, 2005). In such 
a modelling system, key actors are farmers or households and are agents in the model. 
Institutions are other agent types, such as regional councils, the market, and RMA, who guide 
agents’ decision-making. The environment defines the actors’ bio-geophysical context, 
including elements such as climate and soil. Three major processes are sequentially executed 
during each time-step of the simulation. First, institutions change variables related to actors’ 
decision-making; this is a policy change. Secondly, the environment changes according to 
endogenous ecological rules and the effects of actor decision-making during the previous 
time-step. Thirdly, each actor in the region makes land-use decisions. Contributing to these 
decisions is information transfer among the agents, which affects opinion formation, the rates 
of adoption of new technology, and adaption to new policy and environmental changes.  

A review of the recent literature on agent-based models (Axelrod, 2006; Axelrod and 
Tesfatsion, 2006; Berger, 2001; Bruun, 2004; Buchanan, 2005; Buxton et al., 2006; Gilbert 
and Terna, 2000; Matthews et al., 2007; Midgley et al., 2007; North and Macal, 2007; Parker 
et al., 2003; Tesfatsion, 2006) identified a number of benefits and strengths of MAS. 

It is a practical methodology to address agent interaction that is reliant on both past 
experience and agent adaptation. 
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It can address and facilitate inter-disciplinary collaboration, and can incorporate data 
from multiple disciplines. 

MAS models are able to interpret reactive, goal-directed and decision-making entities as 
they react to their environment. 

Building a MAS follows bottom-up principles (see also Barnaud, Bousquet, & Trebuil, 
2008), producing the aggregated, macro-level performance of a modelled system from 
micro-level behaviour. 

MAS models enable a ‘third way’ of doing science (in addition to deductive and 
inductive1) where empirical data originates from emergent properties derived from 
defined rules developed from historical real-world observations. 

These models allow representation of the temporal and spatial complexity in land-based 
systems characterised by interdependencies, heterogeneity and nested hierarchies. 

Upward and downward linkages in modelled systems are captured, and the emergent 
structures accommodate exogenous shocks and system critical mass and perturbations. 

North and Macal (2007) see the MAS paradigm as useful in business decision-making and 
innovation, encompassing operational, tactical and strategic level roles. Modelling and 
simulation are seen as components of a larger analytical framework compiled to understand 
and ultimately control business processes and organisations. In effect, they see a role for 
agent-based model simulation in using participatory simulation with a goal in identifying 
agent behaviours at the micro-level, ultimately resulting in macro-level outcomes. With 
regard to supply chain modelling, agents are considered the ‘decision-making members’, with 
North and Macal (2007) using both a theoretical network beer game simulation and a practical 
deregulated electricity generation and supply model as examples of use of agent-based model 
simulation. 

A number of the strengths of MAS models are defined in opposition to equation-based 
modelling. Equation-based models are most naturally applied to systems that can be modelled 
centrally, and in which the dynamics are dominated by physical laws rather than information 
processing. In contrast, MAS models are most appropriate for systems characterised by a high 
degree of localisation and distribution and dominated by discrete decisions. This has been 
evaluated previously by Van Dyke Parunak et al. (1998) where similarities and differences 
between the two modelling techniques were assessed2. They stated that equation-based 
models and MAS models differ in the fundamental relationships amongst entities being 
modelled, and the focus levels of attention. In particular, equation-based models use sets of 
equations to express relationships among observables, while MAS models use behaviour 
modelling through which individuals interact. Van Dyke Parunak et al. (1998) demonstrate 
that equation-based models make extensive use of system level observables whereas agent-
based models define agent behaviours at the individual level.  

A key question is the extent of the complexity to include in a specific model. Two metaphors 
were developed by Casti (1997) which were used by Parker et al. (2003) in their review of 

                                                 
1 Inductive approach being empirical data pattern discovery, and deductive approach using hypotheses and 
observation in prediction true/false derivation (see Matthews et al., 2007).
2 Whilst Van Dyke Parunak and colleagues did note the issues of both competition and criteria for selection of 
either model technique in their critique, subsequent advances in the fields of both system dynamics and agent-
based models appear to have illustrated a collaborative and ‘added value’ relationship between the modelling 
methodologies (e.g. refer North & Macal, 2007; Parker, Manson, Janssen, Hoffmann, & Deadman, 2003).
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MAS models of changing land-use or land-cover use. The first metaphor is that of a 
photographic portrait and the second is that of a Picasso portrait. In the photographic portrait 
metaphor Casti describes models in which all of the variables present in real life are modelled 
as faithfully as possible in a spatial MAS model. This spatial modelling method will be 
described in more detail in Chapter 2. In the metaphor of the Picasso portrait, Casti describes 
models in which the attempt is to identify key features of a problem and highlight those in an 
attempt to emphasise the fundamentals of a particular problem. Parker et al. (2003) terms the 
analogy of the photographic portrait the descriptive approach, whereby models try to recreate 
the subject as closely as possible in an effort to maximise empirical and predictive validity. 
The Picasso analogy is termed the explanatory approach, in which the goal for the model is to 
explore theory and generate new hypotheses. This differentiation of the two approaches is 
similar to the later discrimination of the abstract and experimental model from the empirical 
model by Berger et al. (2006). 

Models are not necessarily of one type or the other. Rather, they vary along a dimension in 
which one end is anchored by a photographic/descriptive ideal, and the other end is anchored 
by a Picasso/explanatory ideal. Nor is it necessarily the case that every variable in a given 
model should be treated in the same way. Part of the process of model building is identifying 
how elements of the model should be treated, given the goals of the research. For some 
elements, precisely describing their attributes may be vital for the research. For example, it 
may be important to be precise about the greenhouse gas emissions from different animals 
and production systems in a land-use model. In the same model, it may be possible to treat 
other variables less precisely. Profitability of a land use may, for instance, be considered in a 
general way, rather than calculated exactly with a production budget or model farm accounts. 

MAS models have found application in areas other than agriculture. They have been used to 
model an aero-engine value chain experimentally in order to understand the underlying 
dynamic behaviour, which results from collective behaviour and interactions, and to illustrate 
the potential use of the modelling to support strategic decision-making (Buxton, Farr, & 
MacCarthy, 2006). Actors in the value chain are represented as ‘agents’ with individual 
processes, logic, risk attributes and market sector responses. The researchers noted, however, 
that the model experiments were purely illustrative and hypothetical (Buxton et al., 2006). At 
a more applied industry level, Keenan and Paich (2004) describe a General Motors’ North 
American automobile market model based on both a structured enterprise model (system 
dynamic) and a more complex consumer choice model (agent-based). In interpreting both 
qualitative and quantitative insights, Keenan and Paich (2004) derived policy scenario 
outcomes, but also highlighted the role of the agent-based model in the research. Further 
examples of industry level applications of agent-based models within multi-national 
businesses are provided by Buchanan (2005), where agent-based models assist in ‘seeing 
around corners’ and ‘penetrating the confusion’ of business strategic scenario complexity and 
understanding. 

Decision behaviours in agent-based models are particularly important in the emerging field of 
agent-based computational economics (ACE; Tesfatsion, 2006). The observation that an 
economy is a large composite system has led to it being analysed as a complex, dynamic, and 
adaptive system. Such systems have a large number of interacting units or agents, whose 
interactions result in emergent properties (Bruun, 2004; Tesfatsion, 2006). As an illustration 
of ACE, Tesfatsion (2006) uses the perturbation and progression of the Walrasian equilibrium 
model3. The model solution is actively driven by agents, who incorporate strategic rivalry, 

                                                 
3 A precisely formulated set of conditions under which feasible allocations of goods and services can be price-
supported in an economic system or organised on the basis of decentralised markets with private ownership of 
productive resources (Tesfatsion, 2006).
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power, behavioural uncertainty, learning, and information procurement and diffusion in a 
complex computational environment. The development of an ACE model encapsulates both 
constructive mathematical programming, and economic and social science theory. 

The review presented in this report focuses on the core components for the development of a 
MAS model for New Zealand’s pastoral industries. This introductory chapter has presented 
the rationale for MAS models, described some of their uses and strengths, and highlighted 
some areas where they have been used. The second chapter describes options for modelling 
land and other resources that are important variables for the development of a MAS model for 
New Zealand. The third chapter focuses on the agents and the heterogeneity they represent. In 
this context, the key drivers of the decision-making process such as information transfer and 
opinion formation are outlined and also risk preferences and other personality traits of the 
agents are presented. The fourth chapter considers some issues in bringing the different 
components of the model together. The fifth chapter describes usability and end-user 
requirements of the MAS model as a challenge for the successful development and 
implementation of a model. The final chapter summarises the findings to support a model of 
agriculture in New Zealand.  
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Chapter 2 
Modelling Resources  

 
 
There are a number of resources that could be included in a model of farming in New 
Zealand. Among the most important of these are land, water, labour and capital. Many agent-
based models have been developed that together present a variety of approaches for modelling 
these variables. In general, each of the resources can be addressed using techniques ranging 
from the simple to the complex. For example, a resource could be included in a more general 
variable representing total resources or productivity; represented with a randomly generated 
value for the variable; assigned values based on empirical data; or indeed ignored in a model 
as practically unimportant. A more complex representation of a resource could be included 
with a dynamic sub-model. For example, water in a model of farming could be predicted with 
a complete hydrological system. An appraisal of some applications of agent-based models 
within the natural resource and land-use, business and economics fields of study is presented 
below. 
 

2.1 Land

In a model of farming, the question of land is central. This discussion of resources thus starts 
with how land was represented in various models, and how land was linked to other parts of 
the models.  

Perhaps the simplest method for modelling land was used in a model of cattleherders in North 
Cameroon (Rouchier et al., 2001). In their model, the authors were interested in replicating 
the system by which cattleherders in North Cameroon rent access to grazing from farmers 
during the dry season. To model this system the authors randomly assigned a value (between 
certain parameters) for the number of villages in a given model run, a value for the number of 
farmers in each village and a value for the number of fields for each farmer. In this way their 
model did not attempt to represent land spatially. However, this simple method for modelling 
land worked well with their model because it paralleled the way in which their cattleherder 
agents went about renting land: first they choose which village headsman to approach for 
access rights. Once the access rights for the village had been gained the herdsmen chose 
which farmer they wanted to approach for specific land/grazing rights. Thus, it was not of 
interest to model different geographies, soil types, costs of transport from the farmstead to a 
field, nearby neighbours, or any other spatially oriented variables. 

In what is almost a diametrically opposed starting point regarding the way in which land can 
be modelled, Balmann (1997) created a model of farming that was almost purely spatial and 
represented land using a cellular automata (CA) model. CA models use a grid/square structure 
in which each square is connected to its four neighbours (See Figure 2.1).  
 

Figure 2.1: Visualisation of a Cellular Automata Model 
 

 

 

 
 

7 



Using CA to model land requires a more complex computer programme than the non-spatial 
model used by Rouchier et al. (2001). However, its chief advantage is that once the CA 
structure is programmed, any number of different spatial variables can easily be assigned to 
each cell. In addition, because each cell has a specific location, CA models can be created 
using GIS data or other regional, spatial data. For example, in his model, Balmann (1997) 
used the CA structure to assign cells different values for whether the cell is the farmstead (and 
thus owned) or rental property, the distance the cell is from the farmstead, the current land-
use, etc. In addition to the CA structure, the model included farms which had values for 
variables such as labour, employment of additional personnel, casual labour, access to capital, 
assets, age, total income, total rental costs, and total transportation costs from all the farm 
cells.  

