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mpirical evidence on the distributional characteristics of common stock returns indicates: (1) A power-
law tail index close to three describes the behavior of the positive tail of the survivor function of returns

(pr(r > x) ~x~¢), a reflection of fat tails; (2) general linear and nonlinear dependencies exist in the time series
of returns; (3) the time-series return process is characterized by short-run dependence (short memory) in both
returns as well as their volatility, the latter usually characterized in the form of autoregressive conditional het-
eroskedasticity; and (4) the time-series return process probably does not exhibit long memory, but the squared
returns process does exhibit long memory. We propose a model of complex, self-referential learning and reason-
ing amongst economic agents that jointly produces security returns consistent with these general observed facts
and which are supported here by empirical results presented for a benchmark sample of 50 stocks traded on
the New York Stock Exchange. The market we postulate is populated by traders who reason inductively while
compressing information into a few fuzzy notions that they can in turn process and analyze with fuzzy logic.
We analyze the implications of such behavior for the returns on risky securities within the context of an artificial
stock market model. Dynamic simulation experiments of the market are conducted, from which market-clearing
prices emerge, allowing us to then compute realized returns. We test the effects of varying values of the param-
eters of the model on the character of the simulated returns. The results indicate that the model proposed in this
paper can jointly account for the presence of a power-law characterization of the positive tail of the survivor
function of returns with exponent on the order of three, for autoregressive conditional heteroskedasticity, for

long memory in volatility, and for general nonlinear dependencies in returns.
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1. Introduction

Empirical evidence on the distributional characteris-
tics of common stock returns indicates: (1) A power-
law tail index close to three describes the behavior
of the positive tail of the survivor function of returns
(pr(r > x) ~ x~*) (Gopikrishnan et al. 1999, Plerou
et al. 1999), a reflection of fat tails; (2) general linear
and nonlinear dependencies exist in the time series of
returns (Scheinkman and LeBaron 1989, Hsieh 1991,
Brock et al. 1991); (3) the time-series return process is
characterized by short-run dependence (short mem-
ory) in both returns as well as their volatility, the lat-
ter usually characterized in the form of autoregressive
conditional heteroskedasticity (Bollerslev et al. 1992,
Glosten et al. 1993, Engle 2004); and (4) the time-
series return process probably does not exhibit long
memory (Lo 1991), but the squared returns process
does exhibit long memory (Ding et al. 1993, Bollerslev
and Wright 2000). Little is known, however, about
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what behaviors on the part of investors should give
rise to jointly observing these phenomena. We pro-
pose a model of complex, self-referential learning and
reasoning amongst economic agents that jointly pro-
duces security returns consistent with these general
observed facts. The model features investors who rea-
son inductively through experimentation with new
hypotheses while compressing information into a few
fuzzy notions that they can in turn process and ana-
lyze with fuzzy logic. Our approach is motivated first
by the cogent argument set forth by Arthur (1991,
1992, 1994, 1995), Arthur et al. (1997), and LeBaron
et al. (1999), who conclude that deductive reason-
ing must give way to inductive reasoning in com-
plex, ill-defined settings and that real capital markets
exhibit a high level of complexity. Second, we fol-
low a stream of thought proposed by Smithson (1987)
and Smithson and Oden (1999), amongst others, who
conclude that human reasoning can be modeled as if
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the thought process is described by the application
of fuzzy logic. Assuming mental behavior of this sort
allows the agent to step outside the rigid confines of
more traditional models. We embed this behavior in
an artificial stock market model that is utilized as a
vehicle for simulating the dynamics of a market from
which market-clearing security prices emerge, allow-
ing us to compute realized returns.

The structure of our model extends the important
work done in developing the Santa Fe Artificial Stock
Market Model studied by LeBaron et al. (1999). While
there are important differences between the models,
the two machine-learning methods produce similar
results. We feel that this is important to understand-
ing how agents learn and reason. One notable impli-
cation is that our framework requires, in principle,
much less of the agent. We feel that the fact that
our model produces results similar to the Santa Fe
Institute (SFI) model is both an important statement
about how individuals learn and reason, but is also
an endorsement of the importance of the SFI model,
because, turned around, we are saying that the SFI
model produces results similar to a model in which
agents learn in a much less structured fashion.

The learning system proposed by LeBaron et al.
(1999) makes use of a model in which each agent
is assumed to make choices predicated on a large
number of rules for the mapping of market condi-
tions into expectations, each with numerous condi-
tions.! Agents in their model formulate new rules
through the application of behavior emulated by a
genetic algorithm. Agents in our model, in contrast,
employ only a handful of hypotheses used to gener-
ate expectations. These hypotheses are composed of
only four rules each. Each rule employs a selection
of the information available, which will be used to
construct a conditional assignment of values to the
parameters of a model of predictions. An agent learns
in two ways. First, new hypotheses are generated
from existing hypotheses, and low-accuracy hypothe-
ses are replaced, with high probability, with newly
generated hypotheses. In this way, agents are select-
ing the variables to use in the construction of the
parameters of their prediction models. Second, val-
ues for the parameters of the prediction model, con-
ditional on the hypothesis, are formed by the agent
applying fuzzy logic to the observed data. The latter
allows us to reduce the number of hypotheses and
rules to a quantity that is more like what one might
expect versus the long list of rules utilized in the SFI
model.

! Specifically, LeBaron et al. (1999) assume that each agent possesses
100 rules.

We show that with-dividend returns computed
from simulated market-clearing prices for the envi-
ronment we propose exhibit a tail index in their sur-
vivor functions characterized by a power law with
exponent on the order of three, exhibit autoregres-
sive conditional heteroskedasticity, and exhibit gen-
eral nonlinear dependencies and long memory in the
volatility process. We also document the presence of
similar characteristics for a sample of 50 common
stocks traded on the New York Stock Exchange, which
act here as a benchmark. The appeal of our results is
twofold: First, the behavioral model we propose gen-
erates return characteristics for risky securities that
are similar to what are observed for actual stock
returns; and second, it does so as a product of an
environment in which economic agents are endowed
with learning and reasoning processes that are close
to what many disciplines believe is an accurate depic-
tion of actual behavior.

How investors learn and interact in complex cap-
ital market environments is crucial to understanding
the nature of financial security return distributions.
Complexity demands an alternative approach to the
analysis of markets and institutions. The approach we
take has its roots in work begun and continuing at
the Santa Fe Institute. Examples of such work focus-
ing on the behavior of security prices include Arthur
et al. (1997), Brock and Hommes (1998), LeBaron et al.
(1999), and Tay and Linn (2001). Tesfatsion (2002)
and LeBaron (2000, 2006) provide reviews of this
literature.?

Our model is motivated by the discrepancy be-
tween the idealized well-defined environment that
is commonly assumed in neoclassical financial mar-
ket models and the complex ill-defined markets that
are observed in practice. Neoclassical financial mar-
ket models are generally designed within the context
of a well-defined setting so that economic agents are
able to logically deduce the expected prices of secu-
rities that they in turn employ when setting their
demands for those securities.® Real stock markets do
not, however, typically conform to the severe restric-
tions required to guarantee such behavior. The actual
market environment is usually much more ill defined.

