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OUTLINE

1. Introduction

2. Sufficiency and Necessity

3. Analysis in the Social Sciences

— Simulation and Analysis

4. Validation

5. The St ate Similar ity Measure (SSM)

See R.E. Marks, “Analysis and synthesis: multi-agent systems in
the social sciences,” The Knowledge Engineering Revie w, 27(2):
123−136, 2012.
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1. Introduction

Comput er scientis ts are concer ned wit h finding solutions to
issues such as market design, whereas —

social scientists in gener al and economists in particular have
been concerned with explaining and predicting social
phenomena.
(This is also true of other scientists, such as alife researcher s,
who use simulations to model real-world phenomena (Bentley
2013).)

Both of these approaches demand sufficiency, but scientists (or
at any rat e economis ts) also demand necessity:

No t jus t: “This is a solution”

but also: “This is the set of all possible solutions.”
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Tr aditional Economic Methods

A cer tain logic:

• obser ve a real-world phenomenon

• identify a need to explain and underst and it

• build a methematical, closed-for m model, with simplifying
assumptions to allow its solution

• manipulat e the model to obt ain suf ficient and necessary
conditions for the observed phenomenon

• perhaps relax a simplifying assumption or two and ask
how the model changes

This has focussed on equilibr ia or steady-s tat es, precluding
study of out-of-equiibr ium or dynamic phenomena.

Simulation can overcome these res trictions, but at a cost.
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Judd’s ideas (2006)

“Far better an approximat e answer to the right ques tion ... than
an exact answer to the wrong ques tion.”

— John Tukey, 1962.

That is, economists face a tradeof f between:

the numer ical er ror s of comput ational work
and

the specification errors of anal yticall y tr act able models.

And perhaps also between: sufficiency and necessity.
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2. Suf ficiency and Necessity

Simulations demonstr ate: exis t ence and sufficiency,

but not necessity.

Simulations can demonstr ate the untrut h of a proposition,

but not provide proofs or theorems,

simulations cannot provide gener ality.

What, never?

Does this matter?

< >
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Formal Simulation

Mat hematical “model A” compr ises the conjunction
(a1∧ a2∧ a3

. . .∧ an), where ∧ means “AND”, and the a i denote
the elements (equations, paramet ers, initial conditions, etc)
that constitut e the model.

Suf ficiency: If model A exhibits the desired target behaviour B,
then model A is sufficient to obt ain exhibit ed behaviour B:
A ⇒ B

Thus, any model that exhibits the desired behaviour is
suf ficient, and demonstr ates one conjunction of conditions (or
model, or solution) under which the behaviour can be
simulat ed.

But if there are several such models, how can we choose among
them? And what is the necessary set N of all such conjunctions
(models)?

< >



IEEE SSCI 2013 R.E. Marks 2013 Page 8

Necessity

Necessity : Onl y those models A belonging to the set of
necessar y models N exhibit target behaviour B.

That is, (A ∈ N ) ⇒ B, and (D ∉ N ) ⇒ ⁄ B.

A dif ficult challenge: deter mine the set of necessary models, N.

Since each model is not simple: A = (a1∧ a2∧ a3
. . .∧ an), searching

for the set N of necessary models means searching in a high-
dimensional space, with no guar antee of continuity, and a
possible large number of non-linear inter actions among
elements.
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Lac k of Necessity Means ...

For ins tance, if D ⇒ ⁄ B, it does not mean that all elements a i of
model D are inv alid or wrong, only their conjunction, that is,
model D.

It might be only a sing le element ak that precludes model D
exhibiting behaviour B.

But deter mining whet her this is so and which is the offending
element ak is a costl y exercise, in gener al, for the simulator.

Without clear knowledge of the boundaries of the set N of
necessar y models, it is difficult to gener alise from simulations.

< >
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Simulation Can Sometimes Demonstr ate Necessity . . .

Onl y when the set N of necessary models is known to be small
(such as in the case of DNA str ucture by the time Watson &
Cr ick were searching for it) is it relativel y easy to use simulation
to der ive necessity.