Recent work in modelling systems in the land-based sector has developed a number of models 
that explicitly combine the MAS approach with the spatial modelling CA approach that 
Balmann (1997) used. By combining both a CA sub-model and a MAS sub-model, variables 
can be divided into spatial variables that are assigned to cells in a CA component and 
personality/behavioural/decision-making variables that are assigned to agents in the MAS 
portion of the model. For example, Torrens (2001) used a CA/MAS model to create a 
simulation of urban communities. In the model, each CA cell represented a piece of property 
in a neighbourhood or city. Each cell had values for the value of property, housing type, lot 
size, housing tenure, density, land use, number of bedrooms, rental value, and a discounting 
function. In the MAS portion of their model, they used agents to represent homebuyers and 
sellers. Their MAS agents had the following attributes: income, age, children, household size, 
ethnicity, inertia, residency, segregation preference, lifecycle stage, tenure preference, 
housing preference, housing budget, willingness to leave submarket, socioeconomic 
preference, and agent type. Their model also provides a useful illustration of the number and 
diversity of factors that can be taken into account in these models, from prices for a given 
piece of property to personal traits such as the housing preference of a given agent. In 
addition, their model also clearly shows how variables can be divided and tied to either the 
spatial CA sub-model or the MAS sub-model. 

Another interesting model is Berger’s (2001) model of agriculture in Chile. In his model, he 
assigned values to each of the cells in the CA matrix for soil quality, water supply, land-
cover/land-use, ownership, internal transport costs (from the farmstead), marginal 
productivity or return to land. Although the exact variables assigned to agents are not listed, 
by implication they included at least the amount of rented land and water rights, calculations 
for the highest utility for each use for each parcel of land, a variety of behavioural constraints 
to create heterogeneous financial and technical behaviour, differing rates of information 
adoption, and the ability to ‘leave’ farming if income drops below a certain level.  

The work by Berger and others (Berger, 2001; Berger et al., 2006) also demonstrates the use 
of CA/MAS modelling for policy assessment. The model was focused on land use in 
developing agro-ecological zones, and has been applied to the biophysical and socio-
economic constraints evident in Uganda and Chile. The models in this context represent 
multi-layered spatial data, organisation into sub-models, and direct agent/environment 
interaction. In assessing the feasibility of and constraints to increasing agricultural 
productivity in a district of Uganda, Berger et al. (2006) created a bio-economic model using 
mathematical programming for agent interaction and decision-making, neural networks as 
yield estimators, and nutrient balances for ecological sustainability. The aspatial, non-
connected MAS consisted of independent farm models for comparative-static analysis. 
Simulation scenarios examined farm household tradeoffs, and results were analysed to 
identify binding constraints for profitability and sustainability. Additional research assessed 
the impacts of technology adoption and policy intervention within an agricultural study region 
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of Chile (Berger, 2002, Berger et al., 2006). The work provides an example of simulation 
scenario analysis, where both interactions and heterogeneity of policy response are captured 
by extensions of a static non-connected MAS. The model included agent and land parcel 
information and interaction exchange, agent decision-making specification, and agent 
sequencing. The modelling examined policies aimed at promoting innovation diffusion, and 
showed that well-targeted extension programmes were cost-effective via client innovation and 
linkage within their environmental and socio-economic zones (Berger et al., 2006). Given the 
relatively high degree of policy complexity, with interventions targeted at constraining land 
and resource degradation in developing countries, the MAS approach was considered a better 
approach than more conventional bio-economic analyses (Berger et al., 2006). 

Manson (2000) developed a very detailed model of reforestation in the Yucatan peninsula of 
Mexico. He was interested in replicating a theoretical model in which the actors, environment 
and institutions were all mutually interdependent. To replicate this theoretical model required 
a very detailed CA/MAS model. In the CA portion, each cell had values for a wide range of 
variables, including land use; land cover; soil fertility as a function of cover, past soil fertility, 
and duration of present land use; environmental attributes of hydrology, soil type, slope, and 
aspect; suitability of three production activities (agriculture, forestry, and nontimber forest 
products); and distance to market and transportation infrastructure. To model both the agents 
and institutions described in the theoretical model, Manson developed two types of agents for 
his CA/MAS model: smallholder and institution agents. The institution agents were used to 
communicate information to the smallholder agents about land tenure; about different 
markets, such as crop and fuel prices; and about government subsidies. The smallholder 
agents acted as the agents in the theoretical model and it was their actions that directly 
determined the land use/cover for each cell in the model.  

Balmann, et al. (2002) created a model of farming in the German region of Hohenhole to 
investigate changes in European Union farming laws and subsidies. This model is similar to 
the Manson (2000) model described above. The CA cells tracked values such as the distance 
from the farmstead, suitability of the area for grassland or arable farming, and the current use 
of the land – dairy, cattle, suckler cows, sugar beets. The farms in the model acted as the 
agents and made choices about whether to take on more loans, rent or buy land, hire 
additional labour, or use labour and capital for off-farm employment (that is, leave farming). 

Balmann was also involved in the development of the AgriPoliS simulation model. This 
spatial and dynamic MAS simulated endogenous structural change in agriculture, more 
specifically EU agricultural structural change and the policy impacts therein (Happe, 
Balmann, & Kellermann, 2004). The model mapped the key components of regional 
agricultural structures in a complex, evolving system. It included heterogeneous farm 
enterprises and households, spatial parameters, and market and production factors, all 
embedded in a techno-political environment. Farm agents (farm manager and farm household 
decision-makers) were the key entities (together with market agents), interacting with their 
‘environment’ and engaged in land rent and disposal, plus associated agricultural production 
and marketing activities. Parameters of interest for end-users were macroeconomic framework 
conditions, the policy environment, technological change and on-farm socio-economic 
characteristics. A key outcome for the research was analysis of agricultural policy and 
assessment of interrelationships amongst land rents, technical change, product pricing, 
investments, productivity and policy intervention (Happe et al., 2004). Data outputs were on 
both individual farm and aggregate data level (Happe et al., 2004). 

The objective of the FEARLUS project (Polhill, Gotts, & Law, 2002) has been the application 
of MAS techniques to questions of significant land-use change, such as government 
intervention, market driven change, and environmental change. The spatially based land-use 
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model is abstract, but designed to clarify aspects of land-use change in Scotland based on 
dimensional-grid cells of land parcels. Polhill et al. (2002) used land manager ‘agents’ 
(conceivably farm family units or organisations) acting within both social and physical 
neighbourhoods. Simple heuristic models were utilised, where imitative strategies were 
employed with regard to historical land-use, climate, economy, neighbouring cells, 
biophysical properties of land, and agent cognitive preference. The FEARLUS model outputs 
were aimed at policy makers facing land-use decisions. The model was also a possible 
educational tool, offering the possibility of exploring land-use options by modelling scenarios 
in a multi-dimensional framework (Polhill et al., 2002). 
 

2.2 Water

Another important resource in agriculture is water. Berger’s (2001) representation of water is 
perhaps the most comprehensive of the models discussed. The model of farming in Chile used 
an explicit hydrological model including variables for locally available freshwater supplies, 
irrigation and return flows and used equations and parameters for these values derived from 
the Chilean Department of Public Works. In addition, the course of water was mapped 
through the CA structure, thus those that took water out for irrigation ‘upstream’ left less 
water for those downstream. Finally, this hydrological model was tied into the model for 
renting water rights, which further contributed to the hydrological model by establishing 
precedence in removing water from the system.  

Other models have taken a less complex approach to modelling water. For example, Rouchier, 
et al. (2001) modelled water simply as a value for the number of good or poor watering sites 
each village had access to, which they could then rent to the herdsmen. A number of the 
models described above have no explicit model for water. Instead, water availability was 
inferred from other variables that are perhaps more proximal to farming outcomes, such as the 
productivity of a given piece of land, or its suitability for a certain type of land-use (Balmann, 
1997; Balmann et al., 2002). It is also possible to model water explicitly without a 
hydrological model; Manson (2000) used a simple model that assigned values for hydrology 
and precipitation for each CA cell.  

In the end, the modelling of water in a system only needs to be as complex as required for the 
issue at hand. In modelling farming behaviour in a dry region such as Chile, a more specific 
model for water will probably lead to better replication of empirical data and patterns. On the 
other hand, it is just as plausible that choosing a simpler approach, especially for regions in 
which water challenges might not be a primary issue in farming, might be preferable.  
 

2.3 Labour

Labour is another resource included as a variable in some MAS models. In some of the 
models detailed rules were set, e.g., Balmann (1997) and Balmann et al. (2002). In these 
models the amount of labour at each turn was based on multiple factors. First, each farm 
started with an initial amount of labour available. This amount of labour could then range 
higher as more labour was hired, or range lower as the initial labour was put to use in off-farm 
employment. Finally, off-farm employment could consume the entire initial on-farm labour, 
thus allowing the agents ‘leave’ farming altogether. In addition, the models allowed for labour 
units to be divisible, e.g., a farmer spends some of his time in off-farm employment. The costs 
of labour and increases in productivity were then used in the linear model by which the farm 
agents made their allocation decisions.  
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As was the case with water modelling, some models did not directly take into account access 
to labour resources. For example, Rouchier, et al. (2001) had no market for additional labour 
and instead assumed that each herdsman agent would be able to provide enough labour to 
keep a herd of infinite size. Herd size was still limited by available water and land access 
however, so the practical outcome was simply that herds were limited to no more than a 
couple of hundred animals for even the largest herds. Thus, if the type of farming or the 
region being modelled has access to a labour market, and labour is one of the constraints on 
production, then a model that incorporates this may lead to more realistic outcomes.  
 

2.4 Modelling capital

The treatment of capital also varied across the models. In some cases capital is a detailed and 
important part of the model and in other cases capital is not included. The models in Balmann 
(1997) and Balmann et al. (2002) again provide one of the more detailed and inclusive models 
with regard to capital. In their models, agents have access to liquid equity capital with its 
associated opportunity costs, short term loans and long term loans. The maximum additional 
long term credit a farmer has access to in the model is defined in equation 1: 

G  (L – E) (1 – v) / v    (1) 

In this equation a minimum reserve is subtracted from liquidity and the sum must be higher 
than the share of the acquisition costs that is financed by the equity capital. Their decision 
making model then also accounts for repayment of debts, assets, income, and long-term 
interest expenses, to fully model capital.  

In other, less financially oriented models, capital is not accounted for at all. Again, Rouchier, 
et al.’s (2001) simple model of herdsmen did not require the introduction of any form of 
capital market to successfully model the behaviour in which they were interested. 
 

2.5 Markets for resources 

Another issue to consider regarding resources is how allocation changes during model 
simulations. Two interrelated issues are the method for allocating resources, such as through 
markets, and the method for arriving at a market solution for produced commodities. This 
section considers the former, while the latter is covered in Chapter 4. Six mechanisms for 
allocation are apparent in the literature, including four methods reviewed by Lebaron (2006) 
and two others that also appear in other models. 

