Agent-Based Computational Economics Growing Economies from the Bottom Up

Leigh Tesfatsion

Professor Emerita of Economics Courtesy Research Professor of Electrical & Computer Engineering Iowa State University Ames, Iowa 50011-1070 <u>https://www2.econ.iastate.edu/tesfatsi/</u> tesfatsi@iastate.edu

Lecture Notes

Presentation Outline

- What is Agent-based Computational Economics (ACE) in a nutshell?
- Simple labor market illustration, implemented via the Trade Network Game (TNG) Laboratory
- Four main strands of ACE research
- Potential advantages and disadvantages of ACE for economic modeling

What is ACE?

 Computational modeling of economic processes as open-ended dynamic systems of interacting agents

 A culture-dish approach to the conceptual and practical study of economic processes

ACE Culture-Dish Analogy

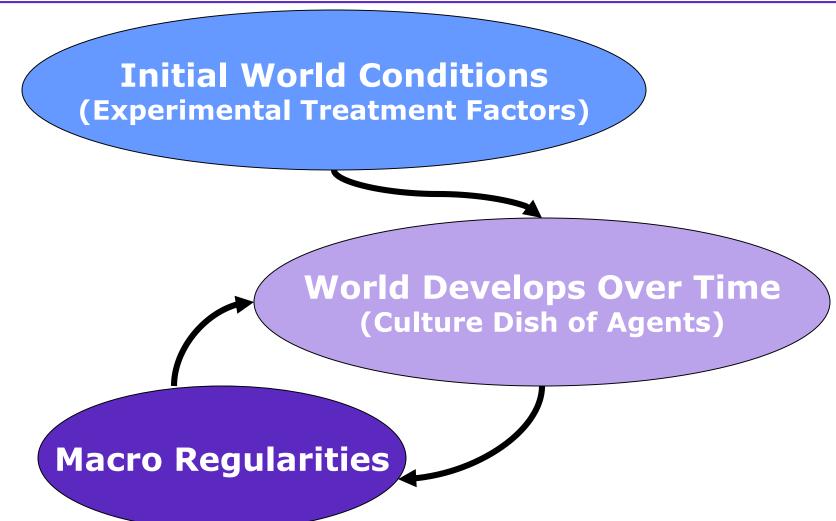
- Modeler constructs a virtual economic world populated by various agent types
- Modeler sets initial world conditions
- Modeler then steps back to observe how the world develops over time without intervention (no imposed equilibrium, rational expectations, etc.)
- World events are driven by agent interactions

ACE Agent Types

Agents = Encapsulated software programs representing individual, social, biological and/or physical entities

Cognitive agents are capable (in various degrees) of

- Behavioral adaptation
- Social communication
- Goal-directed learning
- Endogenous evolution of interaction networks
- "Autonomy" (self-activation and self-determinism based on private internal processes)


Initial World Conditions (Experimental Treatment Factors)

Structural conditions

Institutional arrangements

Behavioral dispositions of agents

ACE Culture Dish Analogy

Illustrative ACE Application Area: Labor Institutions and Market Performance

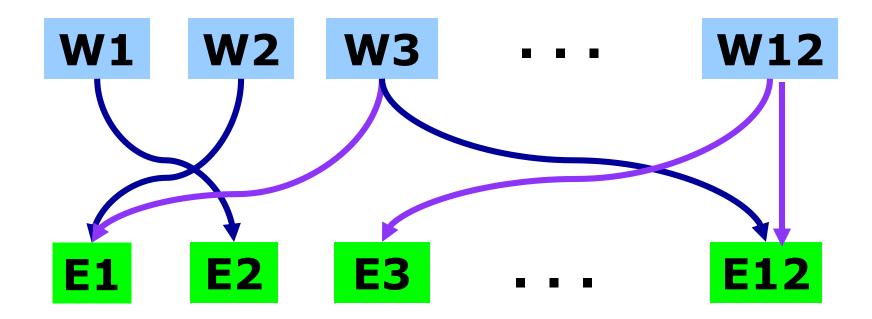
Some Key Issues:

