ACE Market Game Examples

Presenter

Leigh Tesfatsion

Professor of Economics

Courtesy Professor of Mathematics

Department of Economics

Iowa State University

Ames, Iowa 50011-1070

https://www2.econ.iastate.edu/tesfatsi/

tesfatsi@iastate.edu

Outline

Example 1: ACE <u>double</u>-auction trading game

Example 2: ACE <u>posted</u>-auction trading game

Example 1: ACE Double-Auction Trading Game

J. Nicolaisen, V. Petrov, L. Tesfatsion, IEEE Transactions on Evolutionary Computation, 5(5), 2001, pp. 504-523 https://www2.econ.iastate.edu/tesfatsi/mpeieee.pdf

Key Issue Addressed:

Relative role of structure vs. learning in determining the performance of a double-auction design for a day-ahead electricity market.

Two Key Issues Addressed

* Sensitivity of market performance to changes in *market* structure:

RCON =: Relative seller/buyer concentration

RCAP =: Relative demand/supply capacity

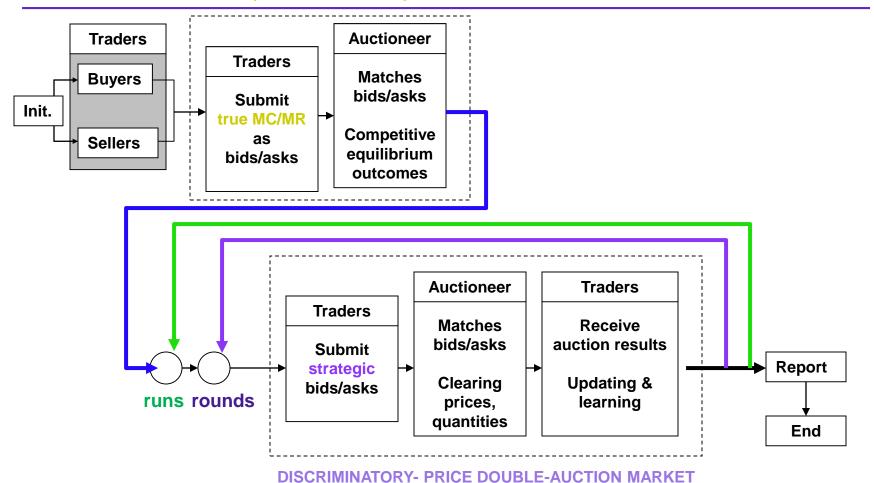
- * Sensitivity of market performance to changes in *trader* learning methods:
 - -- Learning Treatment 1: Individual Reinforcement Learning (RL)
 - -- Learning Treatment 2: Social Genetic Algorithm (GA) learning

Dynamic Flow of the Double-Auction World

World Constructed. World configures Double-Auction Market and Traders. World starts the clock.

Traders receive time signal and submit asks/bids to Double-Auction Market

Double-Auction Market matches sellers with buyers and posts matches


Traders receive posting, conduct trades, and calculate profits

Traders update their exp's & trade strategies

Loop

Dynamic Activity Flow for the Double-Auction Market

COMPETITIVE EQUILIBRIUM BENCHMARK (Calculated Off-Line)


Nine Structural Treatments Tested for Each Learning Treatment

Each <u>Structural</u> Treatment Consists of Four Market Structural Settings
Together with **True** Trader Demand and Supply Schedules

Ns = Number of Sellers Nb = Number of Buyers Cs = Seller Supply Capacity Cb = Buyer Demand Capacity			RCAP		
			1/2	1	2
	R C O N	1	Ns = 6 Nb = 3 Cs = 10 Cb = 10 Ns = 3 Nb = 3 Cs = 20 Cb = 10	Ns = 6 Nb = 3 Cs = 10 Cb = 20 Ns = 3 Nb = 3 Cs = 10 Cb = 10	Ns = 6 Nb = 3 Cs = 10 Cb = 40 Ns = 3 Nb = 3 Cs = 10 Cb = 20
		1/2	Ns = 3 Nb = 6 Cs = 40 Cb = 10	Ns = 3 Nb = 6 Cs = 20 Cb = 10	Ns = 3 Nb = 6 Cs = 10 Cb = 10

Cell (3,1) Cell (3,2)

True <u>Aggregate</u> Demand and Supply Schedule Specifications are Illustrated below for Structural Treatments (3,1) and (3,2)

The Double-Auction World Agent

Public Access:

```
// Public Methods
  The World Event Schedule, i.e., a system clock that
    permits inhabitants to time and synchronize activities
     (e.g., submission of asks/bids into the DA market);
  Protocols governing trader collusion;
  Protocols governing trader insolvency;
  Methods for receiving data;
  Methods for retrieving World data.
```