The first mechanism is simply to assign productive resource to agents for each simulation, 
and leave the allocation unchanged. Resources are thus inseparable (not alienable, to use a 
legal term) from the agents who use them. This approach simplifies the modelling. However, 
it also reduces the amount of information that can be generated by a model, such as the price 
of land parcels. 

A second mechanism is to establish a market for a specific resource, including a supply and 
demand. A price adjustment mechanism can then be created that allows the market to adjust 
over time. With this type of market, agents put in orders for buying and selling and these 
orders are then summed. The price is increased if there is excess demand and decreased if 
there is excess supply. This description of a market is similar to a cobweb model (Nicholson, 
1992), in which a market goes through several iterations to approach an equilibrium. The 
magnitude of the increase or decrease varies with the magnitude of the imbalance and the 
strength of the constant assigned in the equation. In this way, it is possible for markets to 
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spend a great deal of time away from a market clearing value. Lebaron (2006) argues that it is 
both an advantage and a disadvantage that the market model is not in equilibrium. It is an 
advantage in that a market in disequilibrium might be a more accurate portrayal of the market 
in reality. The disadvantage of this market mechanism is that, depending on the value 
assigned to the change coefficient, the market might spend a good deal of time far from 
market clearing prices. In addition, if this method is chosen for a resource market, a decision 
must be made with regard to the treatment of excess demand. This demand can be filled from 
some inventory, which can itself be modelled, or a supplemental rationing system can limit 
demand filled to the supply produced.  

A third mechanism available to model resource markets is to calculate a temporary market 
clearing price based on current supply and demand. Lebaron (2006) suggests that the benefit 
of this type of model is that the prices by design always clear the market, thus no issues arise 
involving a market maker, inventories or rationing. However, this type of market mechanism 
may enforce an equilibrium when one does not exist in the actual resource market in question. 
In addition, this method of clearing the market can involve a great deal of computation or, in 
an effort to limit the computational requirements, it can lead to an oversimplification of 
agents’ demands. However, this mechanism most likely captures the variety of auction based 
methods that the farm models discussed have handled their markets. Brock and Hommes 
(1998) created an asset pricing model using this mechanism. In their model, they solved for 
the price of their assets with the following equation: 

Rpt = Eht(pt+1 + yt+1) - 2zst   (2) 

In this equation Rpt is the price in the present turn, which equals the expectation (Eht) of an 
investor of type h at time t of the sum of the future price (pt+1) and the future increase (yt+1), 
from which is then subtracted the product of risk ( ), variance ( 2), and the supply of shares 
per person (zst). If there is no external supply of shares, the equation reduces to 

Rpt = nhtEht(pt+1 + yt+1).   (3) 

The price is thus given by the sum of expectations over all the types of investors at a given 
time. 

A fourth mechanism for allocating resources dynamically is to borrow the idea of order books 
from real world markets and have the agents’ orders filled using some well defined procedure. 
From a microstructure perspective, this mechanism has the advantage of being the most 
similar to the way in which some markets operate in reality, for example, financial markets. A 
drawback to this mechanism is that it requires the modeller to include a great deal of 
institutional details into the market structure and into the agents’ learning model. An example 
of this market mechanism can be found in Farmer, Patelli, and Zovko (2005). They created a 
model that used the continuous double auction method, the same method widely used in 
modern financial markets. Agents in the model could submit orders to buy and/or sell at any 
point in time. In addition, both market and limit orders could be placed by agents. A market 
order was defined as a buy or sell order that crossed the opposite best price and a limit order 
was defined as a buy or sell order that did not cross the opposite best price. Just as in real 
financial markets, limit orders were queued and allowed to accumulate until market orders 
were placed, which then removed them from the queue. The lowest selling price offered at 
any point became the best ask price (at), the highest buying price was the best bid price (bt), 
and the bid-ask spread was defined as st = at – bt, the gap between the two. 

A fifth mechanism, used by Lebaron (2006), is to allow resource transfer only through direct 
contact between agents. This mechanism requires some sort of spatiality to the model, such as 
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a CA structure, to determine which agents are ‘neighbours’ and then allow trading only 
between neighbours. For some resources, this may be an accurate model for a market. For 
example, in models that allow the purchase or rental of water rights (e.g., Berger, 2001) the 
most accurate model could be one in which only neighbours are allowed to trade water rights. 
An example of this market mechanism is the way in which Rouchier, et al. (2001) dealt with 
their market for herdsmen renting land. In the model, each herdsman was allowed only a 
certain number of times to approach headsmen and farmers each turn and transactions were 
carried out directly between the herdsman agent and the village headsman agent or the 
herdsman agent and the farmer agent.  

A sixth mechanism is an auction, in which agents directly compete for specific resources. A 
number of examples of this mechanism appear in the farm models reviewed. For example, 
both Balmann (1997) and Balmann et al. (2002) used auction models for their markets of land 
purchase and rental. Specifically, each farm sequentially bid on plots of nearby land. A farm’s 
highest bid for renting (Ry,x) was, ‘the difference between the additional gross margin  and 
the transport costs TCy,x (which depend on the Euclidean distance between the farm's location 
and plot (y, z))’ (p. 98): 

Ry,x =  – TCy,x     (4) 

Bidding on plots continued until bids dropped below zero. Berger (2001) also used an 
auction-based market for his model of Chilean farmers. If a farmer’s shadow price for a given 
plot of land was below the average for that sector they attempted to rent out the land and 
associated water rights. The land and water rights were then transferred to the farmer with the 
highest shadow price for that specific parcel.  

The dynamic allocation mechanisms described are generally guided by prices, depending on 
the values and price expectations of buyers and sellers. Prior research on the agricultural 
sector has established the importance of networks and relationship to agribusinesses 
(Saunders, Kaye-Blake, Hayes, & Shadbolt, 2007). Rouchier, et al. (2001) designed the only 
model reviewed in this report to use relationships as a factor in the agents’ decision making. 
In their model of herdsmen in North Cameroon, they designed one variation of their model in 
which the agents pursued a strategy attempting to maximise their profits. In a second design 
of their model, agents pursued a strategy in which they tried to maximise their relationships 
with the various farmers whose land they were renting. They pursued this strategy by 
preferentially asking the farmer with which they had most often been able to rent grazing land 
from in the proceeding rounds. In this way the authors were able to set up an alternate model 
for the herdsmen agents’ decisions for which farmer was approached first. This approach then 
allowed the authors to compare the outcomes for a model in which herdsmen rented based on 
relationships, with a model in which agents simply went to the farmer with the cheapest land 
to rent. Creating a model that tracked the rent versus refusal decisions between the herdsmen 
and the farmers also allowed the authors to examine and define ‘relationships’ in their model. 
For example, for a given simulation run, if a herdsman and a farmer successfully reached an 
agreement on more than half of the rounds then they were considered to have a ‘relationship’. 
 

2.6 Summary

Numerous agent-based models have been created that together cover a variety of approaches 
for modelling resources such as land, water, labour and capital. These are the most important 
variables for the development of a MAS model for New Zealand’s pastoral industries.  
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With regard to modelling land there are two general approaches, a non-spatial and a spatial 
approach. The models that represented land spatially used a Cellular Automata (CA) model. 
The specific characteristic of a CA is that after the structure is set other variables can be 
assigned to each cell of the model. There is also a combination possible that incorporates a 
CA sub-model and a MAS sub-model. The variables can then be divided into spatial variables 
and additional variables can be assigned to the MAS part of the model such as 
personality/behavioural/decision variables. Predominantly, the CA/MAS approach was used 
in the reviewed literature. 

With regard to simulating water, labour and capital, models have been developed ranging 
from the simple to the complex. For example, the development of a complex approach for 
modelling water might be useful where water demands are a main issue in the farming sector. 
A similar decision has to be taken when modelling labour is questioned. If labour has a high 
impact on farmer’s decision making then a model that incorporates labour access may be a 
better fit to the problems modelled. Much the same decision has to be taken when capital 
should be a variable in the model. If it is a financially orientated approach, the model agents 
may have access to liquid equity capital but there are several models in which capital is not 
incorporated. 

Several potential methods for adding dynamism to the allocation of resources were discussed. 
The complexity of the methods varied. Simple exchange can be modelled with supply and 
demand equations or schedules for the resources. More complex models may include 
expectation about future earnings from the resources, or information about the traders, such as 
the location of traders or the history of the relationships of the agents. 

Many prior methods have been used for modelling resources. Importantly, the complexity 
varies with the focus of the research. The most complex components of prior MAS models are 
those focused on the most important element of the research, whether this is local hydrology 
or the role of interpersonal relationships. Other elements deemed less important are 
simplified. In the present research, a key task will be to identify those elements that would 
benefit from complex specification, so as not to overbuild the model. 

 



Chapter 3 
Agents, Information, and Heterogeneity 

 
 
Agents are key for MAS models. They represent individual behaviour, interact with each 
other and their environment, and make decisions and changes as a result of this interaction. 
Information transfer between agents occurs through communication networks and is an 
important element of the decision making process of agents. MAS models can also simulate 
heterogeneity and interdependencies that occur among agents and their environment. This 
heterogeneity incorporates risk preferences and other personality traits of agents. The purpose 
of this chapter is to review the treatments of information and heterogeneity in MAS models. 
In particular, the chapter considers approaches to simulating information transfer and decision 
making in existing MAS models designed for policy setting and strategy setting in 
agricultural systems. It also examines the incorporation of risk preferences and personality 
traits into the decision making process of the agents. 
 

3.1 Modelling information transfer, agent learning and opinion 
formation

Information transfer can be important for the decision making process and therefore an 
important process for the development of a MAS model. Information transfer is linked to 
learning processes. A large number of models have been developed that include agent 
learning processes for different situations. Opinion formation is another process that is 
important for the representation of agents in a MAS model and strongly related to information 
transfer: opinion formation depends on collecting information. These three elements of 
modelling decision making are discussed below. 
 

3.1.1 Information transfer  

In empirical MAS models in the land-based sector, an agent may represent a farm household. 
Farm households combine individual knowledge and values, biophysical landscape 
environment, and assessment of the land management choices of neighbours to make land-use 
decisions (Berger et al., 2006). The interaction of farm agents through communication 
networks is an integral part of decision making. Communication lowers the uncertainties for 
agents (Berger et al., 2006), but slows down decision-making processes (e.g., adoption rate of 
innovations (Berger, 2001)). 

In a MAS model, agents are explicit entities. Inter-agent communication can either be direct 
(agent-to-agent) or indirect (agent-environment-agent). It can be explicitly implemented using 
message passing, such as with an announcement of a new environmental policy. Using the 
Unified Modelling Language (UML) to draw a sequential activity diagram of major agents, 
including explicit information transfer, can be very helpful to clarify communication among 
agents (e.g. in Happe et al., 2006; Schlüter & Pahl-Wostl, 2007). 