Labor contracts typically incomplete

 Supplemented by government programs with numerous eligibility restrictions

 Difficult to test program effects by means of conventional analytical and/or statistical tools

Example: U.S. State Programs Providing Unemployment Benefits (UB)


Typical Features of State Programs (e.g., Iowa):

- UB only paid to "no fault of their own" unemployed
- UB recipients must continue to seek employment
- UB levels based on past earnings
- UB of limited duration
- UB financed by employer contributions at rates determined in part by each employer's "benefit ratio" = [UB paid out to former employees divided by the employer's taxable payroll]
- Additional UB often granted when unemployment rate is abnormally high for prolonged periods

→ Complicated Rules!!

ACE Labor Market UB Study Implemented Via TNG Lab

Mark Pingle and Leigh Tesfatsion, "Evolution of Worker-Employer Networks and Behaviors Under Alternative Non-Employment Benefits: An Agent-Based Computational Study" [(pdf,269KB), (SlideSet,pdf,88KB)], pp. 256-285 in Anna Nagurney (ed.), Innovations in Financial and Economic Networks, New Dimensions in Networks Book Series, Edward Elgar Publishers, 2003.

Preferential job search (workers W → employers E) with choice and refusal of partners
<u>Purple directed arrow =: Refused work offer</u>
<u>Blue directed arrow =: Accepted work offer</u>

ACE Labor Market

- 12 workers with same **observable** structural attributes in initial period T=0
- 12 employers with same observable structural attributes in initial period T=0
- Only observable source of heterogeneity among workers and among employers is their expressed behaviors on the work-site

ACE Labor Market ...

- Each worker can work for at most <u>one</u> employer in each period T
- Each employer can provide at most <u>one</u> job opening in each period T

Work-site strategies in the initial period T=0 are randomly determined and private information

Each worker and employer has ...

Publicly available information about various market/policy protocols (e.g., unemployment benefit eligibility rules)

Private behavioral methods that can change over time

Privately stored data that can change over time

Worker Agent

Public Access:

// Public Methods

Protocols governing job search Protocols governing negotiations with potential employers Protocols governing unemployment benefits program Methods for receiving data Methods for retrieving Worker data

Private Access:

// Private Methods

Method for calculating my expected utility assessments Method for calculating my actual utility outcomes Method for updating my worksite strategy (learning)

// Private Data

Data about myself (my history, utility fct., current wealth...) Data recorded about external world (employer behaviors,...) Addresses for potential employers (permits communication)

Employer Agent

Public Access:

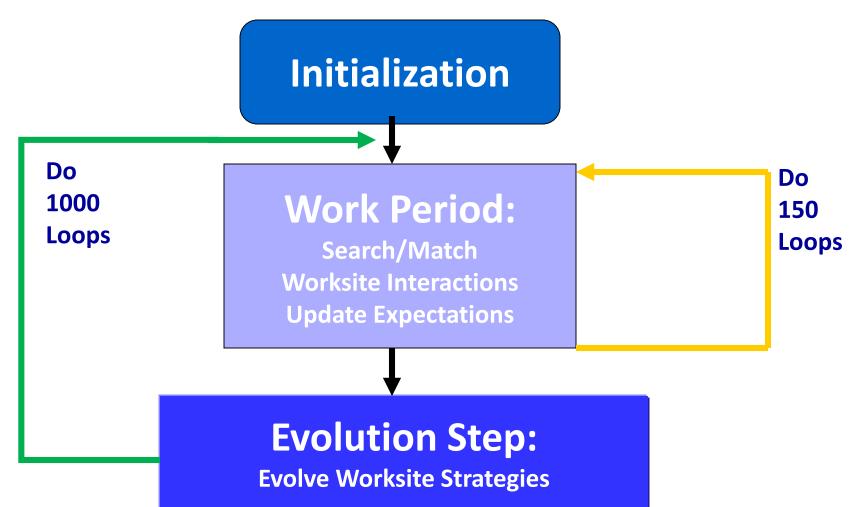
// Public Methods

Protocols governing search for workers Protocols governing negotiations with potential workers Protocols governing unemployment benefits program Methods for receiving data Methods for retrieving Employer data