Private Access:

```
// Private Methods
  Methods for gathering, storing, and sending data;
// Private Data
  World attributes (e.g., spatial configuration);
  World inhabitants (DA market, buyers, sellers);
  World inhabitants' methods and data.
```

The Double-Auction Market Agent

Public Access:

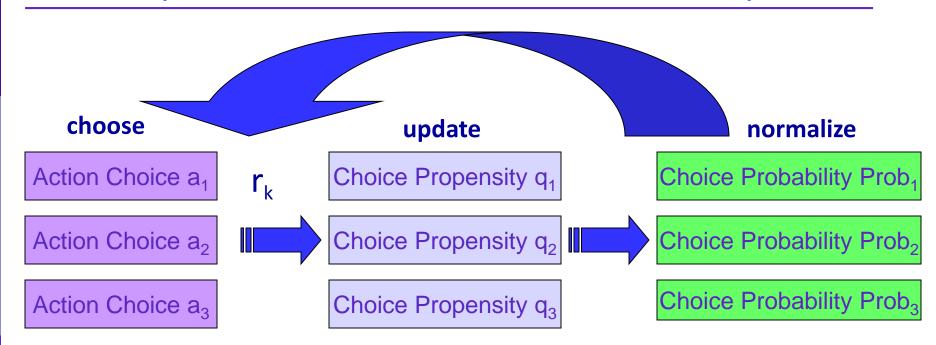
```
// Public Methods
getWorldEventSchedule(clock time);
Protocols governing the public posting of bids/offers;
Protocols governing matching, trades, and settlements;
Methods for receiving data;
Methods for retrieving Market data.
```

Private Access:

```
// Private Methods
  Methods for gathering, storing, and sending data.
// Private Data
  Data recorded about sellers (e.g., seller offers);
  Data recorded about buyers (e.g., buyer bids);
  Address book (communication links).
```

A Double-Auction Trader Agent

```
Public Access:
 // Public Methods
  getWorldEventSchedule(clock time);
  getWorldProtocols (collusion, insolvency);
  getMarketProtocols (posting, matching, trade, settlement);
  Methods for receiving data;
  Methods for retrieving Trader data.
Private Access:
// Private Methods
  Methods for gathering, storing, and sending data;
  Methods for calculating expected & actual profit outcomes;
  Method for updating my bid/offer strategy (LEARNING).
// Private Data
  Data about me (history, profit function, current wealth,...);
  Data about external world (rivals' bids/offers, ...);
  Address book (communication links).
```


What Do Seller & Buyer Traders Learn?

Strategically Reported Supply Offers and Demand Bids

- □ Offer for each Seller i = reported supply q_i^S of real power measured in units of Megawatts (MWs) together with a reported unit price p_i for real power measured in U.S. dollars \$ per MW.
- Bid for each Buyer j = reported demand q_j^D (MWs) for real power together with a *reported* unit price p_i (\$/MW).
- □ Action choice set for sellers = Their possible reported offers
- □ Action choice set for buyers = Their possible reported bids

Reactive Reinforcement Method Used for Learning Treatment 1: MRE Reactive Reinforcement Learning

(MRE = Modified Roth-Erev, see Nicolaisen et al., 2001)

Each trader maintains action choice propensities q, normalized to action choice probabilities Prob, to choose actions. A good (bad) profit r_k for action a_k results in a strengthening (weakening) of the propensity q_k for a_k and hence in the probability of choosing a_k .

Modified Roth-Erev Reactive Reinforcement Learning (MRE RRL)

- Initialize action propensities to an initial propensity value.
- Generate choice probabilities for all actions using current propensities.
- 3. Choose an action according to the current choice probability distribution.
- **4. Update** propensities for all actions using the reward for the last chosen action.
- 5. Repeat from Step 2.

MRE RRL: Updating of Action Propensities

Parameters:

- q_i(1) Initial propensity
- *∈* Experimentation
- Ø Recency (forgetting)

Variables:

- a_i Current action choice
- q_j Propensity for action a_j
- a_k Last action chosen
- r_k Reward for action a_k
- t Current time step
- N Number of actions

$$q_j(t+1) = [1-\phi]q_j(t) + E_j(\epsilon, N, k, t)$$

$$\mathcal{E}_{j}\!(\!m{\epsilon},\!\mathcal{N},\!k,\!t) \,= \left\{egin{array}{ll} r_{k}(t)[1-\epsilon] & ext{if } j=k \ q_{j}(t)rac{\epsilon}{N-1} & ext{if } j
eq k \end{array}
ight.$$