Modelling information transfer and its associated network structure replicates one of the key 
drivers of an agent’s decision making: information sourced from other agents in a social 
network. Information transfer plays two key roles. It creates a basis for social comparison 
(Festinger, 1954) and is a source of information and opinion (Anderson, Beal, & Bohlen, 
1962). The responses of individual agents and the movement of information through networks 
can lead to emergent properties of the system. 
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The underlying network structure used for information transfer between agents, otherwise 
called a social network, is important (Milgram, 1967; Watts & Strogatz, 1998). Social 
networks exhibit qualities of ‘connectedness’ that have properties of both highly uniform 
networks, e.g. lattices, in that groups of nodes are interconnected; and of highly random 
networks in which the distance between any two nodes is quite short (i.e. six degrees of 
separation, Watts, 2003) (Figure 3.1).  
 

Figure 3.1: Connectedness of social networks (Watts, 2003) 

 

 
 
A number of techniques exist to construct these specific classes of network, most often 
referred to as small world or scale free networks (Barabási & Albert, 1999; Newman, 2003; 
Watts & Strogatz, 1998). These models can be used to construct networks with similar 
qualities to those seen in real social networks. Formal validation can be difficult due to the 
inherent dynamic nature of real social networks (Robins, 2009). However, information 
transfer via a social network plays an important role in agribusiness decision making and as 
such deserves consideration (Saunders et al., 2007).  
 

3.1.2 Agent learning 

A large number of models are available for representing agent learning (Brenner, 2006). 
Types of models include: 

psychology-based, such as reinforcement learning;  

probabilistically optimal, including Bayesian learning and least-square learning;  

adaptive learning, such as learning direction theory; and  

belief learning, e.g., fictitious play.  

The development of these models over time can be modelled using evolutionary algorithms or 
neural networks. In addition, agent learning can be represented at population, sub-population 
and individual levels. 

These models have different purposes or emphasise different aspects. A model may aim to 
describe real learning processes, or simulating their implications for economic processes 
instead of learning processes per se. It may also aim at leading to an outcome that corresponds 
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to empirical observations, or at developing clever or even optimal learning models. There 
exist two schools of thoughts in economic learning and optimisation: one prefers learning 
models that converge towards optimal behaviour, while the other is concerned more with 
process accuracy than optimality.  

Learning can be conscious or non-conscious. Non-conscious learning tends to be associated 
with unimportant and well-known situations, whereas conscious learning is associated with 
important decisions. Brenner (2006) summarised the use of learning models under various 
situations as shown in Figure 3.2.  With non-conscious learning, behaviour that leads to better 
results tends to increase in frequency. Examples of this type of model are included in the 
Bush-Mosteller model, the principle of melioration, and the Roth-Erov model.  

Figure 3.2: Steps to choose an accurate learning mode for representing 
decision making (Brenner, 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recommendation: 
Bush-Mosteller model 

Non-conscious learning 

Conscious learning 

Routine-based learning 

Recommendations: 
modelling on a population level: 
Evolutionary algorithms 
collecting experience: 
Melioration learning 
Fictitious play 
observation and experience: 
Imitation + fictitious play 
aspiration oriented: 
Satisficing 

unimportant and well-known situation important or 
unknown 
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Belief learning 

Recommendations: 
simple models: 
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Rule learning 
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Stochastic belief learning 
creativity important: 
Genetic programming 
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Conscious learning can be divided into routine-based learning and belief learning. In routine-
based learning models, there is a direct connection from an agent’s experiences and 
observations to their behaviours. Routine-based model can be at population or individual 
level. At the population level, the models assume that human behaviour adapts towards better 
outcomes. Most of the models of this type originate in biology, e.g., replicator dynamics, 
selection-mutation equation, evolutionary algorithms, and reinforcement learning. At the 
individual level, the models assume that conscious learning processes have different features, 
some of which dominate in some situations. For example, some people dealing with a new 
problem like to watch others then mimic successful behaviour. Four features are often used: 
experimentation, experience collection, imitation and satisficing.  

Belief learning is another kind of conscious learning, in which individuals develop a mental 
model about the state, dynamics and interrelations of their environment. Beliefs are not 
directly observable, but brain processes are increasingly described in computational 
economics, including artificial intelligence and machine learning. Existing belief models 
include Bayesian learning, which is a prominent optimal learning model that assumes people 
optimise their behaviours, and least squares learning, in which people make assumptions and 
optimise their behaviour. Many other learning/optimising processes may fall into this 
category, for example, genetic programming, classifier systems (people tend to sort things, 
events and relationships into classes and act according to their classification), neural 
networks, rule learning (cognitive learning also follows the rules of reinforcement learning) 
and stochastic belief learning. 
 

3.1.3 Opinion formation  

Opinion formation plays a vital role in day-to-day lives and as such there has been a great deal 
of research in the area over the years. 

In an agent-based model, opinion formation and information transfer are closely related (Wu 
& Huberman, 2004). An agent must first amass information before opinions can be formed. In 
the context of an agent-based model, it is common for a proportion of the information to come 
via other agent in the system. Thus, a great deal of the literature relating to opinion formation 
also contains aspects of information transfer. For this section, opinion formation is defined as 
a specific process of information utilisation both by individuals and groups. 

Models of opinion formation among communities of agents are among some of the earliest 
attempts to model complex systems (von Neumann, 1966) and are tied closely to early 
information/diffusion theory (Turing, 1952). The majority of these models have been 
continued to be based on cellular automata (one or two dimensional) and have been developed 
to examine tipping points around community level opinion formation covering issues such as 
the drivers of ethnic segregation (Schelling, 1971) and cooperation (Axelrod, 1984, 1997). 
With the advent of modern computing, these early models were used to analyse other real 
world phenomenon from standing ovations and product adoption through to rioting and civil 
war (von Neumann, 1966). Later work has modelled political attitude in a two dimensional 
continuous space based on ‘traits’ of personal and economic freedom, and linked the personal 
attitudes to the society’s ability to reach consensus (Sznajd-Weron & Sznajd, 2000). 

Macro level opinion formation and the underlying micro level behaviours are tied into a 
feedback loop whereby an individual’s opinion is both driven by and forms part of the macro 
level opinions (or social norms). In its simplest form, the sharing of these opinions can be 
described as a model of knowledge diffusion. 
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These opinions play an important role in three key drivers of an agent’s behaviour: 

Preferences, such as conforming to social norms; 

Perception of future performances of both self and society; and 

Opportunities, e.g. to improve one’s relative position in society. 

Boccaletti et al. (2006) summarised a number of network models for simulating the process of 
how a consensus emerges out of initially different opinions in a group of agents. In addition to 
the Sznajd-Weron & Sznajd (2000) model above, these include:  

1. Deffuant et al’s (2000) model: The difference between the opinions of two agents will 
be reduced when they communicate if the difference is smaller than a threshold; 
otherwise, their opinions remain unchanged. If the threshold is < 0.5, all agents’ 
opinions will converge; otherwise, they will emerge into two groups.  

2. Hegselmann & Krause’s (2002) model: The opinion of an agent (chosen randomly) is 
changed into the arithmetic average opinion of the all agents in a time-step. It may lead 
to many groups of different opinions. 

A number of other models can be used to describe various forms of information transfer such 
as epidemic spreading (unwilling transfer), rumour spreading or diffusion of innovation 
(willing transfer) (Boccaletti et al., 2006). Game theory has also been used to simulate 
interactions among decision-makers (e.g., Osborne, 2002).  
 

3.2 Decision-making  

Many approaches exist to represent decision making in MAS models in the land-based sector, 
but they can be divided into two categories: behaviour heuristics and optimisation 
(Schreinemachers & Berger, 2006). The economic literature generally recognises a similar 
division in modelling decision making in other contexts. This section covers examples of both 
types of decision making in models. 

It should be noted that there is a continuum between heuristic and optimising behaviour 
combined in MAS models (Schreinemachers & Berger, 2006). For example, in an optimising 
model, heuristics can be used to constrain the range of perceived decision alternatives, so as to 
reduce search and computational cost.  
 

3.2.1 Behaviour heuristics 

Much agent decision making in abstract as well as empirical MAS has been represented as 
behaviour heuristics. Behaviour heuristics is advocated mostly by psychologists and cognitive 
scientists, based on the empirical evidence that has shown that people use simple heuristics to 
make decisions. In addition, these researchers often argue that the neoclassical economic 
model of utility maximisation is infeasible because of its informational and cognitive 
processing requirements.  

Most heuristics build on the concept of bounded rationality (Simon, 1955, 1991), which refers 
to the limited cognitive capabilities of humans in making decisions, described as a search 
process guided by rational principles, that is, a process of satisficing (blending satisfied with 
sufficing). Since decision-makers lack the ability and resources to arrive at the optimal 
solution, they instead apply their rationality only after having greatly simplified the choices 
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available. Thus the decision-maker is a satisficer seeking a satisfactory and sufficient solution 
rather than the optimal one. In rural systems, farmers typically use a large number of 
heuristics in decision making, perhaps because of the great uncertainties of natural 
phenomena (uncertainty about future outcomes combined with a lack of measurability of past 
outcomes). 

The MAS model with cognitive agents is sometimes described as a belief-intention-action 
architecture (Bousquet & Le Page, 2004). That is, an agent has a belief (which is always being 
updated), and uses the belief to examine all the available options for actions, selects an option 
as an ‘intention’ and acts when needed. 

Heuristics are implemented in MAS models using decision trees. They are intuitive and 
mostly simple rules, also called ‘condition-action rules’, ‘stimulus-response rules’, or ‘if-then 
rules’. These rules are easy to validate by interacting with farmers and experts. Its 
implementation needs the modeller to identify (1) important decisions, (2) correct sequence of 
decisions to be made and (3) saturation level for decisions. That is, the modeller needs to 
know not only the decisions that agents need to make, but also the number of options at a 
decision making level, and the criteria that decision-makers use to chose one option instead of 
another. These criteria can be determined by various methods, such as sociological research, 
data-mining of survey data, participatory modelling and role-play games, laboratory 
experiment and group discussions (Schreinemachers & Berger, 2006). For further discussion 
on systems modelling methodologies and the inclusion of stakeholder in model development, 
refer to Blackett (2009). 

An example of the application of heuristic decision making is Manson (2000), which focused 
on modelling a variety of decision-making strategies for these agents. Three different 
decision-making models were tested: 

simple heuristic models, such as, ‘use land near road for three years then leave fallow’; 

a subsistence-oriented model whereby agents use information about each cell’s 
agricultural suitability and distance from market to determine the location and 
production type necessary to feed the household; and  

genetic programme models, ‘calibrated by matching actor land-use histories to an array 
of decision variables from the smallholder survey and GCA grids’ (Manson, 2000, p. 6).  

The detail in the model allowed the research to incorporate a great deal of empirical data 
regarding soil, land use, etc. In addition, by including two types of agents, the model 
simulated the activities of both institutions and smallholders, allowing an assessment of the 
original theoretical model. 

Modelling heuristic decision making has several weaknesses. One issue is the lack of 
information for alternatives. Another issue is the difficulty of coping with large numbers of 
rules and with heterogeneity in system inputs and outputs (Schreinemachers & Berger, 2006). 
In addition, it may be necessary to develop rules for the choice of decision rules, which sets 
up an impossible backward induction problem (Hey, 1982). 
 