2In Tay and Linn (2001), we examine, amongst other things, the
time series of prices for a related model and in particular how
those prices deviate from rational expectations prices. That study
does not address the jointly observed behaviors in returns men-
tioned at the beginning of this section, and which are the focus of
this study. See also Arthur et al. (1997) and Palmer et al. (1994).
Leigh Tesfatsion of Iowa State University maintains a comprehen-
sive website devoted to agent-based computational economics and
finance (http://www.econ.iastate.edu/tesfatsi/ace.htm). LeBaron
(2000, 2006) presents a review of the foundation articles.

% An excellent example is the general equilibrium model developed
in Brock (1982).
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The dilemma is that in an ill-defined environment the
ability to exercise deductive reasoning breaks down,
making it impossible for individuals to form pre-
cise and objective price expectations. This implies that
participants would need to rely on some alternative
form of reasoning to guide their decision making. We
conjecture that individual reasoning in an ill-defined
setting can be described as an inductive process. The
application of inductive reasoning involves the for-
mulation of tentative hypotheses to fill in the gaps
left by incomplete information. These hypotheses are
then continually tested in the market and revised as
agents seek to improve their understanding of market
behavior. Agents in our model generate predictions
by the application of an inductive reasoning process
in which they rely on fuzzy decision-making rules
due to limits on their ability to process and condense
information.

Our study is close in spirit to a contemporaneous
study by Gabaix et al. (2006), which focuses on a
model of large fluctuations in stock returns and is
motivated by the presence of a power-law decay in
the survivor function of returns as well as trading
volume. Our study, however, differs in several impor-
tant ways from theirs. First, we present a model that
jointly produces a power-law decay in the survivor
function for returns, autoregressive conditional het-
eroskedasticity, and general nonlinear dependencies.
The central focus of Gabaix et al. (2006) is explain-
ing what gives rise to the power-law decay. Second,
our model focuses on the influence of learning and
reasoning by agents and the influence of nontradi-
tional aspects of these activities on the distributions
of returns. Gabaix et al. (2006) present an insightful
model built up from assumptions about the structure
of trading and the search for trading partners. We,
on the other hand, choose to minimize these influ-
ences to highlight how agents learn and reason in
an ill-defined environment. In this way, both studies
provide important and new insights into what factors
potentially give rise to the features of stock returns
already mentioned.

This paper is organized as follows. In §§2-5, we
begin by presenting empirical results on the existence
of a power law in the behavior of the survivor func-
tion of common stock returns; on the presence of
dependencies in the time series of returns, includ-
ing autoregressive conditional heteroskedasticity as
well as long memory in the volatility process; and
on the general existence of nonlinear dependencies in
stock returns. Our focus is on a sample of 50 com-
mon stocks traded on the New York Stock Exchange.
Section 6 goes on to summarize how agents learn
in the model and the market environment. Section 7
describes the dynamic simulation experiments of the
model. Section 8 presents an analysis of the returns

computed from the market-clearing prices generated
in the artificial stock market, drawing comparisons
with the results presented in §§2-5 for the benchmark
sample of stock returns.* We also investigate how the
characteristics of the returns generated by the model
vary with changes in values of key parameters of the
model. Section 9 presents our conclusions.

2. The Data and Descriptive Statistics
The data examined herein are comprised of (a) daily
with-dividend return series for 50 actively traded
NYSE-listed common stocks, and (b) 540 return series
computed from simulations of the artificial stock mar-
ket model. The values of parameters of the model are
varied to provide insight into their individual influ-
ence on the results of the simulations. Thirty simu-
lations of the market are generated for each set of
parameters examined. We defer our analysis of the
data from the artificial stock market simulations until
§8, following our discussion of the model’s struc-
ture and the design of the decision-making algorithm
ascribed to agents in the model. Instead, we begin by
focusing on the characteristics of the stock returns for
the 50 NYSE-listed stocks to establish a benchmark
for comparison. The source of the stock return data
is the Center for Research in Security Prices (CRSP)
Daily Return file, and the data included are the 2,780
daily returns ending December 31, 1998.

Table 1 presents summary statistics for the 50 actual
stock return series along with results for the simula-
tions, which will be discussed later in the paper. The
results for the actual stock returns appear in the col-
umn headed “Actual.” The sample statistic names are
listed in the leftmost column. We present the aver-
age values for the statistics and, in parentheses, the
standard errors of the point estimates of the statistics
computed across the 50 cases. When a test statistic is
reported in a table, we present the average value of
the test statistic computed across the relevant cases
and, in square brackets, the fraction of tests rejecting
the null hypothesis.

Notable amongst the descriptive statistics for the
actual returns is the high level of kurtosis and the
positive skewness. Kurtosis for a normal distribu-
tion should equal three, while skewness should equal
zero. Both measures for the sample return series devi-
ate from these benchmarks. The Jarque-Bera test (not
reported) rejects the null hypothesis of normality for

* All computations, including those within the simulations, are per-
formed using the technical computing language MATLAB, a prod-
uct of MathWorks, Inc.

® Returns from the period October 19-21, 1987, are excluded from
each series.
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each of the 50 sample series.® High kurtosis is consis-
tent with the presence of heavy or fat tails in the dis-
tribution, but may also be a manifestation of a peaked
distribution.

3. Power-Law Tail Behavior of the
Survivor Function

Numerous investigators (see Mandelbrot 1997,
Gopikrishnan et al. 1999, Plerou et al. 1999) have pre-
sented evidence indicating that the distributions of
common stock returns exhibit tails with greater mass
than would be predicted if the distributions were
Gaussian normal, the conclusion being that these
distributions exhibit fat or heavy tails. For a class
of distributions characterized by what is referred to
as regular variation in the tails, the far-right portion
of the tail of the survivor function is a power-law
function of the form’

@;

pr(r = 1)~ -, 0

where «; is the exponent characterizing the power-
law tail index for security i and x is a threshold above
which the algebraic relation is assumed to be valid.
Heavy-tailed models exhibit tails that decay more
slowly than the tails of the normal distribution. The
condition in essence states that far out in the tail the
distribution behaves like a Pareto distribution, in con-
trast to a normal distribution. As a consequence, the
tail probabilities decline according to a power func-
tion (Equation (1)). In contrast, the normal distribu-
tion decays much faster, in fact, as an exponential
function.® The principle motivation behind the analy-
sis of what is commonly referred to as the “tail index”
ais the assessment of the fatness in the tails of the
distribution. The index « declines as the tail becomes
thicker. A tail index in the range 0 < a <2 is con-
sistent with a distribution exhibiting heavy tails and
infinite variance.

© A description of the Jarque-Bera test statistic is provided in the
online supplement to this paper, which is provided in the e-com-
panion. (An electronic companion to this paper is available as part
of the online version that can be found at http://manscijournal.
informs.org/.)