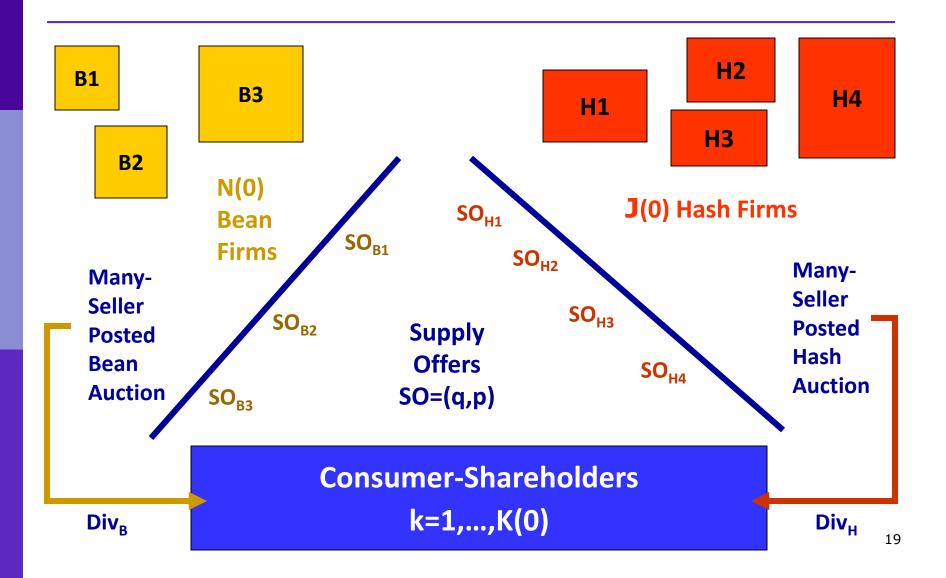
MRE RRL: From Propensities to Probabilities

$$p_j(t) = \frac{q_j(t)}{\sum_{j=0}^{N-1} q_j(t)}$$

 $p_j(t)$ = Probability of choosing action j at time t N = Number of available actions at each time t

Table of Experimental Results for <u>Learning Treatment 1</u>: MRE Reactive Reinforcement Learning

EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THE BEST FIT MRE ALGORITHM WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES s(1) = 9.00, r = 0.10, and c = 0.20


	1/2	1	2
	MP StdDev	MP StdDev	MP StdDer
	All Buyers: -0.13* (0.09)	All Buyers: -0.15* (0.09)	All Buyers: 0.10 (0.30)
	All Sellers: 0.55* (0.38)	All Sellers: 0.38* (0.33)	All Sellers: -0.10 (0.25
	Buyer[1]: -0.12* (0.08)	Buyer[1]: -0.13* (0.10)	Buyer[1]: 0.10 (0.30
	Buyer[2]: -0.20 (0.40)	Buyer[2]: -0.75* (0.33)	Buyer[2]: ZP (0.00
2	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00
	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.00
	Setter[2]: ZP (0.00)	Seller[2]: -0.50 (1.34)	Seller[2]: -0.12 (0.34
	Seller[3]: 0.54 (0.63)	Seller[3]: 0.45* (0.40)	Seller[3]: -0.10 (0.22
	Seiler[4]: ZP (0.00)	Seller[4]: ZP (0.00)	Seller[4]: ZP (0.00
	Seller[5]: ZP (0.00)	Seller[5]: -0.42 (1.67)	Seller[5]: -0.08 (0.36
	Seller[6]: 0.55 (0.60)	Seller[6]: 0.46* (0.41)	Seller[6]: -0.09 (0.24
	Efficiency: 99.81 (0.02)	Efficiency: 96.30 (0.05)	Efficiency: 99.88 (0.0
	MP StdDev	MP StdDev	MP StdDe
Relative	All Buyers: -0.22* (0.12)	All Buyers: -0.13* (0.10)	All Buyers: 0.13 (0.3)
	All Sellers: 0.80* (0.53)	All Sellers: 0.28 (0.35)	All Sellers: -0.10 (0.20
Concentration	Buyer[1]: -0.21* (0.11)	Buyer[1]: -0.11* (0.10)	Buyer[1]: 0.13 (0.33
	Buyer[2]: -0.31 (0.44)	Buyer[2]: -0.80* (0.40)	Buyer[2]: ZP (0.00
1	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00
	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.0
	Seller[2]: ZP (0.00)	Seller[2]: -0.37 (1.89)	Seller[2]: -0.10 (0.3-
	Seller[3]: 0.76* (0.63)	Seller[3]: 0.34 (0.45)	Seller[3]: -0.11 (0.2-
	Efficiency: 92.13 (0.09)	Efficiency: 94.59 (0.07)	Efficiency: 100.00 (0.0
	MP StdDev	MP StdDev	MP StdDe
	All Buyers: -0.21* (0.12)	All Buyers: -0.14* (0.08)	All Buyers: 0.09 (0.24
	All Sellers: 0.67* (0.46)	All Sellers: 0.30 (0.31)	All Sellers: -0.07 (0.19
	Buyer[1]: -0.18* (0.12)	Buyer[1]: -0.14* (0.10)	Buyer[1]: 0.09 (0.27
	Buyer[2]: -0.37 (0.47)	Buyer[2]: -0.77* (0.44)	Buyer[2]: ZP (0.00
1/2	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00)	Buyer[3]: ZP (0.00
	Buyer[4]: -0.20* (0.11)	Buyer[4]: -0.11 (0.11)	Buyer[4]: 0.10 (0.25
	Buyer[5]: -0.38 (0.47)	Buyer[5]: -0.73* (0.46)	Buyer[5]: ZP (0.00
	Buyer[6]: ZP (0.00)	Buyer[6]: ZP (0.00)	Buyer[6]: ZP (0.00
	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.00)	Seller[1]: ZP (0.00
	Seller[2]: ZP (0.00)	Seller[2]: 0.14 (2.69)	Seller[2]: -0.08 (0.27
	Seller[3]: 0.63* (0.55)	Seller[3]: 0.32 (0.48)	Seller[3]: -0.07 (0.17
	Efficiency: 91.84 (0.09)	Efficiency: 94.24 (0.07)	Efficiency: 100.00 (0.00