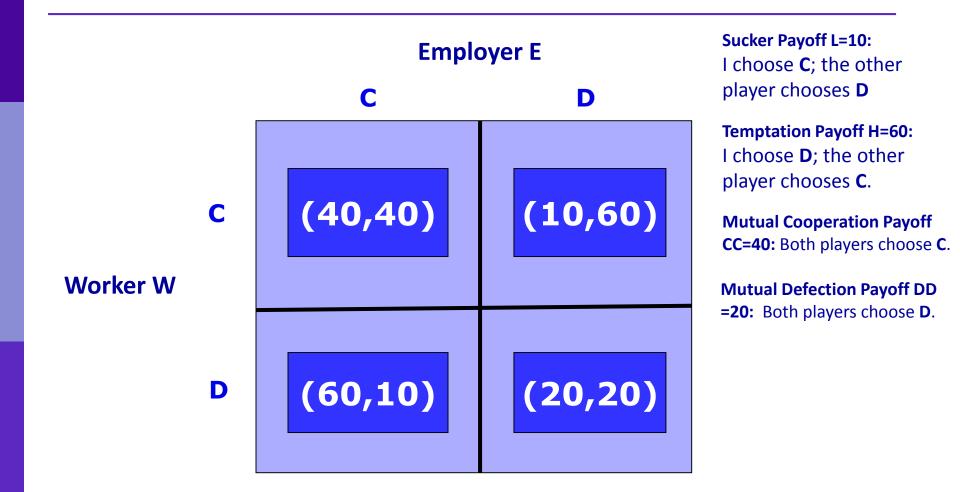
Private Access:

// Private Methods

Method for calculating my expected profit assessments Method for calculating my actual profit outcomes Method for updating my work-site strategy (learning)


// Private Data

Data about myself (my history, profit fct., current wealth...) Data recorded about external world (worker behaviors,...) Addresses for potential workers (permits communication)


Flow of Activities in the ACE Labor Market

- Workers make offers to preferred employers at a small cost per offer (quits allowed)
- Employers accept or refuse received work offers (firings allowed)
- Each matched pair engages in one work-site interaction (PD game with 2 possible moves: cooperate or defect)
- Any unemployed (unmatched) worker or vacant (unmatched) employer receives a UB payment
- After 150 work periods, each worker and employer updates its work-site strategy

Flow of Activities in the ACE Labor Market

Worksite Interactions as Prisoner's Dilemma (PD) Games

Possible W and E Player Moves: D = Defect (Shirk); C = Cooperate (Fulfill Obligations) Resulting W and E Player Payoffs: (WPayoff, EPayoff)

Key Issues Addressed

How do **<u>changes</u>** in the unemployment benefit UB affect:

- Worker-Employer Interaction Networks
- Worksite Behaviors: Degree to which workers/employers shirk (defect) or fulfill obligations (cooperate) on the worksite
- Market Efficiency (total surplus net of UB program costs, unemployment/vacancy rates,...)
- Market Power (distribution of total net surplus)

Experimental Design

Treatment Factor:

Unemployment Benefits Payment (UB)

Three Tested Treatment Levels:

UB=0, UB=15, UB=30

- Runs per Treatment:
 - 20 (1 Run = 1000 Generations; 1 Generation = 150 Work Periods)
- Data Collected Per Run: Network patterns, behaviors, & market performance (reported in detail for generations 12, 50, 1000)

Three Unemployment Benefit (UB) Treatments in Relation to Possible PD Game Payoffs

UB=0 < **L** = 10 First UB Treatment:

Second UB Treatment: L = 10 < UB=15 < DD = 20

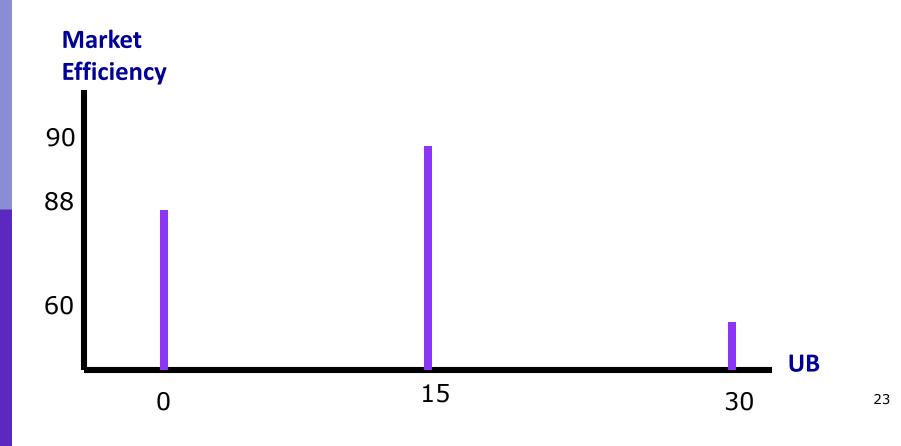
Third UB Treatment: $\mathbf{D} = 20 < \mathbf{UB} = 30 < \mathbf{CC} = 40$

> **NOTE:** Possible work-site PD game payoffs for each player are: L (Sucker) = 10 < DD (Mutual-D) = 20 < **CC** (Mutual-C) = 40 < **H** (Temptation) = 60

21

Market Efficiency Findings

As UB level increases from 0 to 30...


higher average unemployment and vacancy rates are observed; KNOWN EFFECT

more work-site cooperation observed on average among workers & employers who match. **Constant Constant Constant**

Note: These two effects have *potentially offsetting effects* on market efficiency.

Efficiency Findings ...

Market Efficiency (Utility less UB Program Costs) Averaged Across Generations 12, 50, and 1000 for three different UB treatments

Efficiency Findings...

> UB=15 yields <u>highest</u> efficiency

> UB = 0 yields *lower efficiency* (too much shirking)

> UB=30 yields *lowest efficiency* (UB program too costly)

Multiple Network Attractors

***** Two "attractors" observed for each UB treatment

No UB (0) or Low UB (15) :

- First Attractor = Latched W-E network supporting mutual cooperation;
- Second Attractor = Latched W-E network supporting intermittent defection

High UB (30):

- First Attractor = Latched W-E network supporting mutual cooperation
- Second Attractor = Completely disconnected network (total coordination failure)

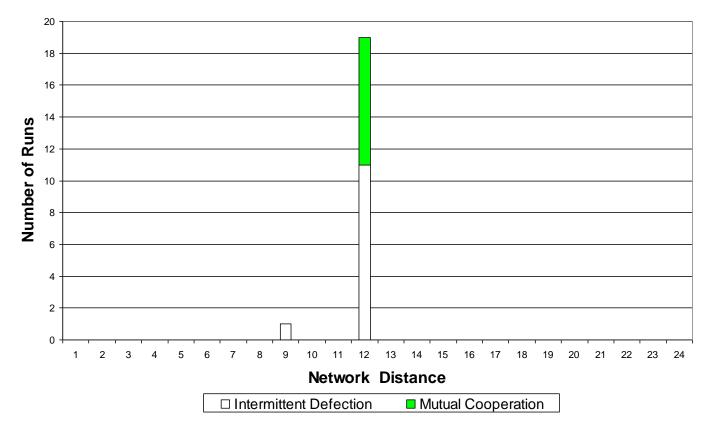
The Following Diagrams Report ...