"Let x be a random variable with cumulative probability distri-
bution function F,(x'). The survivor function S.(x') is defined as
S5, (x')=1—FE(x') =pr(x > x'). The regular variation condition is

im 5:(t) =x
M5, @)
(Feller 1966, Chap. VIII).

8 Specifically, the survivor function of the normal distribution is

proportional to
11 x?
= Zexp(-Z
2T X P 2

(Gourieroux and Jasiak 2001).

—a

We compute estimates of « for the panel of stocks
using the methods developed in Hill (1975).° The Hill
estimator is the correct estimator for the tail index if
the data are independent and identically distributed
(iid.). The empirical literature, however, provides
extensive evidence that stock returns follow a process
from the class of models characterized by autoregres-
sive conditional heteroskedasticity (Bollerslev et al.
1992, Engle 2004). Quintos et al. (2001) derive a
tail index estimator under the condition of GARCH
behavior.!” Therefore, we also present the tail index
estimates computed using the Quintos et al. (2001)
estimator. It is worth noting that the GARCH(1, 1)
process does not exhibit infinite variance. DuMouchel
(1983) has shown that the set of observations made up
of the top 10% of the ranked-by-value observations
of the total sample yield Hill estimates of « that per-
form well when the overall sample is large."! Given
that our sample sizes are relatively large, we chose
to follow the 10% rule in our calculations. For each
stock in the sample, we compute the Hill’s estimate
of &; using the largest 270 observations of the ranked
samples. Table 1 presents the average value of the
tail index computed using Hill’s estimator and, sep-
arately, the Quintos et al. (2001) estimator. The stan-
dard error computed using the 50 point estimates is
presented below each average. The summary results
are: Hill estimator (mean = 2.550, std. err. = 0.088);
Quintos et al. (2001) estimator (mean = 2.877, std.
err. = 0.118). The average tail index estimate based on
the Quintos et al. (2001) estimator is greater than the
average based on the traditional Hill estimator. This is
perhaps not a surprise, given the general finding that
the data exhibit ARCH-type behavior. The standard
errors computed using the 50 point estimates indicate
that the 50 point estimates are not widely dispersed.
These results are in general agreement with results
presented by Plerou et al. (1999) and others who con-
clude that an estimate of a on the order of three
describes stock returns for a wide range of return fre-
quencies, including daily data. One conclusion is that

9 Let Xy = X =0+ = Xy Tepresent the ordered values of a sample
{x}. The Hill estimator based on the k largest order statistics is

computed as
k -1
a= (% > log G0 >

n=1  Xk+D)

(Hill 1975). The Hill estimator is a maximum-likelihood estimator
for « of distributions that are characterized by the regular variation
condition described in Footnote 7.

10 Quintos et al. (2001) develop an estimator for the Hill tail index
under the condition that the series follows a GARCH(1, 1) pro-
cess. Quintos et al. show that if a random variable x follows a
GARCH(1, 1) process and has a tail index «, then x? has tail index
a/2.

LeBaron and Samanta (2006) have recently presented evidence
providing further support for the 10% rule.
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while heavy tails are consistent with the data, the typ-
ical estimate of « is greater than two, implying a finite
variance for the distribution.

4. Temporal Dependence

4.1. General Dependencies: The BDS Test

We begin by presenting a general test for dependence.
A test developed by Brock et al. (1987), the BDS test
(see also Brock et al. 1996) has the power to reject the
null hypothesis of ii.d. data against several alterna-
tive hypotheses including models exhibiting nonlin-
ear dependence.?

The BDS statistic tests the propensity of a series to
cluster within a distance between points of . If the
data are ii.d., the probability of the distance between
any pair of points being less than or equal to & will
be constant. In contrast, if the data exhibit nonlinear
dependence, then this will not tend to be the case. We
set the parameter & to 1.5 and 2 times the standard
deviation of the relevant data series. Kanzler (1999), in
an extensive study of the behavior of the BDS statis-
tic, has found that these settings for £ minimize the
failure of the BDS statistic to approximate the normal
distribution in finite samples under the null hypothe-
sis of ii.d. data. The BDS test statistic has an asymp-
totic normal distribution under the null hypothesis of
iid. data. Details on the test statistic are presented
in the online appendix, including an elaboration on
the definition of the “embedding dimension” n."> A
positive BDS statistic suggests that some form of clus-
tering is present on a too-frequent basis, or in other
words, patterns occur too frequently relative to what
would be expected if the data exhibited no depen-
dencies. We reject the null hypothesis at the 5% level
when |BDS, (6, T)| > 1.96.

Table 1 presents the average BDS test statistics com-
puted for the embedding dimension n =3 and & =
1.50 or ¢ =20 for the 50 actual daily time series of
returns. The numbers in square brackets are the frac-
tion of tests in which the null hypothesis is rejected
at the 5% level. In both cases, the null hypothesis
is rejected for every sample series at the 5% level,
indicating that some form of dependence is present
in each sample series. A range of embedding dimen-
sions was tested and the results always indicated
rejection of the null, and so are not presented to

12Gee also Brock et al. (1991, 1996), LeBaron (1997), and Kanzler
(1999) for further discussion and analysis of the BDS test. Several
alternative tests have been proposed in the literature, including
a test developed by Kaplan (1994), and the test of White (1989).
Barnett et al. (1997) show that for the large-sample experiments
they study, the BDS test always rejects the null when it should be
rejected.

3The BDS statistics were computed using the MATLAB routine
developed by Blake LeBaron of Brandeis University.

conserve space. The BDS test will reject the null
hypothesis of i.i.d. for alternative hypotheses in which
there exists linear dependence as well as nonlinear
dependence. Later we will return to tests in which
we explore whether dependence prevails after taking
into account both linear and nonlinear dependencies.
Before exploring that issue, we turn to the issue of
whether dependency is driven by short or long mem-
ory in the process generating stock returns.

4.2. Short Memory Tests

In this section, we discuss tests on the presence of
short-term memory, while the next section discusses
tests of long-term memory. Table 1 presents statis-
tics associated with two tests for short-term memory.
The tests are, respectively, the Ljung-Box Q statistic,
which tests for the presence of significant autocor-
relation in the return series, and the ARCH-LM test
of Engle (1982), which is a Lagrange multiplier test
of the hypothesis that a series exhibits autoregressive
conditional heteroskedasticity.'* Both statistics are dis-
tributed as )(5, where g equals the number of lags over
which the statistic is computed. Critical values at the
5% level are 11.07 (five lags) and 18.30 (10 lags). As the
numbers in brackets indicate, the Q test results reject
the null hypothesis of no autocorrelation in the actual
return series for roughly 60% of the sample series. In
contrast, the null hypothesis of no short-term ARCH
effects is rejected for all of the cases at each lag shown.
Additional lags were also tested and the results were
relatively invariant to the choice of 4. These results
indicate that while short-term memory is present in
some of the returns series, short-term ARCH effects
are present in every series.

4.3. Long Memory Tests

Lo (1991) presents evidence of no long-term memory
in stock returns. More recently, other authors have
presented evidence consistent with long memory in
the squared returns, suggesting long memory in the
dynamics of volatility (Ding et al. 1993, Bollerslev and
Wright 2000)."