ZP indicates that zero profits were earned both in the auction and in competitive equilibrium.

Summary of Policy-Relevant Findings for Example 1: A Double-Auction Market Economy

- Market Efficiency: Generally high when traders use MRE-RRL (Modified Roth-Erev Reactive Reinforcement Learning) but not when traders use GA (Genetic Algorithm) social mimicry (type of learning matters).
- > Structural Market Advantage: Market microstructure is strongly predictive for the relative market advantage of the seller and buyer traders (*structural aspects matter*).
- > Strategic Market Advantage: Traders are <u>not</u> able to change their relative market advantage through learning alone (the importance of built-in <u>structural</u> market advantage).

Example 2: An ACE Posted-Auction Hash-and-Beans Economy

Dynamic Flow of ACE H&B Economy

World Constructed. World configures the Markets, Firms, and Consumers. World starts the clock.

Firms receive time signal and post quantities/prices in H & B markets

Loop

Consumers receive time signal and begin price discovery process

Firms-consumers match, trade, calculate profits/utilities & update wealth levels

Firms update their exp's & prod/price strategies

Dynamic Flow of Activity for H & B Firms

- Each firm f starts out (T=0) with money M_f(0) and a production capacity Cap_f(0)
- ◆ Firm f's fixed cost $FC_f(T)$ in each $T \ge 0$ is proportional to its current capacity $Cap_f(T)$
- At beginning of each T ≥ 0, firm f selects a supply offer =:
 (production level, unit price)
- ◆ At end of T ≥ 0, firm f is **solvent** if it has a NetWorth(T) =: [Profit(T)+ $M_f(T)$ +ValCap_f(T)] ≥ 0
- If solvent, firm f allocates its profits (+ or -) between M_f,
 CAP_f, and dividend payments.

Dynamic Flow of Activity for H&B Consumers

Each consumer k starts out (T=0) with a lifetime money endowment profile

$$(Mk_{youth}, Mk_{middle}, Mk_{old})$$

• In each $T \ge 0$, consumer k's **utility** is measured by

$$U_k(T) = (hash(T) - h_k^*)^{\alpha_k} \bullet (beans(T) - b_k^*)^{[1-\alpha_k]}$$

- In each T ≥ 0, consumer k seeks to secure maximum utility by searching for hash and beans to buy at lowest possible prices.
- At end of each T ≥ 0, consumer k dies unless consumption meets subsistence needs for hash and beans:

$$(h_k^*, b_k^*).$$

Experimental Design Treatment Factors

- ◆ Initial size of consumer sector [K(0)]
- ◆ Initial concentration [N(0), J(0), Cap(0) values]
- Firm learning (supply offers & profit allocations)
- Firm cost functions
- Firm initial money holdings [M_f(0)]
- Firm rationing protocols (for excess demand)
- Consumer price discovery processes
- ◆ Consumer money endowment profiles (rich, poor, ↗, ↘, life cycle u-shape)
- Consumer preferences (θ values)
- Consumer subsistence needs (b*,h*)