3.2.2 Optimisation  

Many MAS models in land-use research use optimisation in decision-making. Optimisation 
can be used for a normative purpose to re-allocate resources to better uses by eliminating 
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inefficiencies, or for a positive purpose to replicate or simulate an observed resource 
allocation. 

In contrast to the bounded rationality in behaviour heuristics, it is assumed that decision-
makers are rational optimisers with foresight. They are able to process large amounts of 
information on all feasible alternatives and select the best one. Optimisation models can be 
calibrated to the observed behaviour by carefully representing all the opportunities and 
constraints in the model (Schreinemachers & Berger, 2006).  

One of the attractions of optimisation is its mathematical tractability. Optimisation in 
decision-making can be implemented in a MAS model using a variety of approaches, some of 
which are discussed below. 

Mathematical programming  

Mathematical programming is widely used in optimising and decision-making in MAS 
models in the land-based sector (e.g., Balmann, 1997; Becu, Neef, Schreinemachers, & 
Sangkapitux, 2008; Berger, 2001; Happe et al., 2004). This approach involves constructing 
objective functions for various activities, such as for cash income, food, leisure time, nitrate 
leaching, or greenhouse gas emissions. The functions are also subjected to various constraints, 
which may be in dollars, time, or other units. The objective function is then maximised 
subject to the constraints, which produces the best solution to the model. Agent heterogeneity 
may be represented by modifying the objective functions or the constraints. 

Some advantages of mathematical modelling are that it can: 

represent heterogeneity, such as farmer personalities and farm conditions; 

incorporate a large number of decisions in a single model;  

capture economic trade-offs in resource allocation because it considers various 
decisions simultaneously; and 

assess the quantitative impact of policy interventions. 

The main drawback to mathematical programming is that all information in the model must 
be represented numerically. It can be a challenge to integrate insights from qualitative 
research into a mathematical model. 

Genetic programming 

Genetic programming is an evolutionary algorithm-based methodology inspired by biological 
evolution to find computer programs that perform a user-defined task. It is used in various 
complex optimisation and search problems. The SYPRIA model by Manson (2005) used 
genetic programming in modelling decision-making for assessing effects of land-use policy 
changes. It specified a response variable (agricultural land-use in 1992) as a function of a set 
of predictor variables (1987 environmental and institutional variables) chosen for their effects 
as hypothesised by land-use theory. A total of 3200 agent decision-making strategies were 
sampled over 100 Monte Carlo runs in order to understand how environmental and 
institutional factors influence actor decision-making (essentially a multi-criteria evaluation). 
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Figure 3.3: Genetic programming from Manson (2005)  

 
 

The basic process of genetic programming (Figure 3.3) is to construct the initial population of 
agent strategies, called programmes. Individual programmes in generation Ki are parents to 
offspring that constitute the following generation Ki+1. The population programmes at K0 are 
randomly constructed, but each succeeding generation becomes better because individuals 
create offspring via three operators:  

1. crossover (breeding) – trading portions of two parents to create two offspring 
programmes; 

2. reproduction (cloning) – placing a duplicate of a parent into the next generation for 
coherence of strategies across generations; and 

3. mutation – random changes to parts of a parent to create a new offspring programme.  

The weaknesses of genetic programming are the subject of continuing research because they 
can be difficult to interpret and there are dangers in conflating human decision-making with 
biologically inspired models of computer programming (Manson, 2005). 

Artificial neural networks 

Artificial neural networks are a data modelling tool capable of capturing and representing 
complex input/output relationships. Development of neural network technology stemmed 
from the desire to develop an artificial system that could perform intelligent tasks similar to 
those performed by the human brain. Neural networks resemble brain function in that they 
acquire knowledge through learning, and store the knowledge within inter-neuron connection 
strengths.  

The most common neural network model is the multilayer perceptron, also known as a 
supervised network, which is used to approximate functions. It requires inputs paired with 
desired output in order to learn. The goal of this type of network is to create a model that 
correctly maps the input to the output using historical data with the goal of using the model to 
predict future outcomes. Neural networks learn using an algorithm called back-propagation 
(training). In this process the input data is repeatedly presented to the neural network. With 
each presentation the output of the neural network is compared to the desired output and an 
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error is computed. This error is then fed back to the neural network and used to adjust the 
weights such that the error decreases with each iteration, and the neural model gets closer to 
producing the desired output after each iteration. Optimisation using neural networks has been 
used in modelling intelligent ant communities (Bousquet & Le Page, 2004).  

A limitation of neural networks is that they are trained in specific problem solution spaces. 
The model is constructed from purely a priori knowledge. If the problem solution space 
changes over time, i.e., if the rules of the game change, the training may not be appropriate 
for the new situation. 
 

3.3 Risk  

This section considers the incorporation of risk preferences and personality traits into the 
decision-making of the agents. This topic does not appear to be a well developed area of 
agent-based models in agriculture. There are a few papers that have modelled risk in their 
agents, thus these equations could be used to construct agents with different levels of 
riskiness. 

Lettau (1997) defines riskiness in his agent based model by defining risk aversion using the 
following equation: 

U(w) = exp( w)     (5) 

In this equation, the utility (U) of a given unit of additional wealth (w) decreases as greater 
levels of wealth are attained; there is declining marginal utility of wealth. In this way, the 
baseline for riskiness in the model is somewhat risk averse. The riskiness of an agent can then 
be manipulated by varying the value for the coefficient on wealth, . In absolute terms, an 
empirically risk neutral agent would have a linear relationship between wealth and utility. 
Risk seeking agents then, would have a curvilinear relationship wherein higher levels of 
wealth would lead to even higher levels of utility (See Figure 3.4).  

Figure 3.4: Riskiness as a function of the relationship 
between wealth and utility 
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Lettau’s (1997) equation can be compared to Hoffmann, Kelley, and Evans (2002) who 
provide the following equation: 

E(u) = E(w) – 2
w   (6) 

In this equation, expected utility (E(u)) is derived from expected wealth (E(w)) minus a 
second term representing risk aversion ( ), multiplied by the variance of wealth ( 2

w) to 
represent random changes in wealth. Thus, this equation accounts for agents’ desire to limit 
random variations of their wealth. That is, the second term in the equation accounts for 
people’s preferences for more stable sources of income. 

Risk preferences of agents can also be expressed through the choice between an asset which 
varies in uncertainty and an asset with a fixed return. A number of financial models have 
modelled simple markets in which agents choose between two types of assets. For example, 
Grossman and Stiglitz (1980), created a hypothetical market in which one asset had a fixed 
dividend and a second asset had a dividend (u) defined by the following equation: 

u =  +     (7) 

In this equation  is a random variable which is observable at a cost and  is a random 
variable which is unobservable. Thus, there are two types of hypothetical individuals in the 
authors’ model, those that purchase information and those that rely only on the price of the 
risky asset. The authors also include an equation defining risk by using the utility function 
(V(Wli)) defined as: 

V(Wli) = -exp(-aWli), a > 0   (8) 

In this equation, a is the coefficient for risk aversion and Wli is the individual’s wealth, 
determined by the following equation: 

Wli = RMi + uXi   (9) 

R, in this equation, is the return on the risk-free asset, and u is the dividend of the risky asset, 
while Mi and Xi represent the amount of risk-free and risky assets held by the agent.  

Another example of a market in which a risky and risk free asset are modelled can be found in 
LeBaron’s (2006) presentation of his work with the Santa Fe Artificial Stock Market (earlier 
descriptions of the Santa Fe Artificial Stock Market can be found in Arthur et al. (1997) and 
LeBaron, Arthur & Palmer (1999)). In this hypothetical market a risk free asset is given the 
return (R) and a risky asset’s dividend dt is: 

dt = d + p(dt-1 – d) + t ,  (10) 

where t is Gaussian, independent and identically distributed and p is set to 0.95. In addition, 
this model used a sophisticated learning and forecasting model. Agents use forecasting 
equations to try to predict the future price of a risky asset. At the end of each period, agents 
have a probability (p) to change their current set of forecasting rules (p is a parameter set for 
each model run). Learning for an agent starts with the worst performing 15 per cent of the 
agent’s forecasting rules being dropped. These are then replaced using a modified genetic 
algorithm with both crossover and mutation. During crossover, parts of rules are swapped for 
the different parts of an existing rule. In the course of mutation, parts of a rule are changed 
randomly and thus result in a rule that might not be present in the rest of the population. 
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Risk and other forms of ‘personality’ that can be imbedded into agents’ behaviour highlight 
the benefit of an agent based model as a whole because they allow for the creation of 
variables which allow for more accurate modelling of real world phenomenon by mimicking 
the behaviour of actors in the real world. Modelling the riskiness of agents can allow for 
emergent properties based on different forms of riskiness to develop in the model.  

Once a decision has been made as to which equation to use to define riskiness, it is a simple 
step to generate heterogeneous agents by either randomly or empirically assigning different 
values for the modifying coefficient or exponent. Defining and manipulating the riskiness of 
agents allows the modeller to use risk to drive different processes in a model.  
 

3.4 Summary

A key driver in the decision-making process of agents is the information transfer among the 
agents that occurs through a social network. This information transfer can be explicitly 
modelled to introduce new information and technology adoption and to represent 
heterogeneous behaviour of the agents as a function of social influence. An agent’s responses 
to new information and opinion formation can be modelled by using appropriate network 
dynamic models. Although information transfer is difficult to validate, it is one of the core 
components in MAS models. In addition, several models have been developed to simulate 
agent-learning. Learning can be either conscious or non-conscious, whether the decision is 
important or not.  

Opinion formation among agents is a well developed research area. For the development of a 
MAS model in New Zealand, opinion formation is an important process as it is closely related 
to information transfer: the collection of information precedes opinion formation. 

There are several approaches that have modelled decision-making in MAS models. These can 
be put in two categories: behaviour heuristic and optimisation. More behaviour heuristics 
should be used if the model is used by social, economic and environmental policy makers to 
explore the farmers’ actual responses to institutional and environmental changes. On the other 
hand, if the model is to provide a tool or modelling platform to support farmers in making 
decisions when faced with economic and environmental changes, incorporation of 
optimisation algorithms can be useful to help users achieve maximum performance with 
regard to some criterion. 

An underdeveloped research field in the context of modelling agent’s behavior in MAS 
models for the agricultural sector is the incorporation of risk preferences of agents, e.g. 
farmers. However, the literature on financial model or computational economics provides 
examples of approaches that could be applied to agriculture. 
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Chapter 4 
Model-level Issues 

 
 
The previous chapters considered some of the components of a MAS model for New 
Zealand’s pastoral industries. This chapter discusses some of the challenges that arise when 
the model is considered as a whole. Some of the challenges discussed are the time-step of the 
model, market behaviours, and verification and validation of the model.  
 

4.1 Time-step of the model 

An important modelling issue is the time-step of a model. In a MAS model, a decision or 
action happens and affects the decision environment. The change in the environment is then 
fed back into a next decision or action. The time span between two actions is the time-step. 
The appropriate length of the time-step is related to the use of the model as well as the 
characteristics of the data. 