Watson & Cric k had much infor mation about the proper ties of
DNA (from other s):

when they hit on the simulation we know as the “double
helix”, they knew it was right.

But still “A structure ...”, not “The structure” in the title of
their 1953 Nature paper.

(And Kepler ’s 1605 ellipses?)
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Engineer s and Comput er Scientis ts’ View

Why the fuss?

Having several solutions to choose from is a luxury, especiall y
for dif ficult problems.

The ques tion of necessity — are these the only possible
solutions? — is not of concer n.

Economis ts seek gener ality of underst anding, whereas engineers
seek solutions rat her than gener ality.
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3. Anal ysis in the Social Sciences

In the social sciences:

— “positive” analysis

— explanation of exis ting phenomena, underst anding

— prediction.

In engineering, crudel y:

— “nor mative” analysis

— sol ving problems

— synt hesis

— design.
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3.1 Simulation and Analysis

The anecdote about the economist looking for his lost car key s:

“An accurat e answer to the wrong ques tion”? (using closed-
form met hods)

or : simulation (numerical methods)

“Approximat e answer s to the right ques tions”

Helped by the developments in comput er hardw are and
sof tware.

Meanwhile: C.S. has borrowed simulation tools from the natural
world:
ar tificial neur al nets, simulated annealing, genetic
algor ithms/prog ramming

Want : dynamics, out-of-equilibr ium char acter isations.

< >
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Verification & Validation — “Assur ance”

Verification (or inter nal validity): is the simulation working as
you want it to:

— is it “doing the thing right?”

Validation: is the model used in the simulation correct?

— is it “doing the right thing?”

To Ver ify: use a suite of tes ts, and run them every time you
change the simulation code — to ver ify the changes have not
introduced extr a bugs.

See: D.F. Midg ley, Mark s R.E., and Kunchamwar D. (2007) The
Building and Assurance of Agent-Based Models: An Example
and Challenge to the Field, Jour nal of Business Research, Special
Issue: Comple xities in Markets.
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4. Validation

For whom?

With reg ard to what?

A good simulation is one that achieves its goals:

• to explore

• to predict

• to explore
Or

• what is?

• what could be?

• what should be?
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Validation

To the ext ent that the social sciences are concer ned wit h real-
world, historical phenomena,

any simulations must be ver ified (no bugs) and validat ed (does
the model provide behaviour which matches the sty lised facts
of the historical phenomenon?)

Midg ley et al: ver ification + validation = assurance

Bac k-predictions.

Doc king.

< >



IEEE SSCI 2013 R.E. Marks 2013 Page 17

Example: Consider these historical market data:
$/

lb
lb/w

eek

2000

4000

2.00

3.00

20 40 60 80

Figure 1: Weekly Sales and Prices (Source: Midgley et al. 1997)
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Real-World Rivalr y

The figure shows the historical prices (in $/lb) and weekl y
quantities sold (in pounds) of nine brands of vacuum-sealed,
ground coffee in a sing le mid-wes t super market chain over 78
week s.

The four coloured lines (Folger ’s, Maxwell House, Chock Full O
Nuts, Hills Bros) are the most “strategic” of the brands here,
and we focus on their inter actions.

Lat er: using GAs, we der ive a model in which, constr ained by
the super market chain, the artificial brands vie to maximize
their weekl y profits, by changing their prices (constant for
seven day s) and other marketing instr uments (coupons, etc.)

The issue: how to validat e our model, which produces output
similar to the figure?
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Stylised Facts of the Market Behaviour

• Much movement in prices and quantities of four brands —
a riv alrous dance.

• Patt ern: high price (and low quantity) punctuated by low
pr ice (and high quantity).

• Ot her br ands: (relativel y) st able prices and quantities

Ques tions:
What is the cause of these patter ns?

— shif ts in brand demand?

— reactions by brands?

— actions by the supermarket chain?

— unobser ved marketing actions?