Mandelbrot (1972) has suggested using the statis-
tic equal to the range divided by the standard devia-
tion first developed by Hurst (1951) as a method for
detecting long-range dependence in a series. Lo (1991)
has shown that this statistic is biased in the pres-
ence of short-range dependencies and has developed
a modified statistic that accounts for the presence of

“The constructions of the Ljung-Box Q statistic (Ljung and Box
1979) and the ARCH-LM test of Engle (1982) are described in the
online supplement to this paper.

15 The stochastic process of a random variable %, is characterized
as exhibiting long memory (long-range dependence) if there exists
a real number H and a constant ¢ such that the autocorrelation

function p(j) decays as p(j) = ¢j*'~% as j — oc.
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short-range dependence, which has power to detect
long memory, but has reasonably behaved size when
the null of no long memory is true. The results pre-
sented in the prior section suggest that we should
account for short-term dependencies in our tests of
long-term memory. Details on the test statistic are pre-
sented in the online appendix.

We present values for Lo’s V statistic for the lags
180 and 270. The 5% two-tailed critical region for the
value of the V statistic is equal to [0.809,1.862] (Lo
1991, Table II). A computed value outside this region
would lead us to reject the null hypothesis of no long
memory. Table 1 indicates that in most of the cases
the V test does not reject the null hypothesis of no
long-term memory in the actual return series. The
average V statistics for the actual returns are always
within the critical region. The rejection rates are vir-
tually 0%. We conclude that the actual series do not
exhibit long memory. These results are consistent with
the results presented by Lo (1991) for daily returns on
stock indices.

Long-term memory in the squared series would
be consistent with the presence of long memory in
the time-varying volatility process associated with the
series. The V test statistic, labeled V,, is used to test
the null hypothesis of no long-term memory in the
squared returns. The results indicate that the average
V, statistics are always outside the critical region. Fur-
ther, the rejection rate is relatively high for each lag.
We conclude from these results that the volatility pro-
cesses associated with many of these series tend to
exhibit long memory, although this is not universal
across all the sample series.

5. Temporal Dependence Accounting
for Short-Term Memory

5.1. ARMA-TARCH Effects

We present test results based on the residual series
computed from models that account for short mem-
ory in both the level of the return series as well
as ARCH-type effects (Bollerslev et al. 1992, Engle
2004)."® We focus our attention on the TARCH, or
threshold autoregressive conditional heteroskedastic-
ity, class of models (Glosten et al. 1993). These models
account for the possibility that the market reacts in an
asymmetric fashion to good and bad news, and have
been shown to have good explanatory power. The
general structure of the ARMA(m, n)-TARCH(p, q)
model for a return series 7, , is composed of an equa-
tion for the mean and an equation for the conditional

16See Engle (1982) for the original development of the ARCH
model.

variance:

m

n
ry=ay+ Z bite_,+ & — Z i€, 2
w=1

=1

q 4
O-tz =w + Z ansffn + ya%—ldt—l + Z Bwa-t{m" (3)

n=1 w=1

where we suppress the i subscript, d, =1 if g <0
and 0 otherwise, &, = 0,z, represents a random error
where z, is a normally distributed random variable
with zero mean and variance one, and a’f is the condi-
tional variance. The indicator variable d, captures the
asymmetric reaction of the market to good and bad
news. If the ARMA-TARCH model is correctly speci-
fied, then the standardized residuals of the estimated
model z, = &,/a, will be i.id.

We fit ARMA-TARCH models to each of the data
series using maximum-likelihood methods."” Table 2
presents Q statistics and ARCH-LM test statistics and
rejection rates for the standardized residuals of the
50 models for the lags five and 10. The Q statis-
tics and the ARCH-LM test statistics indicate that
we cannot, respectively, reject the null hypotheses
of zero autocorrelation in the standardized residuals
and no autoregressive conditional heteroskedasticity
in the standardized residuals. The table also presents
BDS statistics for the computed standardized residu-
als. These tests indicate that in roughly half the cases,
dependence still remains after accounting for short-
term memory in the series and for TARCH effects.

We recomputed the long-memory test statistics V
and V, described earlier for each of the standardized
residual series. The results are similar to those shown
in Table 1. The V tests do not reject the null hypoth-
esis of no long memory in the level of each series of
standardized residuals; however, the V, tests do reject
the null for the squared residual series.'®

5.2. Conclusions

We conclude from these results that the sample of
common stocks jointly exhibit a power-law decay in
the positive tail of the survivor function of returns
with a tail index of roughly three, consistent with a
distribution exhibiting heavy tails and finite variance.
The data also exhibit autoregressive conditional het-
eroskedasticity and exhibit dependencies after both
linear filtering and filtering out the influence of con-
ditional heteroskedasticity. Finally, we find that the
squared residuals of models fitted to account for lin-
ear effects as well as conditional heteroskedasticity
continue to exhibit long memory. We now turn to a
discussion of our model of investor behavior and then

17 Estimation is performed using the MATLAB GARCH Toolbox.
!® The results are available from the authors upon request.
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to the empirical experiments, followed by a discus-
sion of how those results compare to those found for
the actual stock returns.

6. The Model: Learning, Price

Predictions, and Demands
The model begins with a dividend, 4,, announced
publicly at time ¢, and which follows an autoregres-
sive process of the form

dy=d+p(d,_,—d)+v, (4)

where v, is normally distributed with zero mean and
constant variance o? (Gaussian noise). Equation (4)
is, of course, an abstraction because dividends are
not paid continuously. One justification for the spec-
ification used is that while dividends are not paid
continuously, information that can influence beliefs
about firms does arrive on a more frequent basis. We
regard the dividend arrival as a proxy for informa-
tion arrival. A dividend (information) shock may lead
to an over- or underreaction, which is then corrected
via the regression to the mean process built into the
model. Under the partial adjustment condition 0 <
p <1, model (4) exhibits negative feedback.

Agents observe past prices and the dividend.
The forecasting model employed by any agent k is
assumed to be linear in past prices and dividends and
is defined by

Elpi+dia]= a, i (py+dp) + by, )

where g, ; and b, ; are parameters selected by agent k
based on one of the hypotheses j in his set of hypothe-
ses. Agents in the model hold multiple hypotheses
for computing the parameter values of Equation (5).
The hypothesis selected as a basis for the choice of
the parameters is the most accurate hypothesis held
by the agent based on the performance of the hypoth-
esis in predicting the price plus dividend during the
immediate past. Forecast precision is measured by the
inverse of

ei,]’,t =(1- 0)61%,;', i1 H0[(p+d)—E i1 (p +d)?, (6)

where k indexes the individual agent and j indexes
a hypothesis held by individual k. We set 6 = 0.02.
The variable ¢, ; , is the deviation of the actual price
plus dividend from the price plus dividend prediction
made by individual k using hypothesis j for period ¢.