In empirical MAS models simulating land-use changes, an annual or seasonal time-step is 
generally used (Manson, 2005; Schreinemachers & Berger, 2006)(Schreinemachers & Berger, 
2006). For example, in modelling decision-making of farm agents, Schreinemachers & Berger 
(2006) used a three-stage process of investment, production and consumption in an annual 
cycle. Decisions on-farm happen in different time cycles, and also depend on the type of 
commodity produced. Some decisions are relatively long-term, such as the decision to plant 
trees. Other decisions are more short-term, such as those regarding pruning and spraying of 
trees, or stocking and slaughtering of animals. The appropriate time-step will thus depend in 
part on the system modelled and the types of questions that will be analysed within the model. 

It is possible to include different intervals of time for different aspects of a single model. For 
example, it is possible to embed a daily time-step biophysical model for predicting crop 
production into a seasonal time-step model to simulate agent behaviour on farm. Using a 
time-step appropriate for the decision making at issue, but avoiding unnecessary iteration, 
allows good model performance. 
 

4.2 Market behaviour 

Markets can be a key institution in a MAS model. They were discussed in Chapter 2 in the 
context of productive resources, but the same discussion applies to markets for the 
commodities produced by farmers. In many agricultural models, each time-step is associated 
with a transaction, such as a market transaction between buyers and sellers or an agreement 
between landowners and agents using the land. Transactions for productive resources affect 
how they are allocated across the agents in a model, and transactions for commodities 
produced affect how successful the agents are. Six mechanisms could be used to simulate 
commodity markets:  

external commodity prices, 

cobweb model of a market,  

calculation of a market clearing price,  
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order books,  

resource transfer through direct contact between agents, and 

auction. 

At the end of a time-step, when resources have been allocated and agents have made their 
production decisions, the market mechanism then operates to provide commodity prices. 
These prices then become part of the agents’ experience, and can influence the decisions in 
the next time-step. 

Markets are thus a part of a MAS model where agents interact with each other. This 
interaction may be direct, as when an agent must make a direct transaction with another agent. 
It can also be indirect. This is the case, for example, when all agents offer their products on 
the market and the final price is determined by the aggregate amount of product offered. In 
addition, markets can influence the cellular automata in a MAS/CA model. If an agent has a 
choice over the use of a specific grid cell, then the experience in the market can influence the 
agent’s choice. In this way, the use of resources in future time-steps can be affected by earlier 
market solutions. 
 

4.3 Verification and validation

Model verification and validation are important in the development of a model. They help 
with the credibility and acceptance of the research with end-users, and they also ensure that 
model results are based on sound scientific knowledge (Bousquet & Le Page, 2004; Midgley, 
Marks, & Kunchamwar, 2007; North & Macal, 2007). Midgley et al. (2007) provided an 
explanation of the terms: ‘If verification is solving the equations right, then validation is 
showing that one has solved the right equations’. North and Macal (2007) explained 
verification as ensuring that the model does what it is intended to do from an operational 
perspective. They defined validation as whether a model represents and produces the 
behaviours of a real world system. However, the complexities in verification, calibration and 
validation for agent-based models are well documented (LeBaron, 2006; Midgley et al., 2007; 
Pahl-Wostl, 2002; Polhill et al., 2002). In contrast, the challenges with creating abstractions of 
human interaction are poorly defined, although participatory modelling can assist in 
verification in this area (Parker et al., 2003). 

Pahl-Wostl (2002) explained that the combination of agent-based models and stakeholder 
participation leads to stakeholder-elicited knowledge and perceptions, factual knowledge from 
data, subjective expert knowledge and mental models. These dimensions require some form 
of validation, particularly with regard to plausible outcomes and the process of social 
learning. In the context of business MAS models, North and Macal (2007) described multiple 
methodologies and computational testing processes for ensuring verification test cases and 
model validation techniques to create acceptable results. However, the increasing complexity 
of MAS models generates challenges in ensuring they are credible and suitably robust. In 
attempts to enhance the scientific credibility of MAS models (in the absence of mathematical 
analytical proof abilities; Axelrod, 2006; Bousquet & Le Page, 2004), Bousquet & Le Page 
(2004) outlined strategies for providing rigorous presentation of the structure. They 
recommended that validation be undertaken by comparison of data and methods with other 
research, as well as by testing the relevance of hypotheses with the use of role-play games. 

The challenges in both micro-level and macro-level validation suggest that both quantitative 
and qualitative options for validation should be considered, and that a staged validation 
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process may be appropriate (Berger, 2001; Midgley et al., 2007). Data output may be 
calibrated by assessing the similarity of model outputs to other evidence (LeBaron, 2006). 
Parker (2007) reviewed a number of validation approaches, including regression analysis and 
pattern-oriented modelling, and suggested that it is important to have the right target in mind 
when considering how to validate a model. There is also potential for mixed methods: a 
combination of empirical data, pseudo-informal observations and synthetic data may be used 
to produce outputs falling within specified parameter ranges (Berger, 2001). 

The validity and robustness of MAS frameworks and outputs is an on-going consideration in 
this area of research (LeBaron, 2006). There is some discussion of a need for consensus 
regarding protocols (Bousquet & Le Page, 2004; Midgley et al., 2007), albeit within the 
generic trade-off between realism and clarity or simplicity (Axelrod, 2006; Midgley et al., 
2007). 
 

4.4 Summary

When the model as a whole is considered, a number of issues become important. One 
technical issue is the time-step to be simulated by the model. A model will simulate a decision 
or action that produces a result which then influences the next decision or action. Whether the 
simulated time period is daily, annually, or some other period depends on the uses of the 
model and, as well, the available information. Importantly, producing a parsimonious model 
is also a consideration. A second issue for agricultural models is the method for simulating 
market behaviour. To simplify the representation of a market, producer might be price-takers, 
and the prices varied exogenously to simulate market movements. A number of more complex 
market procedures have been used in MAS models, including analytical solutions to supply 
and demand functions, auctions, and inter-agent trading. 

Key considerations at the model level are validity and verification. Agent-based models that 
simulate human-environment interactions can become complex. In addition, an agricultural 
MAS model needs to represent the policy and innovations that affect agricultural systems. 
Increasing complexity brings challenges to ensure that the model is valid, credible, verified 
and suitably robust. Interdisciplinary research collaboration might be one approach to meet 
accurate and realistic outcome goals of agent-based models. The involvement of stakeholders, 
regulatory institutions, and researchers from other disciplinary fields in the development 
process of the model creates potential to adjust semi-structured situations and alleviates 
commitment to change management. The literature also suggests the use of different types of 
data and sources of information, increasing the potential for research from several disciplines 
to contribute to a single MAS model. However, there is clear scope for more consistent 
verification and validation methods for agent-based models. 
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Chapter 5 
Usability and Meeting End-user Requirements 

 
 
If a model is to be used by anyone beyond a core group of designers, usability of the model 
and the requirements of end-users need to be taken into account. ‘Usability’ is a term to 
denote the ease with which people employ a particular tool in order to achieve a particular 
goal; ‘user-friendly’ is often used to mean the same thing. The focus of this chapter is 
designing a model that helps end-users achieve their goals or objectives. The emphasis is on 
the usefulness of the system framework rather than technical proficiency with the software.  

Gould (1988) discussed four key points in the usability design process:  

focus on users, 

empirical measurement, 

iterative design, and 

integrated design. 

These points are the basis for the present discussion of usability, which is divided into two 
categories: system usefulness and processes to meet user requirements. 
 

5.1 System usefulness 

In the context of policy-relevant environmental research, McIntosh et al. (2007) discussed 
problems in end-user uptake of support tool technology and the incorporation of outputs into 
practice. They demonstrated the absence of integrated and policy-relevant operation of 
support tools in actual policy work. With regard to this problem, they argued that research 
papers on decision support systems and models refer more to the development and application 
of tools, rather than the use of tools and models by stakeholders such as policy or planning 
organisations. A key issue appears to be the usability of tools and models by groups other 
than the developers. McIntosh et al. questioned whether developers understand what users 
actually want, need or can utilise when developing tools. They argued that a better approach is 
more oriented towards users than developers. 

Díez and McIntosh (2009) identified factors that influence the usefulness of information 
systems4. These factors give advice on managing system development and implementing 
processes.  

A useful information system supports collective action through the relationship network 
amongst technological attributes, individual users and organisational tasks. 

The best predictor for pre-implementation processes for an information system is user 
participation, with success and user satisfaction the two dependent variables or process 
outcomes. 

                                                 
4 Computer-based information systems are tools for the storing, recording, processing and dissemination of 
information to support purpose for groups involved, and include computational software tools such as simulation 
models and decision support systems (Checkland & Holwell (1999) as cited by Diez & McIntosh (2009)).
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The best predictors for implementation processes are perceptions of early adopters 
including ease of use and compatibility or usefulness. 

The only dependent variable after the implementation is success5 (user satisfaction). 

The policy and management results of the Díez & McIntosh (2009) review are transferable to 
other disciplines. There is the strong suggestion that failures in information system uptake 
may be a consequence of failures in the implementation process (Díez & McIntosh, 2009). 
Indeed, McIntosh et al. (2007) argued that computer-based support tools are currently too 
focussed on technical concerns, where a greater emphasis of contextual and social aspects is 
required to increase end-user acceptance. Díez & McIntosh (2009) observed a limited uptake 
of computer-based decision support tools by the agricultural community, especially from 
farmers. This was seen as a special case within the general problems of adoption and diffusion 
of information systems. However, the key variables recognised for a general usefulness of 
information systems by Diez & McIntosh are very similar to parameters for user acceptance 
in McCown (2002). 

The next section discusses the usefulness of agricultural and land-use based decision support 
systems (e.g. Kerr, 2004; McCown, 2002). This provides a background regarding these tools 
and extends the lessons regarding usefulness to agent-based models. 
 

5.1.1 Decision support systems 

The benefits from decision support systems are an improved system analysis and an 
understanding of processes. These constructs are well suited for stakeholder engagement and 
policy formulation (e.g. see Díez & McIntosh, 2009; McCown, 2001). However, the 
translation from potential to actual use remains a concern (Hayman, 2004; McCown, 2002; 
McCown, Brennan, & Parton, 2006). The scepticism is especially focused on the 
interpretation of broader system modelling, such as simulation modelling to support farming 
systems innovation (see Woodward, Romera, Beskow, & Lovatt, 2008). There have been 
considerable efforts to design decision support systems in agriculture to assist decision-
making by farmers. The uptake and on-farm usage of these systems, however, was low and 
included many failures (see Hayman, 2004; McCown, 2002). This poor engagement with end-
users has occurred even though the software systems have been well developed and farmers 
have had computer access (Kuhlmann & Brodersen, 2001; McCown et al., 2006). One 
interpretation is that the lack of uptake implied that the modelling paradigm used was not 
relevant for on-farm application (McCown et al., 2006). While a common critique is that 
models are only partial representations of reality, McCown et al. (2006) explained that it is 
necessary to focus on the use of a model as a tool for complex farm management rather than 
seeing the tool as a proxy for a managers’ decision-making. This subject has been advanced 
by McCown and colleagues in recent years who gave evidence for the role of decision support 
systems as a tool in a modified decision process. In this context, McCown et al. (2006) 
concentrated on the credibility and adoption gap existing between science-based decision 
support and practical farming (McCown, 2002).  