In order to explain, first grow — Eps t ein.
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Agent-Based Models → Gener ative Explanation:

Gener ative explanation (Epstein 2006):

“If you haven’ t grown it, you haven’ t explained its
emergence.”

To answer : how could the autonomous, local inter actions of
het erogeneous boundedly rational agents gener ate the observed
regular ity (t hat emerges)?

— Gener ative suf ficiency is a necessary but not suf ficient
condition for explanation. Each realisation is a str ict deduction.

Grüne-Yanof f (2006) argues to dis tinguish functional
explanations (easier for simulator s) from causal explanations
(much less achievable for social scientists).
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Explanations?

Int eractions of profit-maximising agents, plus ext ernal or
int ernal fact ors → via a model → behaviour

Similar (qualit ativel y or quantit ativel y) to the brands ’
behaviour s of pricing and sales.

No te: assuming profit-maximising (or purposeful) agents means
that we are not simpl y cur ve-fitting or description using D.E.s.
Going beyond the riv alrous dance.
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Further ...

With a calibr ated model, we can:

per for m sensitivity analysis of endogenous with respect to
exogenous var iables.

Prediction only requires sufficiency, not necessity (“These are
the onl y conditions under which the model can work .”)

Examine:

• limits of behaviour
(Miller ’s Aut omat ed Non-linear Tes ting System)

• regime-switching

• range of behaviour gener ated

• sensitivity of the aggregate (or emergent behaviour) to a
sing le agent ’s behaviour.
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Validation

Moss & Edmonds (2005): for AB models at least two stages of
empir ical validation.

1. the micro-v alidation of the behaviour of the individual
agents in the model, by reference to dat a on individual
behaviour.

2. macrov alidation of the model’s agg reg ate or emergent
behaviour when individual agents inter act, by reference
to agg reg ate time series.

wit h the emergence of novel behaviour, possible surpr ise
and possible highly non-s tandard behaviour, dif ficult to
verify using standard statis tical met hods.

∴ onl y qualit ative validation judgments might be
possible.

< >



IEEE SSCI 2013 R.E. Marks 2013 Page 24

Formalisation of Validation

Let set P be the possible range of obser ved outputs of the real-
world sys t em.

Let set M be the exhibit ed outputs of the model in any week .

Let set H be the specific, historical output of the real-world
system in any week .

Let set Q be the inter section, if any, between the set M and the
set H , Q ≡ M ∩ H .

We can charact erise the model output in several cases.
(Mankin et al. 197 7).
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Five Cases for Validation

a. no int ersection between M and H (Q = ∅ ), then the model is
useless.

b. inter section Q is not null, then the model is useful, to some degree:
will correctl y exhibit some real-world system behaviour s, will not
exhibit other behaviour s, and will exhibit some behaviour s that do
not his t oricall y occur. Bot h incomplet e and inaccurat e.

c. If M is a proper subset of H (M ⊂ H) then all the model’s
behaviour s are cor rect (match historical behaviour s), but the model
doesn’t exhibit all behaviour that historicall y occur s: accur ate but
incomple t e.

d. If H is a proper subset of M (H ⊂ M) then all historical behaviour is
exhibit ed, but will exhibit some behaviour s that do not his t oricall y
occur : complet e but inaccurat e.

e. If the set M is equiv alent to the set H (M ⇔ H), then (in your
dreams!) the model is complet e and accurat e, but might be
ov erfitt ed.

< >



IEEE SSCI 2013 R.E. Marks 2013 Page 26

Or Graphicall y ...

(a)

H

M

(b)

H Q M

(e)

H M Q

(c)

H M Q

(d)

M H Q

Figure 2: Validity relationships (after Haefner (2005)).

a. useless
b. useful, but incomplet e and inaccurat e
c. accurat e but incomplet e
d. complet e but inaccurat e ← possibl y the bes t to aim for
e. complet e and accurat e
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Modelling Goals

One goal: to cons truct and calibrat e the model so that

M ≈ Q ≈ H : there are ver y few his t oricall y obser ved behaviour s
that the model does not exhibit,

and there are ver y few exhibit ed behaviour s that do not occur
his t oricall y.