Hypotheses are modified, rejected, or carried for-
ward based on what will be referred to as their fitness

YWe set §# =0.02 in the simulations. Similar specifications are
employed by LeBaron et al. (1999) and Tay and Linn (2001).

in a fashion akin to induction.® The fitness of each
hypothesis is calculated as f; ; , = —¢;, j,1 — Bs, where
B is a constant and s is the number of information
bits utilized by the hypothesis.?! The fitness mea-
sure imposes higher costs on hypotheses that pro-
duce larger squared forecast errors and that employ a
greater amount of information.

Agents actively engage in the generation of new
hypotheses through what we will call combination
experiments and individual experiments. Combination
experiments involve combining elements of pairs of
accurate hypotheses (high fitness) in an attempt to
discover even more accurate hypotheses. Such activ-
ity is assumed to occur with a fixed probability =,
the probability of a combination experiment. A new
hypothesis so generated then replaces (with high
probability) a low-accuracy hypothesis amongst the
set of hypotheses held by the agent. Individual exper-
iments involve the modification of already existing
hypotheses by alteration of the parameters associated
with the hypothesis. Individual experiments occur
with probability (1 — ). Therefore, individual exper-
iments only occur when combination experiments do
not. Agents revise their hypotheses every 7 periods.”
We define 7 as the learning frequency. Hypotheses
are selected for change based on their fitness values.
Stochastic universal sampling is used when selecting
hypotheses to combine because this method allows
the probability of selection to depend directly on the
fitness value. Suppose that a combination experiment
is to be implemented. Once selection of two hypothe-
ses has occurred, the method of uniform crossover is
employed to arrive at a new hypothesis that combines
the two old hypotheses. The selection of the hypothe-
sis to be replaced by the new hypothesis is also imple-
mented by invoking stochastic universal sampling, in
which low fitness value hypotheses will be replaced
with high probability. The new, untested hypotheses
that are created will not, in and of themselves, cause
disruptions because they will be acted on only if they
prove to be accurate. This avoids brittleness and pro-
vides what machine-learning theorists call “graceful-
ness” in the learning process. A detailed outline of

O The argument that individuals will form their expectations by
induction in ill-defined environments has been suggested as an
alternative to the deductive model usually invoked (for instance,
Arthur 1991, 1992, 1994, 1995; Arthur et al. 1997; Blume and Easley
1995; LeBaron et al. 1999; Rescher 1980). Induction is a means of
finding the best available answers to questions that transcend the
information at hand.

Z'We set B = 0.000005. Similar specifications are employed by
LeBaron et al. (1999) and Tay and Linn (2001).

2 Learning by induction is modeled using a genetic algorithm
(Holland and Reitman 1978, Holland et al. 1986, Goldberg 1989).
The processes of recombining and experimentation are referred to
as crossover and mutation in the literature on genetic algorithms.
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the process invoked in combination and individual
experiments is provided in the online supplement to
this paper.

At each date an agent assigns values to the param-
eters (ak,j, bk,j)/ j=1,...,], where j denotes the
hypothesis j held by the individual k. The values for
each (a ;, b ;) pair are determined through the appli-
cation of fuzzy logic.”

Let X denote a universe of objects and x denote an
individual element in that universe. Let A be a subset
of X. Define a membership function

1 ifxeA,

Halx) =
0 otherwise .

The value assigned by the function u,(x) for a given
x represents the degree of membership of x in A.
Classical set theory assigns the discrete values one or
zero to u,(x) depending on whether the first or sec-
ond conditions are met?* Fuzzy set theory expands
the domain of the membership function to include
all numbers in the real interval [0, 1]. Intuitively, the
larger the value of u,(x), the more x € A. Fuzzy logic
deals with propositions of the form x € A, where A
is a set and the degree of truth of the proposition is
given by w4 (x).

The agent observes a set of market descriptors,
which we call fuzzy input variables and will refer to
as information bits. Five market descriptors (p * r/
d, p/MA(5), p/ MA(10), p/ MA(100), and p/MA(500))
are computed. The variables r, p, and d are the interest
rate, price, and dividend, respectively. The variable
MA(n) denotes an n-period moving average of prices.
Thus, the first information bit reflects the current price
in relation to the current dividend and is a “funda-
mental” bit. The remaining four bits are “technical”
bits indicating whether the price history exhibits a
trend or similar characteristic. The fuzzy output vari-
ables are the parameters (a; ;, by ;).

Each agent holds five hypotheses (] =5). Each of
these hypotheses contains four rules. A rule maps the
information from the inputs to the outputs via a logi-
cal statement of the form “if (fuzzy proposition), then
(fuzzy proposition),” for example, If fund is x; and
techl is x, and tech?2 is x; and tech3 is x, and tech4 is xs,

% Zadeh (1962, 1965) developed the original exposition on fuzzy
logic. Smithson (1987) and Smithson and Oden (1999), amongst
others, present evidence on reasoning, and the human thought pro-
cess that suggests the assertion that individuals reason as if by the
axioms of fuzzy logic is supported.

2 A paradox, however, arises within classical set theory regarding
the assignment of membership. Consider the following: A pile of
sand containing one particle is small. Adding one additional particle the
pile remains small. Therefore every pile is small (by induction). This illus-
tration clearly poses a dilemma because our natural reaction would
be that not every pile is small.

then a is y; and b is y,. The symbols x; and y; are lin-
guistic statements of the form “low, moderately low,
moderately high, high.” We define x;, x,, x5, x4, X5 €
{0,1,2,3,4} and y,,y, € {1, 2,3, 4}, where the codes
1, 2, 3, 4 correspond to the characteristics (low, mod-
erately low, moderately high, high) and the code 0
implies that the information bit is not used in the
evaluation of the rule.

The agent begins by resolving all fuzzy statements
in the antecedent of each rule of a hypothesis to a
degree of membership between zero and one, where
the membership functions are described by specific
functional forms.” For instance, the rule might say “if
x is high, then y is high.” The first step is to assign a
number to the degree of membership that x belongs
to the fuzzy set “high.” If x is one and the lowest
bound of the set “high” is five, then a value for the
degree of membership of x in the high set would be
zero. If there is only one part to the antecedent, this
is the degree of support for the rule. If the rule is of
the form “if x is ‘high” and z is ‘moderate’ then y is
‘high,”” then there are two antecedents, x and z, and
we must establish the degree of membership of each
in the respective sets (“high” for x and “moderate” for
z). Once the membership function values are estab-
lished, they must be aggregated into a measure of
overall support. The rules in our model are specified
like the illustration with the logical connective “and.”
We therefore seek the intersection of the support lev-
els of each of the antecedents. We thus apply the inter-
section operator in such situations (Zadeh 1965). In
our example with two antecedents, suppose that the
membership value for x in “high” was 0.5 and for z in
“moderate” was 0.3. The intersection operator would
conclude that the overall support for the rule was 0.3.
This produces a number that represents the degree of
support for the antecedent of the rule as a whole.