The ACE H&B World Agent

Public Access:

```
// Public Methods
The World Event Schedule, i.e., a system clock that permits inhabitants to time and synchronize activities (e.g., opening/closing of H & B markets);
Protocols governing firm collusion;
Protocols governing firm insolvency;
Methods for receiving data;
Methods for retrieving World data.
```

Private Access:

```
// Private Methods
  Methods for gathering, storing, and sending data;
// Private Data
  World attributes (e.g., spatial configuration);
  World inhabitants (H & B markets, firms, consumers);
  World inhabitants' methods and data.
```

An ACE H&B Market Agent

Public Access:

```
// Public Methods
  getWorldEventSchedule(clock time);
  Protocols governing the public posting of supply offers;
  Protocols governing matching, trades, and settlements;
  Methods for receiving data;
  Methods for retrieving Market data.
```

Private Access:

```
// Private Methods
  Methods for gathering, storing, and sending data.
// Private Data
  Data recorded about firms (e.g., sales);
  Data recorded about consumers (e.g., purchases);
  Address book (communication links).
```

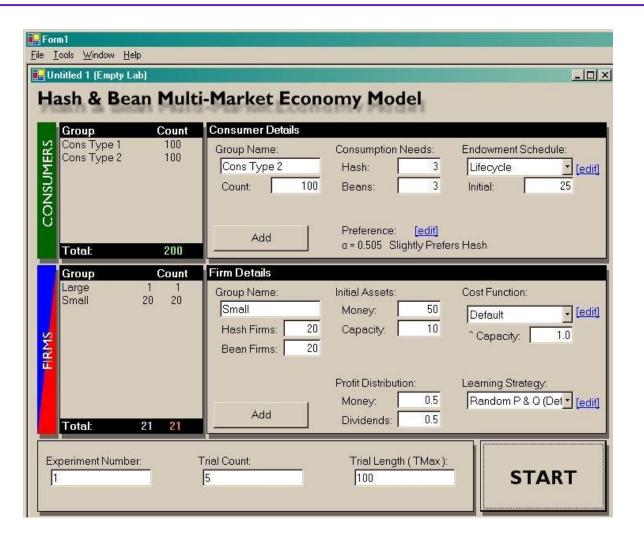
An ACE H&B Consumer Agent

```
Public Access:
 // Public Methods
  getWorldEventSchedule(clock time);
  getWorldProtocols (stock share ownership);
  getMarketProtocols (price discovery process, trade process);
  Methods for receiving data;
  Methods for retrieving stored Consumer data.
Private Access:
// Private Methods
  Methods for gathering, storing, and sending data;
  Method for determining my budget constraint;
  Method for searching for lowest prices.
// Private Data
  Data about me (history, utility function, current wealth,...);
  Data about external world (posted supply offers, ...);
  Address book (communication links).
```

An ACE H&B Firm Agent

```
Public Access:
 // Public Methods
  getWorldEventSchedule(clock time);
  getWorldProtocols (collusion, insolvency);
  getMarketProtocols (posting, matching, trade, settlement);
  Methods for receiving data;
  Methods for retrieving Firm data.
Private Access:
// Private Methods
  Methods for gathering, storing, and sending data;
  Methods for calculating expected & actual profit outcomes;
  Method for allocating my profits to my shareholders;
  Method for updating my supply offers (LEARNING).
// Private Data
  Data about me (history, profit function, current wealth,...);
  Data about external world (rivals' supply offers, ...);
  Address book (communication links).
```

Interesting Issues for Exploration


- ◆ Initial conditions → carrying capacity? (Survival of firms/consumers in long run)
- ◆ Initial conditions → market clearing?
 (Walrasian equilibrium benchmark)
- ◆ Initial conditions → market efficiency ?
 (Walrasian equilibrium benchmark)
- ◆ Standard concentration measures at T=0 → good predictors of long-run market advantage?
- Importance for market performance of trader learning abilities
 vs. market structure ? (Gode/Sunder, JPE, 1993)

ACE Hash-and-Beans Economy: Computational Laboratory Implementation

Christopher Cook and Leigh Tesfatsion, "An Agent-Based Computational Laboratory for the Experimental Study of Complex Economic Systems"

- Computational laboratory for the ACE Hash-and-Beans Economy
- Programming language C#/.Net (all WinDesktops)
- Development initiated for Econ 308 (ACE course)
 https://www2.econ.iastate.edu/classes/econ308/tesfatsion/
- Superseded by later ACE macroeconomic model developments https://www2.econ.iastate.edu/tesfatsi/amulmark.htm

ACE Hash & Beans Economy: Computational Laboratory Main Screen