The model is close to being both complet e and accurat e.

In practice, a modeller might be happier to achieve case d.,
where the model is complet e (and hence provides sufficiency
for all observed his t orical phenomena), but not accur ate.

No t leas t to accommodat e lat er real-world observations.
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Measures of Validity

A measure of validity which balances the Type I error of
inaccur acy wit h the Type II error of incomplet eness.

Define a metric m() (a ratio scale) on the sets.

Define inaccuracy α as

(1)α ≡ 1 −
m(Q)

m(M )
,

and incomple t eness γ as

(2)γ ≡ 1 −
m(Q)

m(H )
.

Or : m(|H − M |), as in the SSM (see below).
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Continued ...

A measure of deg ree of validation V : a weight ed av erage of
inaccur acy α and incomplet eness γ:

(3)V ≡ v (1 −α) + (1 −v )(1 − γ)

∴ V = v
m(Q)

m(M )
+ (1 −v )

m(Q)

m(H )

(4)∴ V = m(Q)



v

m(M )
+

1 −v

m(H )



The value of the weight v , 0 ≤ v ≤ 1, reflects the tradeof f
between accuracy and complet eness.
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Tr ade-of fs

Possible to reduce incomplet eness by gener alising the model
and so expanding the domain of set M until H is a proper subset
of M , as in case d.

Or by nar rowing the scope of the historical behaviour to be
modelled, so reducing the domain of H (or P).

Also be possible to reduce inaccuracy by res tricting the model
through use of narrower assumptions and so contracting the
domain of M .

If M is sufficientl y small to be a proper subset of H , as in case
c., then the model will never exhibit anhistorical behaviour.

But not guar anteed to maint ain a non-null inter section Q, and it
is possible that the process results in case a., with no
int ersection.
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Fagiolo et al. on Validation of AB Models

AB models can be charact erized as:

• bott om-up models (unlike e.g. Systems Dynamics
simulation models, or closed-for m models)

• het erogeneous agents (endowments, proper ties, memor y,
rationality, etc.)

• boundedl y rational, usually wit h adaptive expect ations

• networked direct inter actions.

Closer to dynamic, decentralized markets and economies than
tr aditional models.

See: Fagiolo G., Moneta A., & Windr um P. (2007), “A critical
guide to empir ical validation of agent-based models in
economics: methodologies, procedures, and open problems,”
Comput ational Economics, 30(3): 195−226.
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Fagiolo 2

And yet reluct ance to use AB models. Why? Four key
problems:

1. no common set of the heterogeneous AB models
previousl y developed

2. (hence) lac k of compar ability across these models
wit h high degrees of freedom, hence a wide range of
outputs, toget her wit h lac k of necessity.

3. lack of standard techniques for constr ucting and
anal yzing AB models

4. the “problematic” relationship between AB models and
empir ical dat a ← this is validation.

< >
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Fagiolo 3

Some ques tions:

• Is “realis t” met hodology appropr iate?

• Should empir ical validation be the primar y basis for
accepting/rejecting a model?

• Are there other tes ts apar t from gener ating stylized facts?

• How should we calibr ate the paramet ers, initial
conditions, stochas tic variability to his t oricla data?

• How dependable are the micro and macro sty lized facts
anyw ay?

• What if the “sty lized facts” shed no light on the
dynamics of the gener ating stochas tic processes?

• What if the “sty lized facts” are too gener al to dis tinguish
among models?
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Fagiolo 4 — Issues with Empir ical Validation

Compar ing his t orical data wit h gener ated outputs.

1. The world is comple x: a trade-of f between comple xity in
modelling (“concretization”) and reductionism
(“isolation”): where to draw the line in modelling?
Realism v. tract ability.

2. Friedman (1953) argued that realism was not necessar y
so long as the output allowed accur ate prediction
(“ins trument alism”), but other s seek realism in the
model and its assumptions as well as accuracy.