In contrast, Walker et al. (2001) argued for functional design in the development of decision 
support systems. Within a pragmatic approach, they used adaptive management principles to 
propose adaptive decision-making based on the integration of research outcomes with 
stakeholder requirements. In this context, Walker et al. (2001) used integrative methodologies 

                                                 
5 Whilst there are multiple definitions for ‘success’; within the context of this review, success is a ‘system that 
satisfies certain quality criteria (cost-effectiveness, ease of use, software capabilities) and user requirements, 
including provision of added value to user not available before (Díez & McIntosh, 2009).
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which were novel in decision support systems. A recent comparable methodology is the ‘end 
user enabled design environment’ (EUEDE; Miah, Kerr, Gammack, & Cowan, 2008). The 
EUEDE focuses on the environment around the construction of the decision support system, 
by engaging domain experts for the creation of a knowledge base with end-users (e.g. 
farmers). This knowledge base is then used for the specific decision support system. The 
derivation of decision-making rules from a knowledge base provides the data process for 
decision-making and underpins the EUEDE architecture (Miah et al., 2008, pp. 898, Fig. 6). 

The promise of decision support systems as a useful methodology for on-farm decisions was 
captured by Hayman (2004). He stated that computational models are beneficial for farmers to 
use in operational management. In addition, Hayman explained that farmer decision-making 
is limited by information and procedures, and that tactical on-farm decision-making is the 
appropriate intervention point for decision support systems. However, the review by Hayman 
(2004) clarified that on-farm computer model use (with operational management bias) would 
be more an educational and learning tool (see also McCown, 2002). The target for 
information transfer becomes the consultant who uses the decision support systems and 
simulation tools, rather than the farmer (see also Carberry et al., 2002). Hayman also pointed 
out that the suitability for strategic or tactical intervention interacts with the user’s 
assumptions, whether that user is an expert or novice. In this context, suitability is 
compromised of complexity and interpretation (see also McCown, 2001). Indeed, Woodward 
et al. (2008) argued for jointly created (modeller and client) whole farm simulation models. 
These models use decision rules to specify alternative management strategy options. A 
difficulty is that different stakeholders have different perceptions of system complexity. The 
multiple input criteria and the dynamic nature of farm systems make their use look even more 
difficult (Woodward et al., 2008). However, Woodward et al, (2008) described an improved 
farm system simulation methodology. The method includes iterative client involvement at 
each development stage and appears to be a feasible option for improved farm system 
decision support tools. 

Despite the challenges for using decision support systems in the agriculture sector, 
particularly where the farmer is the end-user, there are also areas of success. The following 
examples reflect the importance of the relationship between the developer of the decision 
support system and the potential user. A shift from prescribed action to facilitated learning for 
both parties is discussed (McCown, 2002), and clients are involved throughout the model 
innovation process (Woodward et al., 2008). 

One example is a nutrient management model for dairy farmers in North America, the 
Dynamic North Florida Dairy Farm model (DyNoFlo; Cabrera, Breuer, & Hildebrand, 2008), 
which represents a whole-farm decision support system. This model includes environmental, 
economic and bio-physical components based on the collaborative development process with 
many stakeholders (e.g. farmers, researchers, consultants, regulatory agencies). The feedback 
from different sources and the iterative development approach is expected to support the 
longevity of model acceptance and adoption (Cabrera et al., 2008). The system also benefits 
from an underpinning robust and sound science, and from peer-validated model development 
technique and protocols (Woodward et al., 2008). Another example is an investigation of 
decision support intervention on dryland cropping farm communities in North Eastern 
Australia (FARMSCAPE, Carberry et al., 2002)6. This work has illustrated a successful 
approach for guiding the development and delivery of multiple decision support systems to 
farmers and stakeholders. This is a participatory research framework, aided by focusing on 
crop consultants as end-users. The approach links the science-based research and the farmer 
as decision maker. A third example considered the incorporation of decision support systems 
                                                 
6 Farmers’, Advisers’, Researchers’, Monitoring, Simulation, Communication And Performance Evaluation.
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to simulate alternative animal waste management strategies on Reunion Island (Aubry, Paillat, 
& Guerrin, 2006). The research used a conceptual representation based on synthesised farmer 
knowledge and practice. The active human input into the model is encapsulated as structural 
and management variables. The decision rules are based on real world information collated 
over a period of time. A final example is Kerr (2004), who analysed the development of a 
knowledge-based decision support system for the Australian dairy industry (KBDSS; 
DairyPro). He found that developers needed ‘a good working knowledge of the target 
industry’ and processes to ensure they ‘understand the types of decisions made’ by end-users 
– in this case, farmers (p. 127). The DairyPro model appears to have distinctive 
characteristics. It is strategic rather than tactical. In addition, ‘domain experts’ were used for 
this data, rather than having production parameters derived from mathematical or simulation 
model runs. End-users contributed to the development process for ‘ownership buy-in’ that 
was an aid to the design of the model (Kerr, 2004). However, Kerr and Winklhofer (2006) 
noted that when challenged by an external change such as dairy deregulation in Australia the 
recommended approaches to the development of the ‘DairyPro’ model were no longer valid. 
However, a re-assessment of the model and consultation with stakeholders and end-users 
resulted in adaptation. The model then appeared suitable in the newly deregulated 
environment. However, the authors did note a relatively low model use and uptake (Kerr & 
Winklhofer, 2006). 

Within a New Zealand pastoral context, and with reference to the uptake of the OVERSEER 
(Wheeler et al., 2003) nutrient management tool uptake, D. Wheeler (pers. comm.) identified 
the benefit of having a specific user group with defined requirements, alongside a specific 
need, such as evaluation of environmental impacts and mitigation. With regard to cropping 
nutrient management in New Zealand, Li et al. (2007) outlined the development of a set of 
simulation-based crop calculators. These calculators were developed from an initial 
simulation tool into usable decision support tools. The incorporation of domain knowledge 
from growers was necessary to have accurate or credible simulation of soil dynamics and crop 
growth. In general, it was necessary to incorporate a user-friendly interface, to keep the tool 
as simple as possible, and to offer support in the use of the tool (Li et al., 2007). 

As recognised for example by McCown (2002), the criteria for usefulness of a decision 
support tool depends on the end-user, e.g. farmer or middle level organisation manager. It also 
depends on the motivation for use, such as regulatory or voluntary. If an end-user is a 
decision-maker with discretion to choose and power to act, a decision support system must 
add value by enhancing the decision process. In addition, model developers need to recognise 
that intervention must be feasible. They need to recognise that behaviour occurs in an internal 
social context and external material context within a shared culture (McCown, 2002). The 
paradigm shift of both acceptance of an end-user participatory process in model development, 
and the added social dimension in the decision simulation modelling, has made the agent-
based model approach a promising complement to existing system modelling (Pahl-Wostl, 
2002). 

The issue of whether a decision should be complex or simplified appears contentious. Where 
end-users perceive complex real-world dynamics, they may question the reliability or 
trustworthiness of simpler models (see Kuhlmann & Brodersen, 2001; Tesfatsion, 2006). 
However, there is also an argument for simplified strategic scenario-based models that are 
underpinned by a top-down approach based on expert knowledge (Kerr, 2004). The variation 
in approaches can be related to the objectives of different models and the specific end-users 
that are identified, be they policy analysts, planners, farm managers, etc. (Happe & Balmann, 
2007). 
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5.1.2 Agent-based models 

Axelrod and Tesfatsion (2006) noted specific goals for agent-based model researchers such as 
empirical understanding, normative understanding, heuristic knowledge and methodological 
advancement. These research groups appear to differ on whether simple or complex agent-
based models are desirable. The ‘simple’ model group focuses on clarity with broad 
generalisations regarding domain specific systems, whereas the ‘complex’ model group seeks 
to represent complex systems with detailed domain-specific results as the ideal. North and 
Macal (2007) take the pragmatic view that both approaches are plausible and equally valid, 
but the system being modelled is the important motivator. Certainly, with regard to the 
dynamic bio-physical systems of agri-ecosystems and land-use integration modelling, 
complex system modelling appears a dominant option to meet goals (see Happe et al., 2004; 
Matthews et al., 2007; Parker et al., 2003). 

Agent-based models may be useful for assessing complex adaptive systems and integrated 
land-use management (refer Berger, 2001; Bruun, 2004; Matthews et al., 2007; Midgley et al., 
2007; Parker, 2007; Tesfatsion, 2006). The main advantages over conventional modelling are 
aggregated individual decision-making, emergent behaviour from micro- to macro-level, and 
heterogeneous interactive agent behaviour within complex environments. While the use of 
MAS models for managing business complexity is preferred by North and Macal (2007) as a 
new modelling paradigm for practical decision-making, this enthusiasm is not shared by all 
researchers in agent-based computational economics and agent-based land-use models (refer 
Axelrod, 2006; Matthews et al., 2007; Parker, Hessl, & Davis, 2008). Issues with the 
acceptance and usability of decision support systems at the farm level have been noted by the 
agent-based model researchers. Although challenges exist for the adoption of agent-based 
models, the outlook for their use for modelling complex systems (such as integrated land-use) 
appears promising (Matthews et al., 2007). In particular, their usability can be enhanced 
through collective learning (Barnaud et al., 2008) and recognition of the diverse needs of end-
users. 

5.2 Processes to meet user requirements 

Failures in the implementation process have been noted for information systems in general 
(Díez & McIntosh, 2009) and for agricultural-based decision support systems in particular 
(see Hayman, 2004; McCown, 2002). These errors/malfunctions suggest that the information 
and credibility gap between model developers and stakeholders or end-users requires 
bridging, for example through interaction in an iterative modelling process (see Díez & 
McIntosh, 2009; Janssen, Hoekstra, de Kok, & Schielen, 2008; Kuhlmann & Brodersen, 
2001). However, successful model application has been associated with active end-user 
participation in the process (see Carberry et al., 2002; Li et al., 2007; Woodward et al., 2008). 
Participatory approaches are seen as a feasible linkage technique that allows a combination of 
factual knowledge and analytical capacity with end-user knowledge and subjective perception 
(Pahl-Wostl, 2002). This is formalised as participatory modelling (e.g. Cabrera et al., 2008). 

Janssen et al. (2008) provided a framework of interactive development by modellers and 
users. Within this model they recognise that a trade-off in model complexity and simplicity 
exists. In addition, Janssen et al. (2008) saw benefits in deploying the model prior to 
implementation, in an approach that complements both social learning and participatory 
modelling (Cabrera et al., 2008; Pahl-Wostl, 2002). He showed that concepts and processes 
exist to help match expectations and bridge credibility to achieve more successful outcomes 
when model-stakeholder gaps are unavoidable (see Becu et al., 2008; Kuhlmann & Brodersen, 
2001). 
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5.2.1 Participatory modelling 

Certain practices, such as participatory methodologies, have been shown to be effective in 
fostering the adoption and ownership of decision support systems by stakeholders. These 
methods have practical challenges and considerations with the people-model interface such as 
individual idiosyncrasies, cultural and institutional environments, and demands on 
stakeholders’ time (Herron & Cuddy, 2007). In addition to these challenges, the budgetary 
cost of participatory engagement in modelling cannot be overlooked (Hayman, 2004). 