Two-sided (W-E) network distributions, classified by distance
 (0 to 24) from a "stochastic fully connected" network:

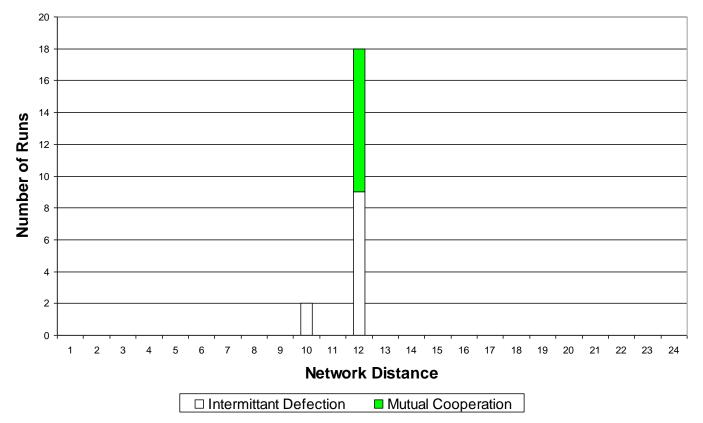
0 =: Stochastic fully connected network (random recurrence)

24 =: Completely disconnected (no W-E matches)

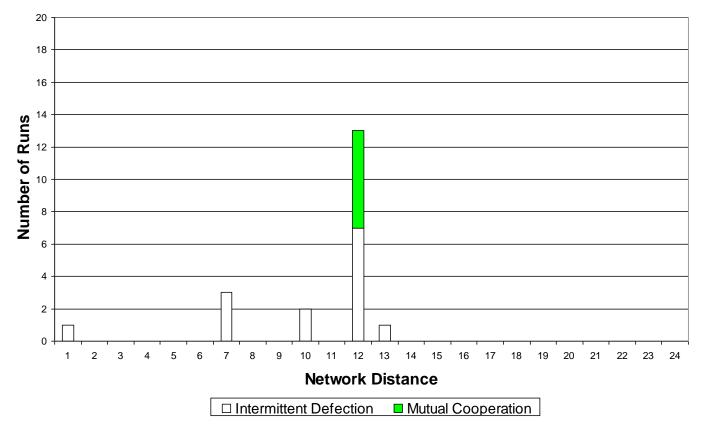
2 Worksite behaviors supported by these networks


Network Distribution for UB=0 (Sampled at End of Generation 12)

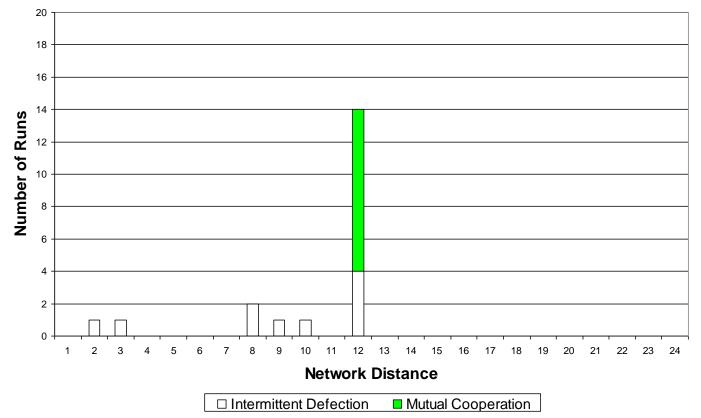
Network Distribution for ZeroT:12


Network Distribution for UB=0 (Sampled at End of Generation 50)

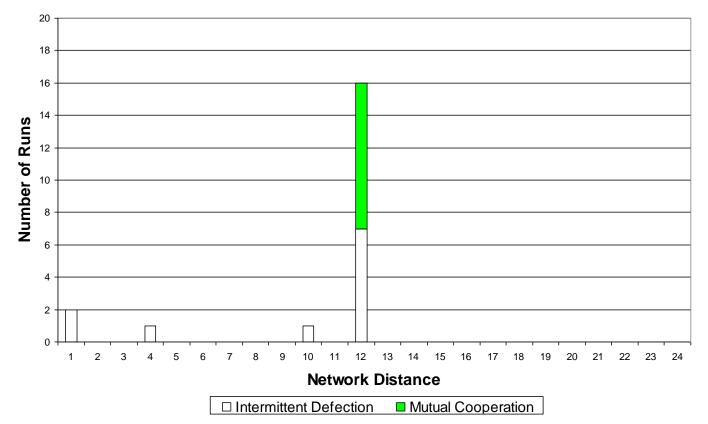
Network Distribution for ZeroT:50


Network Distribution for UB=0 (Sampled at End of Generation 1000)