3. How wedded should the modeller be to a prior i
assumptions (about the goals of agents, say)? Or should
all aspects of the model be available (“pluralism”)?

4. Impor tantl y: how to choose which of several models is
bes t (t he “identification” or “under-det ermination”
problem).
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Fagiolo 5

Three alter native appr aoches:

1. the indirect calibration approach

2. the Werker-Brenner appraoch

3. the history-fr iendly approach, and

4. the State Similar ity Measure (of mine, below).

< >
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Judd on Validation

Several sugges tions:

1. Search for counterexamples:
If found, then insights into when the proposition fails to
hold.
If not found, then not proof, but strong evidence for the
tr uth of the proposition.

2. Sampling Methods: Monte Carlo, and quasi-Mont e Carlo →
st andard statis tical tools to descr ibe confidence of results.

3. Reg ression Methods: to find the “shape” of the proposition.

4. Replication & Generalisation: “docking” by replicating on a
dif ferent platfor m or language, but lack of standard sof tware
an issue.

5. Synergies between Simulation and Conventional Theory.

< >
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5. Simulation

Social Science, not Phy sical Science

At the agg reg ate level, similar.

But at the micro level, the agents in social science models are
people, with self-conscious motiv ations and actions.

Aggreg ate behaviour may be well described by dif ferential
equations, with little difference from models of inanimate
agents at the micro level.
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A Third Way of Doing Science

(from Axelrod & Tesfatsion 2006)

Deduction + Induction + Simulation.

• Deduction: deriving theorems from assumptions

• Induction: finding patter ns in empir ical dat a

• Simulation: assumptions → dat a for inductive analaysis

S dif fer s from D & I in its implement ation & goals.

S per mits increased underst anding of systems through
controlled comput er exper iments
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Emergence of self-organisation

Examples: ice, magnetism, money, markets, civil society, prices,
seg reg ation.

Defn: emergent proper ties are proper ties of a system that exis t
at a higher level of agg reg ation than the original description of
the sys t em.
No t from superposition, but from inter action at the micro level.

Adam Smith’s Invisible Hand → pr ices

Schelling’s residential tipping (segregation) model:
People move because of a weak preference for a neighbourhood
that has at least 33% of those adjoining the same (colour, race,
what ever) → seg reg ation.

Need models with more than one level to explore emergent
phenomena.
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Families of Simulation Models

1. Sys t em Dynamics SD
(from differential equations)

2. Cellular Automat a CA
(from von Neumann & Ulam, relat ed to Game Theory)

3. Multi-agent Models MAM
(from Artificial Intelligence)

4. Learning Models LM
(from Simulated Evolution and from Psychology)
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Compar ison of Simulation Techniques

Gilber t & Troitzsch compare these (and other s):

Technique Number Communication Comple xity Number
of Levels between agents of agents of agents

SD 1 No Low 1
CA 2+ Maybe Low Many
MAM 2+ Yes High Few
LM 2+ Maybe High Many

Number of Levels: “2+” means the technique can model more
than a single level (the individual, or the society) and the
int eraction between levels.

This is necessary for investig ating emergent phenomena.

So “agent-based models” excludes Systems Dynamics models,
but can include the other s.
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Axelrod on Model Replication and “Docking”

Doc king: a simulation model writt en for one purpose is aligned
or “docked” with a gener al pur pose simulation system writt en
for a dif ferent purpose.

Four lessons:

1. Not necessar ily so hard.

2. Three kinds of replication:

a. numerical identity

b. distr ibutional equiv alence

c. relational equiv alence

3. Which null hypothesis? And sample size.

4. Minor procedur al dif ferences (e.g. sampling with or
wit hout replacement) can block replication, even at (b).
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Reasons for Errors in Doc king

1. Ambiguity in published model descriptions.

2. Gaps in published model descriptions.

3. Errors in published model descriptions.

4. Softw are and/or hardw are subtleties.

e.g. different floating-point number represent ation.

(See Axelrod 2006.)
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AGENT-B ASED MODEL S

AB Models are used where the inter actions are decentr alised,
and the autonomous agents make their own decisions (perhaps
cons trained).