The agent then uses the degree of support for the
antecedents of the entire rule, a number between zero
and one, to determine a membership value for the
output variable. In the above example “if x is ‘high’
and z is ‘moderate’ then y is ‘high,’” the degree of
support for the rule was 0.3. This defines an area of
the membership function “high” for y. This in turn
produces a “mass,” as can be seen in the illustration
provided in Figure 1 under either the columns labeled
a or b, which are the output variables. The masses
assigned to y by each rule of a hypothesis are then
aggregated using what is referred to as the centroid
method.

% In the simulations, the input variables are associated with trian-
gular membership functions for the sets moderately low and mod-
erately high, and with trapezoidal-shaped membership functions
for the sets high and low. The output variables are associated with
Gaussian-shaped membership functions for each of the sets low,
moderately low, moderately high, and high.
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Figure 1
Logic Reasoning System
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The descriptors, fund, tech2, and tech3 are excluded from the hypothesis.

Rule 1: If techl is high and tech4 is low, then a is moderately high and b is low.

Rule 2: If techl is moderately low and fech4 is moderately high, then a is moderately low and b is moderately low.
Rule 3: If techl is low and tech4 is moderately low, then a is moderately high and b is high.

Rule 4: If techl is moderately high and tech4 is high, then a is high and b is low.

Each agent forecasts the next period’s price and div-
idend (Ek,t[ptﬂ +d,,,]) using the forecast parameters
from the rule base (hypothesis) in her set that has
proven to be the most recently accurate. The hypoth-
esis that has performed best in terms of the moving-
average squared forecast error described earlier is the
one selected as the basis for making a prediction
about the next period’s price + dividend.

The share demand by agent k at time t equals

Ek,j, P +dial —p(1+7)
X, t =

/ 7)

~2
AT 4 pvd

where p, is the price of the risky asset at time ¢,
A is the degree of risk aversion, r is the relevant
risk-free interest rate for the time horizon, and the
expectation (prediction) and variance estimate are
conditional on hypothesis j, the most recently accu-
rate of the hypotheses held by the agent.?

% The optimal demand function is derived from the first-order con-
dition of expected utility maximization of agents with exponential
utility of consumption under the condition that the random vari-
able of interest is normally distributed. However, when the distri-
bution of stock prices is non-Gaussian, the above connection to the
maximization of expected utility under an exponential utility func-
tion no longer exists, so in those cases we simply take the demand

Agents in the model know that Equation (7) will
hold in a homogeneous rational expectations equilib-
rium when the degree of risk aversion is constant
across individuals. However, the fact that they must
use induction to form and modify hypotheses and
that they use fuzzy rules when forming expectations
means that they never know if the market is actu-
ally in equilibrium. We assume that agents choose
to use (7) when setting their demands, knowing that
sometimes the market will be in equilibrium and that
sometimes it will not. Each agent is endowed with
one share, and hence the market-clearing condition is

N
Zxklt = N. (8)
k=1

The market-clearing price, p,, is found by summing
Equation (7) over all agents and then setting the sum
equal to N, the number of shares available. Once
the market clears, the price and dividend at time ¢
are revealed and the accuracies of the rule bases are
updated.

function in (7) as given. The moving average of the squared fore-
cast error for the hypothesis selected (Equation (6)) serves as the
estimate of the variance.
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Table3  Parameter Values of the Artificial Stock Market Model
Learning Risk-free Pr(Comb) Pr(Indiv) Number of hypotheses
frequency d p o? interest rate A T (1—m) N (rule bases)

Case 1 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5
Case 2 30 0.0137 0.5 0.0005 Actual 0.50 0.5 0.5 25 5
Case 3 30 0.0137 0.5 0.0005 Actual 0.50 0.8 0.2 25 5
Case 4 30 0.0137 0.1 0.0005 Actual 0.50 0.2 0.8 25 5
Case 5 30 0.0137 0.9 0.0005 Actual 0.50 0.2 0.8 25 5
Case 6 10 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5
Case 7 1,000 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5
Case 8 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 10 5
Case 9 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 50 5
Case 10 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 3
Case 11 30 0.0068 0.5 0.0005 Actual 0.50 0.2 0.8 25 5
Case 12 30 0.0041 0.5 0.0005 Actual 0.50 0.2 0.8 25 5
Case 13 30 0.0137 0.5 0.0003 Actual 0.50 0.2 0.8 25 5
Case 14 30 0.0137 0.5 0.0007 Actual 0.50 0.2 0.8 25 5
Case 15 30 0.0137 0.5 0.0005 +10% shift 0.50 0.2 0.8 25 5
Case 16 30 0.0137 0.5 0.0005 +10% shift 0.50 0.2 0.8 25 5
Case 17 30 0.0137 0.5 0.0005 Actual 0.10 0.2 0.8 25 5
Case 18 30 0.0137 0.5 0.0005 Actual 0.90 0.2 0.8 25 5

Notes. The table lists the cases investigated in the simulation of the artificial stock market and the parameters varied across the cases. Learning frequency r:
the number of periods between the dates on which any agent updates his hypotheses; d: the mean dividend (Equation (4)); p: adjustment factor for the dividend
in the dividend-generating process (Equation (4)); o2: variance of error in the dividend-generating process (Equation (4)); A: coefficient of risk aversion for
each agent; Pr(Comb) = #: probability of combination experimentation; Pr(Indiv): probability of individual experimentation (=1 — Pr(Comb) = (1 — 7)); N:
number of agents; number of rule bases: number of hypotheses about the future course of the (price + dividend) by each agent. Each rule base contains four
rules used in the construction of the two parameters needed for predicting the next period’s (price + dividend) from information on five market-determined
variables (five information bits) observed by all agents. Agents represented in the model employ induction and reason as if by fuzzy logic when forming
their expectations. The process is modeled as a genetic-fuzzy classifier system. We use the daily one-year T-bill rates in the secondary market for the 5,000
days ending September 5, 2001 when computing demands using Equation (7). In the simulation, we divide this interest rates series by 365 to obtain the
approximate daily interest rates. The probability of combination experimentation is the probability that elements of two hypotheses will be split and combined.
The probability of individual experimentation is the probability that an agent will have one of his rule bases subjected to random change. When a particular rule

base is selected for experimentation, the probability that any individual information bit is changed equals 0.5.

7. The Market Experiments

We examine the implications of our conjecture about
the learning and reasoning processes for the under-
lying hidden structure of the risky security’s returns.
We present an empirical comparative statics analysis
emphasizing how the results change as a consequence
of changing the parameter values of the model as well
as how the results compare with those documented
in Tables 1 and 2 for the 50 sample series.”

We examine 18 different combinations of parame-
ter values, each of which we refer to as a case, where
we use Case 1 as the base for comparison purposes.
The parameters of the model and the values examined
for each case are tabulated in Table 3. Specifically, we
vary the following parameters of the model: learn-
ing frequency 7, the mean of the dividend process d,
the adjustment coefficient in the dividend process p,
the variance of the dividend process o2, the level
of the risk-free interest rate r, the risk-aversion param-
eter A, the probability of a combination experiment
7 and, by implication, the probability of individual
experimentation 1 — 7, the number of agents in the

% The model was coded and simulated using MATLAB, a product
of MathWorks, Inc.

model N, and the number of rule bases (hypotheses)
that an agent can hold.