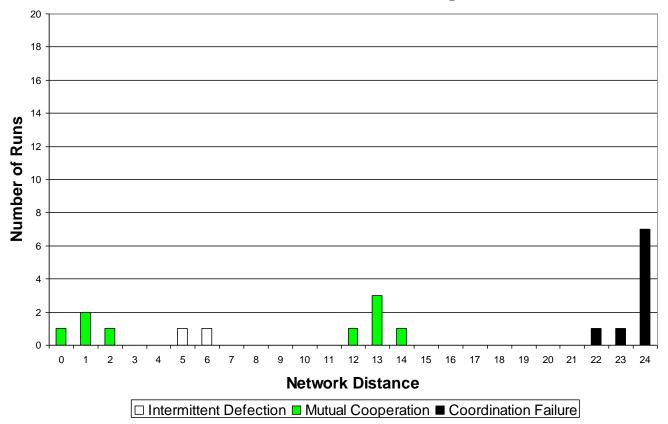
Network Distribution for ZeroT:1000


Network Distribution for UB=15 (Sampled at End of Generation 12)

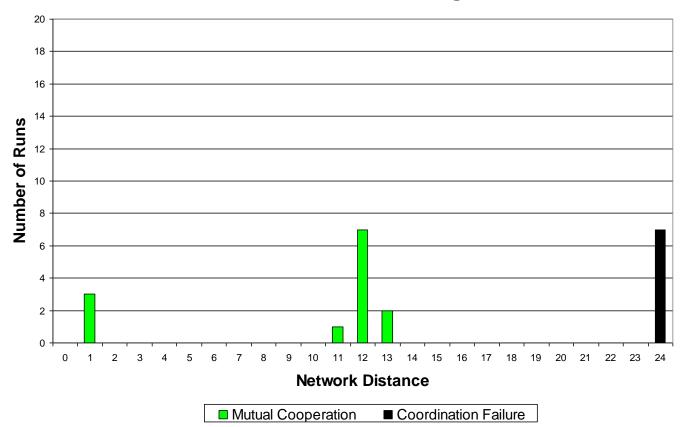
Network Distribution for LowT:12


Network Distribution for UB=15 (Sampled at End of Generation 50)

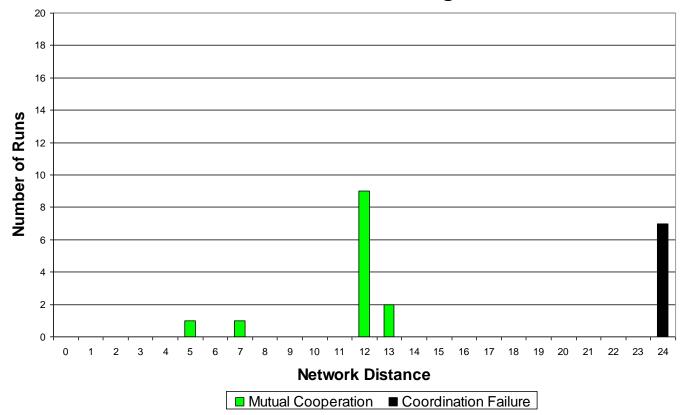
Network Distribution for LowT:50


Network Distribution for UB=15 (Sampled at End of Generation 1000)

Network Distribution for LowT:1000


Network Distribution for UB=30 (Sampled at End of Generation 12)

Network Distribution for HighT:12


Network Distribution for UB=30 (Sampled at End of Generation 50)

Network Distribution for HighT:50

Network Distribution for UB=30 (Sampled at End of Generation 1000)

Network Distribution for HighT:1000

Four Main Strands of ACE Research

- Normative Understanding

 (institutional design, policy selection, ...)
- Empirical Understanding (possible reasons for empirical regularities)
- Qualitative Insight/Theory Generation (self-organization of decentralized markets, ...)
- Method/Tool Advancement (representation, visualization, empirical validation, ...)