∴ AB models are suit able for int eractions which are bottom-
up, not top-do wn.

∴ social and market inter actions, rather than engineering or
int ernal organisational inter actions.
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Using AB models

In ABM/ACE models, a population of softw are objects is:

— ins tantiat ed, and each agent is given:

— cer tain inter nal st ates (e.g., preferences,
endowments) and

— rules of behaviour (e.g., seek utility improv ements).

The agents are then permitt ed to int eract directl y wit h one
another and a macros tructure emerges from these inter actions.
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Patt erns Emerge

Patt erns in this macros tructure may then be (Axtell, 2005):

— compared with empir ical dat a,

— to revise agent inter nal st ates and rules, and

— the process repeat ed until an empir ically plausible model
obt ains.

e.g. ACE stock markets have been used to model heterogeneous
agents: will the sty lised features of such markets emerge? Yes.
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What is an Agent?

An agent : a self-centred prog ram that controls its own actions
based on its perceptions of its operating environment.

Der ived from the Distr ibuted AI notion of a network of
calculating nodes.

Example: the automat a in Conway’s Game of Life or Schelling’s
Seg reg ation game or the couples in March & Lave ’s Sons and
Daught ers game..

Another example of an agent that won $2,000,000 in a
challenge by the U.S. Department of Defense in October 2005
...
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St anley here.
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Agents and agency

Wooldr idge & Jennings (1995) would give comput er agents
these proper ties:

• aut onomy: no other s control their actions and inter nal
st ate,

• social ability: can inter act and communicate wit h ot her
agents

• reactive: they perceive their environment and respond

• pro-active: they initiat e goal-direct ed actions

• (int entionality: met aphors of beliefs, decisions, motives,
and even emotions)
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Further agent features:

plus (Epstein 1999):

• het erogeneity : not “represent ative” but may dif fer

• local inter actions: in a defined space

• boundedl y rational (Simon): infor mation, memor y,
comput ational capacity

• non-equilibr ium dynamics: large-scale transitions, tipping
phenomena
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Eight Desired Attr ibutes of Modelled Agents (G&T)

1. Knowledge & beliefs.
Agents act based on their knowledge of the environment
(including other agents), which may be faulty — their
beliefs, not true knowledge.

2. Inference.
Given a set of beliefs, an agent might infer more
infor mation.

3. Social models.
Agents, knowing about inter relationships between other
agents, can develop a “social model”, or a topology of
their environment : who’s who. etc.
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Eight Desired Attr ibutes ...

4. Knowledge represent ation.
Agents need a represent ation of beliefs: e.g. predicat e
logic, semantic (hierarchical) network s, Bayesian
(probabilis tic) network s.

[Sebas tian] Thr un [leader of the winning team in
the 2005 DARPA Grand Challenge] had a Zen-like
revelation: “A key prerequisit e of true intelligence
is knowledge of one ’s own ignorance,” he thought.
Given the inherent unpredict ability of the world,
robots, like humans, will alway s make mis takes.
So Thrun pioneered what’s known as probabilis tic
robotics. He prog rams his machines to adjus t their
responses to incoming data based on the
probability that the data are cor rect. — Pacella
(2005).
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Eight Desired Attr ibutes ...

5. Goals.
Agents driven by some inter nal goal, e.g. surviv al, and
its subsidiary goals (food, shelter). Usually definition
and management of goals imposed on the agent.

6. Planning.
Agent must (somehow) deter mine what actions will
att ain its goal(s). Some agents modelled without
teleology (simple trial-and-er ror), other s wit h inference
(for ward-looking), or planning.

7. Language.
For communication (of infor mation, negotiation,
threats). Modelling language is dif ficult. (Want to avoid
inadver tent communication, e.g. through the genome of
a population in the GA.)
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8. Emotions.
Emergent features? Significant in modelling agents? Or
epiphenomenal?
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How to Model Agent Archit ecture?