We use the time series of equivalent daily risk-free
interest rates computed from the series of one-year
U.S. T-bill rates for the 5,000 days ending Septem-
ber 5, 2001 as our proxy for the risk-free interest rate
series used in computing demands. Tests of the sen-
sitivity of the results to changes in the risk-free rate
involve either a 10% shift up or a 10% shift down in
the entire series of daily rates. We keep some parame-
ters fixed throughout, including the number of infor-
mation bits (market data items) available, set at five,
the number of forecast parameters, set at two, and the
number of rules in any rule base, set at four. When
a particular rule base is selected for experimentation,
the probability that any individual information bit is
changed equals 0.5.

Thirty simulations are conducted for each case rep-
resented in Table 3. The simulations for any case are
independent only in the sense that the seeds of the
algorithms used to generate pseudorandom variables
differ across the simulations for each case. This pro-
vides us with 30 separate return series for each case,
allowing us to compute estimates of various descrip-
tive statistics as well as test statistics for each of the
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30 trials. We believe that 30 observations should pro-
vide a good indication of the typical behavior of the
model under each assumed set of parameter values.
We began each simulation with a random initial
configuration of rules. We then simulated the market
for 2,500 periods to allow any asymptotic behavior
to emerge. Subsequently, starting with the configura-
tion attained at f =2,500, we simulated an additional
2,500 periods to generate price and dividend data for
the statistical analyses discussed in the next section.
The returns examined in the next section utilize the
latter 2,500 price and dividend observations and are
computed as
p=Ptd g ©)
Pia

8. Simulation Results

The columns of Tables 1 and 2 present summary
results for the simulation cases described in Table 3.
The first column of the table presents the results for
the 50 sample series of actual stock returns. The for-
mat of the summary data for each simulation case
is the same as the format for the summary statistics
of the actual stock returns discussed earlier. Case 1
serves as a benchmark. The remaining cases vary the
values of one of the parameters of Case 1. Inspection
of the results for Case 1 indicates general agreement
with the results shown for the actual returns in Col-
umn 1. Case 1 produces a larger kurtosis and slightly
more positive skewness. The ARCH-LM test rejects
the null hypothesis for each of the Case 1 series. Kur-
tosis may be due to either fat tails, peakedness, or a
combination of both. The average estimate of the tail
index using the estimator of Quintos et al. (2001) is of
the same order of magnitude as the average for the
actual returns with a standard error that is also of the
same magnitude. Like the actual series, the BDS test
rejects the null hypothesis of i.i.d. in all 30 cases. The
long memory tests for the Case 1 series tend toward
not rejecting the null hypothesis of no long memory
(17% of the tests reject the null). This is still greater
than what is observed for the actual data. However,
the null hypothesis of no long memory in the squared
series is rejected roughly the same fraction of times
for the Case 1 data as for the actual data. Turning
to Table 2, we see that the Q tests and the ARCH-
LM tests computed using the standardized residuals
of the ARMA-TARCH models fit to the data never
reject the null hypotheses for the Case 1 series. As
is true, however, for the actual return series, we see
that the BDS tests reject the null of i.i.d. roughly two-
thirds of the time. Finally, the V test of Lo (1991) tends
to reject no long-term memory in the squared stan-
dardized residual series, indicative of long memory in
the volatility process. We conclude that Case 1 does a
reasonable job of producing characteristics similar to
actual daily returns.

8.1. Learning Frequency

Learning frequency refers to the frequency at which
hypothesis revisions occur. The learning frequency
parameter is set as the number of periods between
learning events. A low number implies frequent
learning (short periods of time between learning
events), and that agents will revise their rule bases
(hypotheses) more often. When learning is frequent,
hypotheses are more likely to be influenced by tran-
sient behavior in the time series of market variables.
In contrast, when learning is infrequent, agents will
have more time between revising their rule bases to
test their hypotheses. Furthermore, hypotheses will
also tend to be based on longer horizon features in the
time series of market variables when learning is infre-
quent. We test three settings for the learning parame-
ter, fast learning (10 periods between learning events,
Case 6), less frequent learning (30 periods, Case 1),
and slow learning (1,000 periods, Case 7). All other
parameter values remain the same across the three
cases.

The results for Case 6 are not vastly different than
those for Case 1. However, Case 7, in which learning
occurs infrequently, is associated with substantially
smaller means for standard deviation and skewness,
much higher kurtosis, and a Quintos’ tail index aver-
age of roughly 3.8. Further, Case 7 is associated with
long memory in both the level of returns as well as
the volatility of returns, in contrast to the findings for
the actual data as well as Cases 1 and 6. Slow learn-
ing of the magnitude tested does not appear to be a
reasonable assumption.

8.2. The Dividend Process

Three factors impact the dividend in any period, d, =
d+ p(d,_; — d) + v,: the mean dividend d, the partial
adjustment factor p, and the variance of the error term
o2 (through realizations of the error). We test two set-
tings each for these parameters, not including the set-
tings for Case 1. Cases 11 and 12 test two values of the
mean dividend, which are larger than the base case
used in Case 1. The results, as compared to the actual
stock returns and to Case 1, are similar along most
characteristics and tests. Kurtosis is slightly more ele-
vated, but the tail index average is in the vicinity of
the results for the actual data and for Case 1. Cases 4
and 5 test a lower and higher value for the parameter
p, 0.1 and 0.9, where the value selected for Case 1 was
0.5. The results again are similar to those for Case 1,
suggesting a partial adjustment parameter bracketed
by 0.1 and 0.9 is a reasonable assumption. Cases 13
and 14 test two alternative values for the variance
of the error in the dividend process, bracketing the
assumption used in Case 1. On an annualized basis,
the bracket spans roughly 11% to 25.5%, not vastly
dissimilar to what is generally observed on an annual
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basis. Cases 13 and 14 also show little variation from
what is observed for Case 1. We conclude that values
within the ranges described generate plausible results.

8.3. The Risk-Free Interest Rate and Risk Aversion
The risk-free interest rate and the coefficient of risk
aversion influence the demand for the risky asset by
any agent (Equation (7)). The structure of the model
assumes that the values of these parameters are com-
mon across agents. We use the actual daily interest
rate in the simulations, so this variable, while com-
mon to all agents, varies across dates. The coeffi-
cient of risk aversion is assumed to be fixed across
agents and across dates. Cases 15 and 16 reflect a 10%
shift up and down, respectively, of the entire series of
interest rates. Again, we see little variation between
these results and those for Case 1. Cases 17 and 18
vary the risk-aversion parameter, 0.1 (Case 17) and 0.9
(Case 18). Case 18 stands out. The standard deviation
increases significantly, while kurtosis is smaller rela-
tive to Case 1 as well as Case 17. Further, the average
tail index for both cases falls. The test results for Cases
17 and 18 also suggest the presence of long mem-
ory. However, as Table 2 shows, once ARMA-TARCH
models are fit to the series associated with these cases,
the tests do not support long memory in the level of
returns, but do indicate long memory in the squared
residuals.