For successful model development and adoption, and also to assist problem solving, 
participation and involvement of users and other stakeholders in projects are encouraged 
(Kerr & Winklhofer, 2006). This user participation can be accomplished in the form of cross-
functional project teams, steering groups and project champions, where stakeholders are 
defined as ‘an individual or group of individuals or organisations with a common interest’ 
(Harrington, Conner, & Horney, 2000). It is noted that while stakeholders may have common 
interests, differences in information use or criteria for importance of information exist 
(Harrington et al., 2000). Other important parameters for participation are the composition of 
teams of importance to project outcomes and the group dynamics (Kerr & Winklhofer, 2006). 

Where sociological factors and human integration are considered significant for user 
adoption, the development of decision support tools needs to take them into account 
(McCown, 2002). The employment of a participatory approach to investigate farmer valuation 
of decision support system tools and cost-effectiveness of delivery has been investigated, for 
example, with dryland cropping farmers (Carberry et al., 2002). Key methods included 
introducing consultants as trained model users, on-farm research, discussions around the 
simulation, and participatory involvement of end-users and stakeholders in model 
development and adoption (Carberry et al., 2002). Long evaluation processes (over ten years 
for the systems research team) with users and stakeholders has shown the importance of 
feedback, and also the iterative progress from real to abstract thinking (Carberry et al., 2002). 
Some difficulties that FARMSCAPE encountered were the failure of the project team to 
deliver as specified, conflict over intervention paradigms, and initial naivety about social 
processes (Carberry et al., 2002). 

The interactions of stakeholders within a participatory modelling process were seen as 
beneficial to the creation and adoption of adaptable user-friendly decision support systems. 
This included environmental, economic and biophysical components as they were adopted in 
the decision support system of dairy farm nutrient management (Cabrera et al., 2008). The 
incorporation of a participatory approach encompasses end-user involvement from the start of 
the development process of the model. It includes regular interaction and feedback during the 
iterative design and development of the model. In addition, it has an open dialogue and uses 
recognised complementary social research systems (Cabrera et al., 2008). The highly 
interactive process was seen as crucial for generating comments on model development, with 
prototype adjustment and final model feedback to stakeholders for validation, although the 
intensity of the interactive process in researcher and stakeholder time and effort is noticeable 
(Cabrera et al., 2008, pp. 399, Table 1). 

An interpretative study of 38 decision support systems in the Australian agricultural sector by 
Lynch and Gregor (2004) has explored the relationship between user participation and system 
outcome. A key component of the study is the ‘degree of user influence’ on the design 
process, being a result of both type and depth of the user relationship. Higher impact of the 
decision support system was associated with higher levels of user participation (progressing 
from consultative to consensus), and greater depth in participation noted (Lynch & Gregor, 
2004). 
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North and Macal (2007) stated that the incremental development of agent-based models 
enables stakeholder buy-in and the ability to progressively document return on investment in 
the model. Further, successive development allows for temporal model development, an 
iterative process and progressive model capability building with stakeholders (North & 
Macal, 2007). The iterative approach itself is not new to the development of agent-based 
models, but the emergent properties and micro-level to macro-level behaviour outcomes 
throughout the model building process are new components (see Bousquet & Le Page, 2004; 
North & Macal, 2007). Interactive policy making with agent-based models is interpreted as a 
mean of facilitating the effective use of models by involving model users/policy makers in the 
development process. Happe and Balmann (2007) observed that the development process is 
iterative and requires stakeholder involvement throughout the modelling steps to orient work 
towards the policy decision process. The use of MAS models and role-playing games seek to 
develop simulation models to integrate stakeholders’ viewpoints (refer Bousquet et al., 2002; 
Happe & Balmann, 2007). Certainly, North and Macal (2007) recommended participatory 
agent-based model simulation to assist learning and development in a business context. 
Participatory modelling within land-use systems is considered an important component of 
model development (Parker et al., 2003). 

The relationship between simulation modelling and collective decision-making within natural 
resource management can support adaptive management and participation in problem solving. 
This can be achieved by using MAS models and role-play games, and companion modelling 
(ComMod7) theory (see Barnaud et al., 2008; Bousquet et al., 2002). The potential usefulness 
of a MAS model is illustrated by an application to rural credit in a developing country 
farming community (Barnaud et al., 2008). The participatory modelling approach emphasised 
the model process and the intuitive representation of real systems. The resultant appropriation 
by local stakeholders is a sign for the usefulness of a MAS model. Becu et al. (2008) 
introduced a modelling approach that has the potential for a participatory modelling approach 
where stakeholders are directly confronted with model assumptions, simulation output 
interpretation and scenario options. In contrast, the companion modelling approach assumes 
limited stakeholder knowledge of the computer model. However, Becu et al. (2008) noted 
problems both in stakeholder understanding of a model as a reproduction of reality and not as 
reality. These were challenges in a context of social tension and power differentials, in that 
case, an issue of water rights between rural villages in Thailand. Nevertheless, additional 
analysis suggested that the sessions on the multiple participatory simulation increased 
participant understanding, although it was constraining on less powerful actors (Becu et al., 
2008). 
 

5.3 Summary

The reviewed literature concentrated predominantly on the development and application of 
MAS tools. Some authors maintained that research puts more effort in developing and 
describing the tools than providing useful and usable tools for end-users. The few researchers 
who considered usefulness in their studies report on lack of acceptance, usability and 
credibility of decision support systems at the farm level. There were few models that were 
adopted by the agricultural community; the few that were adopted also reported some failures.  

For successful model development and adoption, the involvement of end-users and other 
stakeholders in projects is recommended. This participation would also assist problem 
solving. Participatory modelling provides a useful tool for involving stakeholders and end-

                                                 
7 ComMod, or Companion Modelling, is an approach involving an iterative feedback loop between researchers 
and stakeholders in with MAS is used as the tool to facilitate communication (Becu et al., 2008).
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users at each stage of the model development process. These approaches are even more 
important when human and social factors need to be modelled in an agent-based model. 
Several approaches include participation of stakeholders and end-users in the development 
process of the model. This involvement helps identify the requirements of end-users and 
stakeholders and increases the practical usefulness of models. Participatory modelling can 
link factual knowledge and analytical capacity with end-user knowledge and subjective 
perception. Many projects reported failures in the implementation process because end-users 
lacked information and models were not credible. End-user participation can be seen as 
technique to diminish this gap of information and credibility between the developers of the 
model and the stakeholders. Decisions have to be taken with regard to the stage the user 
involvement should occur and to which degree the users should have influence on model 
development. However, issues of cost and time scheduling in participatory modelling within 
the agent-based model construct have been noted by North and Macal (2007) and Newig et al. 
(2008).  

In summary, agent-based modelling can be an innovative approach for participatory research 
(Pahl-Wostl, 2002). The combination of a high degree of formalisation with participation 
allows important information to be included, but in a parsimonious way (Newig et al., 2008). 
With the increasing importance of participatory processes in land-use and natural resource 
management, agent-based models may be an important tool for effective participation (Newig 
et al., 2008).  

 



Chapter 6 
Conclusion  

 
 
There is a wide variety of MAS models in the literature. They provide some guidance for 
creating a MAS model of New Zealand’s pastoral industries that simulates strategic decisions 
and behaviours of individual farmers in response to changes in their operating environment, 
and link to the production, economic and environmental impacts of their management.  

First, this review suggests that a two-part model including both a multi-agent (MAS) sub-
model and a cellular automata (CA) sub-model is the most suitable for agricultural models. In 
this way, variables can be divided into those linked to specific locations and thus assigned to 
land in the CA sub-model, and those linked to decision-making and thus assigned to agents in 
the MAS sub-model. By overlaying the simulated agents – constructed based on primary data 
on farmer behaviour – on a cellular structure that represents key features of the natural 
landscape of New Zealand, it should be possible to investigate the emergent properties of the 
country’s farming sector. In particular, the response of this complex system to simulated 
future shocks, such as policy shifts or climate change, may provide useful information for 
farmers, the sector, and policy-makers. 

With regard to the MAS sub-model, the research indicates that agents should be 
heterogeneous in terms of risk preferences and the use of prior information. The MAS sub-
model allows the incorporation of further decision rules or strategies that are important for 
modelling farmer’s decision-making in New Zealand’s pastoral industries, and can also allow 
sociological and psychological information to be included. 

Regarding the CA components, most approaches modelled land spatially with variables for 
different production possibilities. A New Zealand model could include values for potential 
outputs for dairy, meat, and forestry; other possible land-uses could also be modelled. 
Existing models treated other resources, such as water, in very different ways. There is no 
clear guidance from the literature on the best approach, as each model is tailored to the 
research programme. Different aspects can be treated as separate elements in a model, or 
simply implied by the relative productivity of CA units.  

Markets have also been modelled with varying degrees of complexity. In a New Zealand 
context, with most commodities exported, production from various land-uses can be sold 
based on prices determined exogenously from a simple demand schedule.  

With regard to modelling decision-making it can be either modelled using simple rules of 
behaviour heuristics, or using optimisation algorithms, or a combination of the two. Selection 
of the approach depends on the questions the model is designed to answer, with the targeted 
model users in mind. More behaviour heuristics should be incorporated if the model is used 
by social, economic and environmental policy makers to explore farmers’ responses to 
institutional and environmental changes. Conversely, if the model is designed to support the 
decision-making of farm managers, the incorporation of optimisation algorithms can be useful 
to help farm managers expand their bounds of rationality and make informed decisions ahead 
of economic and environmental changes. Information transfer among the agents can be 
explicitly modelled both to introduce new information and technology adoption as well as for 
heterogeneous goal setting/measurement of the agents as a function representation of social 
influence. An agent’s responses to new information and opinion formation can be modelled 
by using appropriate network dynamic models.  
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A clear indication from the literature is that modelling can range along a continuum of levels 
of detail; the key choices in modelling are both the overall level of detail desired and the level 
of detail desired for each given variable. Therefore, the beginning of the modelling process 
needs to address the twin questions of, ‘what are the end goals?’ and ‘which variables are key 
to a model that approaches those end goals?’ Each component of the model could be 
addressed using techniques ranging from the simple to the complex. These questions can help 
focus the research on which variables are most important and the required complexity in the 
model. It is also important to keep in mind that increases in model complexity also carry 
associated increases in error and uncertainty. 

Usability is a key concern of practical modelling meant for end-users in agriculture and 
policy. Decision support system models and simulation models used to date in agriculture 
have had several issues, including connecting to existing farming practice. A model could be 
both successful in technical modelling terms and unsuccessful in being taken up by the 
industry. Participatory modelling, in which end-users become part of the design process, has 
improved the usability and uptake of prior models. 

This review of the literature on MAS and related modelling techniques was undertaken to 
support the Rural Futures FRST research progamme. It hopefully provides some guidance on 
the essential components of a model, methods for modelling each component, and processes 
for assembling an appropriate and usable model. With a successful model, the programme 
should be able to assess the macro-level emergent properties of New Zealand agriculture by 
simulating micro-level behaviour of farms and farmers. 
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