Early approach to modelling cognitive abilities (symbolic
par adigm) was fragile, comple x, and lacked common sense.

Since then, five approaches:

1. Production Systems

2. Object Or ientation

3. Language Par sing & Gener ation

4. Machine-Learning Techniques, and (most recentl y)

5. Probabilis tic Robotics — Stanley (Thr un et al. 2005).

Ignore 3., 4. last lecture, 5. too new.
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Economic Journal June 2005 Feature —

• focussed on Comple x Adaptive Sys t ems CAS in economics

• appeared just after Leombruni & Richiardi asked, “Why
are economis ts sceptical about agent-based simulations?”
(Ph ysica A 355: 103−109, 2005.)

• included 4 papers: introduced by Markose, with paper s by
Axt ell, Robson, and Durlauf

• addressing, respectivel y,

— markets as comple x adaptive sys t ems,

— for mal comple xity issues,

— the co-evolutionar y “R ed Queen” effect and
novelty, and

— the empir ical and tes table manifes tations of CAS in
economic phenomena.
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Markose and the EJ Feature on CAS:

• many “anomalies” not under stood or modelled using
conventional optimisation economics:

— innovation,

— competitive co-evolution,

— per sistent heterogeneity,

— increasing retur ns,

— “the error-dr iven processes behind market
equilibr ium,”

— herding,

— crashes and extreme events such as October 1987.

• need the “adaptive or emergent methods” of ACE
simulation
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Moreover ...

Axt ell (2005) argues that :

• the decentr alised market as a whole can be seen as a
collective computing device

• the par allel dis tribut ed agent-based models of k-lat eral
exchange → the specific level of comple xity (pol ynomial)
in calculations of equilibr ium pr ices and allocations.
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6. Economis ts´ Uses of Multi-Agent Models

Economic theor y moved beyond the reduced for ms of perfect
competition and monopolies

to oligopolies — markets with small numbers of seller s:

oligopolis ts int eract str ategicall y (not amenable to reduced
forms — such as “market clearing”)

strategic inter actions bes t modelled by game theor y.

But Nash equilibr ium, alt hough not reduced — all competit ors’
behaviour s are inputs — but focussed on the eq uilibrium,

while most transactions take place off-equilibr ium

Further : real-world firms are het erogeneous (“asymmetric”)

< >



IEEE SSCI 2013 R.E. Marks 2013 Page 64

First Multi-A gent Systems in Economics

At first, to deal with the non-conve xities and discontinuities of
the str ategy space, agent-based simulation techniques were
used to search for equilibr ium results, Marks and other s used
Genetic Algorit hms (GAs)

to search a str ategy space that was rugged, and non-stationar y,
when the problem was co-evolutionar y, as the other firms also
searched for “better” mappings from market state to action.

Coevolution of asymmetric firms requires separat e populations
in the GA, les t extr a-market communication occur: collusion is
gener ally illeg al.

“Social” learning v. “individual” learning — Vriend

Coevolution was different from most engineer ing applications of
the GA:
which looked for numerical optima, not the charact eris tics of
the final gener ation’s population.
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Agents and the Market Inter act

Ot her AB simulations in economics have used agents that
“lear nt”,
as opposed to the GA’ s “social” learning of successive
gener ations of agents.

How good do agents have to be?

Gode & Sunder (1993) found — not ver y, at leas t for the
“double action” market, in which “zero-int elligence players”
(ZIPS, who tossed coins or dice) do as well (or even bett er)
than highly rational players (as game theor y assumes).

We ’re still not sure what it is about the str ucture and rules of
the DA market that help the ZIPs.
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7. Synt hesis in the Social Sciences

Designer markets are exemplified by

1. der ivatives markets, in gener al

2. markets for pollution permits

3. auctions for electro-magnetic spectrum

4. markets for the trade of electricity, and

5. on-line or automat ed markets

6. Also: contr act design.
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Met hods to Help Designing Markets

Roth (1991) spoke of:

— traditional closed-for m game-t heoretic analysis

— human-subject exper iments

— comput er simulations

But Mirow ski argues for a typology of market types, perhaps
begun in McMillan (2002)
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7. 1 Designing Markets

Designing markets is comple x:

searching for a mapping —

— from genotype to phenotype

— from design (str ucture & rules) space to per for mance
space

— from genotype to phenotype (in evolution)

In gener al this is comple x (but see Byde 2006):
“synt actic comple xity” (Edmonds & Bryson 2003). which
requires the performance behaviour to “emerge”, as Simon
(1996) agreed.
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A Framework ...