8.4. Probability of Experimentation

Experimentation in the model is the process by
which agents form new hypotheses about the (price+
dividend). On those dates when learning occurs and
agents revise their hypotheses, new hypotheses are
formed by combining existing hypotheses and by
altering individual existing hypotheses. The decision
about which method for revising hypotheses will be
invoked is driven by the probability that a combi-
nation experiment will be used, Pr(Comb) = 7. The
probability of an individual experiment equals 1 —
Pr(Comb). Cases 2 and 3 test two values, 0.5 and 0.8,
for Pr(Comb). Cases 2 and 3 generate results that are
quite different from either the actual data or Case 1.
The results presented in Table 1 show that both cases
are associated with much smaller tail index averages
and evidence of long memory in the level of returns.
The results presented in Table 2 show that Case 2
exhibits evidence of long memory in squared returns
but not in the level of returns—results that are con-
sistent with what we observe for the actual data and
for Case 1. On the contrary, however, the results for
Case 3 exhibit little evidence of long memory in the
squared returns, but there is evidence of long mem-
ory in the level of returns. Hence, between these two
cases, Case 2 with Pr(Comb) of 0.5 yields results that
more closely resemble the actual data and Case 1. The

suggestion is, therefore, that values for Pr(Comb) in
the range 0.2 to 0.5 yield results generally consistent
with actual data.

8.5. The Number of Agents

The number of agents in the model influences the
market-clearing price through aggregate net demand.
Case 8 tests a model in which there are only 10 agents,
while Case 9 tests a model with 50 agents. In Case 1,
we assume that there are 25. Generally, the results
for Case 8 more closely resemble the results for the
actual returns than do the results for Case 9. In partic-
ular, Case 8 is associated with a measure of kurtosis
and an average tail index that are more like the mea-
sures associated with actual stock returns than with
the Case 1 returns. Evidence of long memory in raw
returns is more pronounced for the Case 9 returns—
inconsistent with the results for the actual stock return
data. We conclude that a parameter setting for the
number of agents bracketed by 10 and 25 produces
results generally consistent with actual data. These
results suggest that although participants in real mar-
kets are heterogeneous, they may best be described
as belonging to groups, the number of which may be
reasonably small.

8.6. The Number of Rule Bases

Each agent holds a set of hypotheses about the param-
eters of the prediction model. These hypotheses are in
the form of rule bases that are used to translate mar-
ket data (information bits) into values for the param-
eters of the prediction model. Case 10 tests a model
in which each agent is allowed only three rule bases,
in contrast to the five rule bases allowed in Case 1.
The differences between the results for Case 10 and
those for Case 1 are inconsequential. Hence, we con-
jecture that models based on three to five rule bases
will produce reasonably similar results.

8.7. ARMA-TARCH Models

We conclude with a brief review of Table 2. Table 2
reports results based on the standardized residu-
als of ARMA-TARCH models fit to the series asso-
ciated with the cases listed in Table 3. First, note
that in every case the Ljung-Box Q tests, as well as
the ARCH-LM tests, never reject the null hypothe-
ses associated with those tests. Essentially, the mod-
els remove all short-run autocorrelation in the level
of returns, as well as filtering out any ARCH-type
behavior. Nevertheless, the BDS statistics reveal that
in at least 50% of the trials, the BDS test rejects the null
hypothesis of i.i.d. This suggests that some other form
of dependence is still present. The tests for long mem-
ory in the level of returns overwhelmingly do not
reject the null hypothesis of no long memory. How-
ever, the tests for long memory in the squares of the
standardized residuals suggest that in a large fraction
of the cases, long-memory dependence is present.
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8.8. Summary

Overall, the results reported in Tables 1 and 2 reveal
that only four of the 10 parameters investigated are
really critical in the model. These parameters are (a)
learning frequency, (b) risk aversion, (c) probability
of combination, and (d) number of agents. Condi-
tional on a low probability of combination experimen-
tation in the creation of hypotheses, the results for
Case 7 suggest that the simulated market results are
not consistent with infrequent revision of hypotheses
(a slow learning frequency). Rather, as Cases 1 and 6
suggest, fast to moderate learning is more consistent,
all else equal, with the actual data. Cases 17 and 18
involve low and high risk aversion, respectively, both
scenarios producing long memory, smaller kurtosis,
and smaller tail index estimates than the actual data.
Case 3, which involves a high probability of com-
bination experimentation in the formulation of new
hypotheses, yields results that are generally not con-
sistent with actual data. Everything else being the
same, the conclusion that a low rate of combination
experimentation produces results more like the actual
data is consistent with the notion that agents are less
inclined to create new hypotheses from crossbreed-
ing their existing hypotheses. Case 9 involves many
agents and produces long memory in returns, sug-
gesting that the greater the number of agents that are
active in the market, the longer it takes for adjust-
ments to be manifested.

9. Conclusions

This paper begins by confirming several character-
istics of actual daily with-dividend stock returns:
(1) A power-law tail index close to three describes the
behavior of the positive tail of the survivor function
of returns (pr(r > x) ~x~*) (Gopikrishnan et al. 1999,
Plerou et al. 1999), a reflection of fat tails. (2) Gen-
eral linear and nonlinear dependencies exist in the
time series of returns (Scheinkman and LeBaron 1989,
Hsieh 1991, Brock et al. 1991). (3) The time-series
return process is characterized by short-run depen-
dence (short memory) in both returns as well as
their volatility, the latter usually characterized in the
form of autoregressive conditional heteroskedasticity
(Bollerslev et al. 1992, Glosten et al. 1993, Engle 2004).
(4) The time-series return process probably does not
exhibit long memory (Lo 1991), but the squared
returns process does exhibit long memory (Ding et al.
1993, Bollerslev and Wright 2000). We then go on to
present an alternative model of learning and reason-
ing behavior in capital markets. The model environ-
ment in which investors operate is complex and ill
defined. Agents learn by induction and the applica-
tion of fuzzy logic. We assert that models endowing
agents with such learning and reasoning processes

may account for some of the documented empirical
characteristics found in the actual stock returns of our
benchmark sample. As such, we embed the learning
and reasoning process in an artificial stock market
model and conduct dynamic simulation experiments
to generate market-clearing prices for a risky secu-
rity. We compute implied returns using the prices and
dividends generated by the experiments and go on to
analyze these returns using the same methods applied
to our benchmark sample. We find that the charac-
teristics of the returns from our experimental market
conform to those for the benchmark sample and that
the results are relatively insensitive to variation in the
parameter values of the model.

The framework of the model offers an alternative
perspective on what generates the behavior of finan-
cial security returns that extends beyond the tradi-
tional paradigms. A useful extension of our work
would be to marry the learning and reasoning process
we propose with a model of the structure of trading
similar to that proposed in Gabaix et al. (2006). We
leave that endeavor for future research.

10. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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