ACE and Institutional Design

Key Issue: Does an institutional design ensure **efficient**, **fair**, **and orderly social outcomes over time** despite attempts by participants to "game" the design for their own personal advantage?

ACE Approach:

- Construct an agent-based world capturing salient aspects of the institutional design.
- Introduce agents with behavioral dispositions, needs, goals, beliefs, etc. Let the world evolve. Observe and evaluate resulting social outcomes.

Examples: Unemployment benefit programs, Internet auctions, stock markets, negotiation protocols, electricity markets...

ACE and Empirical Regularities

Key Issue: Is there a causal explanation for **persistently observed empirical regularities?**

ACE Approach:

- Construct an agent-based world capturing salient aspects of the empirical situation.
- Investigate whether the empirical regularities can be reliably generated as outcomes in this world.

Example: ACE financial market research seeking the simultaneous explanation of financial market "stylized facts" <u>https://www2.econ.iastate.edu/tesfatsi/afinance.htm</u>

ACE and Qualitative Analysis

Illustrative Issue: What are the performance capabilities of decentralized markets? (Adam Smith, Ludwig von Mises, Friedrich von Hayek, John Maynard Keynes, Joseph Schumpeter ...)

ACE Approach:

- Construct an agent-based world qualitatively capturing key aspects of decentralized market economies (firms, consumers, circular flow, limited information, ...)
- Introduce traders with behavioral dispositions, needs, goals, beliefs, etc. Let the world evolve. Observe the degree of coordination that results.

Examples: Decentralized exchange economies (no "Walrasian Auctioneer"), double-auction markets (learning traders vs. "zero intelligence" traders),...

Potential Disadvantages of ACE for Economic Modeling

- Intensive experimentation is often needed (fine sweeps of parameter ranges to attain robust findings)
- * Multi-peaked rather than central-tendency outcome distributions can arise (strong path dependence possible)
- Can be difficult to ensure platform robustness (i.e., results that are independent of the hardware and/or software implementation of a model)
- **Effort required to gain computer modeling skills can be significant** (creative computational modeling, not simply the use of pre-existing models/programs, requires good computer programming knowledge)

Potential Advantages of ACE for Economic Modeling

- * Permits systematic experimental study of empirical regularities, economic institutions, and dynamic behaviors of complex economic systems in general.
- **Facilitates creative experimentation** with realistically rendered economic systems:
 - Using ACE comp labs, researchers/students can evaluate interesting conjectures of their own devising, with immediate feedback and no original programming required
 - Modular form of ACE software permits relatively easy modifications and/or major extensions of system features.

ACE Resources

ACE Website

https://www2.econ.iastate.edu/tesfatsi/ace.htm

ACE Handbook (Tesfatsion & Judd, Handbooks in Economics Series, North-Holland, 2006, 904pp)

https://www2.econ.iastate.edu/tesfatsi/hbace.htm

HANDBOOKS IN ECONOMICS 13 HANDBOOK OF COMPUTATIONAL ECONOMICS AGENT-BASED COMPUTATIONAL ECONOMICS **VOLUME 2 Editors:** Leigh Tesfatsion Kenneth L. Judd Hehehehehehehehehehe **NORTH-HOLLAND**

Current ACE Research Areas

https://www2.econ.iastate.edu/tesfatsi/aapplic.htm

- Learning and embodied cognition
- Network formation
- Evolution of norms
- Specific market case studies (labor, electricity, finance...)
- Industrial organisation
- Technological change and growth
- Multiple-market economies
- Market design
- Automated markets and software agents
- Development of computational laboratories
- Parallel experiments (real and computational agents)
- Empirical validation.... *and many more areas as well!*