MacKie-Mason & Wellman’s Marketplace Design Framework:

Three fundamental steps of a market transaction:

1. the connection (search, discovery)

2. the deal (negotiating, agreeing)

3. the exchange (execution of the transaction).

∴ two design decisions:

1. the market mechanism (mechanisms for connection,
deal, and exchange)

2. the agents

Mirow ski argues that economists have focussed on agents and
ignored market mechanisms, except in reduced for m (“market-
clear ing”)
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Design Tradeof fs

For simulation, tradeof fs among possible goals of modelling and
simulation must be explicit.

LeBaron’s seven basic design ques tions:

1. the economic environment

2. modelling agents ’ preferences ← agents

3. price for mation and market clearing

4. the model’s fitness

5. infor mation processing and communication ← agents

6. learning: individual, or social ← agents

7. benchmarking
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8. Similar ities and Differences

In 1978 I wrote a Ph.D. thesis, the title of which included the
phr ase: “disequilibr ium dynamics”.

It allowed exchange to take place out of equilibr ium — of
cour se, you might say, how else is market-clear ing to be
att ained?

But then it was seen as str ange: although there was a short-
lived liter ature along similar lines — Malinvaud, Barro &
Grossman, and other s.

But this focus on out-of-equilibr ium dynamics is precisel y what
we now need as we simulat e using market-based controls.
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Simon’s Bounded Rationality

Agent-based models, following Simon (1982), also assume
Bounded Rationality. Indeed, in the absence of Tur ing machine
(univer sal calculat or), it is difficult not to.

But Epstein (2006) reflects:
“One wonder s how the core concer ns and history of economics
would have developed if, instead of being inspired by
continuum physics ... blissfull y unconcer ned as it is with
ef fective comput ability — it had been founded on Tur ing.
Finitis tic issues of comput ability, lear nability, att ainment of
equilibr ium (r ather than mere exis t ence), problem comple xity,
and undecidability, would then have been central from the
st art. Their foundational impor tance is only now being
recognized.
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Eps t ein on the virtues of boundedly rational agents ...

“As Duncan Foley summar izes:

`The theor y of comput ability and comput ational
comple xity sugges t that there are two inherent limitations
to the rational choice paradigm.

One limitation stems from the possibility that the agent ’s
problem is in fact undecidable, so that no comput ational
procedure exis ts which for all inputs will give her the
needed answer in finite time.

A second limitation is posed by comput ational comple xity
in that even if her problem is decidable, the
comput ational cos t of solving it may in many situations
be so large as to overwhelm any possible gains from the
optimal choice of action.’ (See Albin 1998, 46).”
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Tr uth and Beauty

Eps t ein (2006): does AB simulation lack beauty?

Russell: Mathematics as cold, austere, supreme beauty.

Russell: Beauty when “the premises achieve more than would
have been thought possible, by means which appear natural and
inevit able.”

The first damns comput er simulation, but the second can occur
wit h emergence from AB models.

Eps t ein compares different schools of classical music: German v.
Fr ench.

Tr uth (from agent-based modelling) can be beautiful too.
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Formalisation of Agent-Based Models

Eps t ein (2006): every agent model is a comput er prog ram.

∴ Turing comput able

But for every Tur ing machine, ∃ a unique corresponding and
equiv alent

par tial recursive function.

They might be extremel y comple x and difficult to int erpret, but
they exis t.

Hence: ”recur sive” or “effectivel y comput able” or
“cons tructive” or “gener ative” (after Chomsky) social science.
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