DC-Optimal Power Flow and LMP Determination in the AMES Test Bed

Leigh Tesfatsion

Professor of Economics

Courtesy Professor of Mathematics and
Electrical & Computer Engineering
Iowa State University

Ames, IA 50011-1070

https://www2.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu

Latest Revision: 13 June 2010

Presentation Outline

- Introduction
- Double auction basics for energy markets
 - Supply, demand, & market equilibrium
 - Net surplus extraction
- Market efficiency vs. social welfare: Implications for independent system operators in energy markets
- Illustrative AMES Test Bed experiments for a 5-bus test case with learning generators

Introduction

- ◆ In many regions of U.S., wholesale electric energy -measured in megawatt-hours (MWh) -- is transacted in "day-ahead" markets designed as double auctions.
- Double Auction = A centrally-cleared market in which sellers make supply offers & buyers make demand bids.
- After review of basic double auction concepts, efficiency & welfare issues arising from use of double auctions for centrally-managed day-ahead markets for energy will be discussed.

DOUBLE-AUCTION BASICS: EXAMPLE

<u>Seller 1's Supply Offer</u>: $P = S_1(Q)$, where $P = \underline{Price}$ and $Q = \underline{Quantity}$

Q = **Quantity** of specialty apples (in bushels)

P = **Price** of specialty apples (\$ per bushel)

For each Q: $P=S_1(Q)$ is Seller 1's *minimum* acceptable sale price for the "last" bushel it supplies at Q.

Bushels Q	Price $P = S_1(Q)$
1	\$20
2	\$30
3	\$60
4	\$80
5	\$90 5 bushels = Seller S_1 's
6	∞ max possible supply.

Note: "Minimum acceptable sale price" is also called a "(sale) reservation value"

<u>Seller 2's Supply Offer</u>: $P = S_2(Q)$, where $P = \underline{Price}$ and $Q = \underline{Quantity}$

For each Q: $P = S_2(Q)$ is Seller 2's *minimum acceptable* sale price for the last bushel it supplies at Q.

Bushels Q Price $P = S_2(Q)$

1	\$10
2	\$50
3	\$90
1	∞

3 bushels = Seller S_2 's max possible supply.

Total System (Inverse) Supply Function: P = S(Q)

Buyer 1's Demand Bid: $P = D_1(Q)$, where $P = \underline{Price}$ and $Q = \underline{Quantity}$

For each Q: $P = D_1(Q)$ is Buyer 1's max purchase price (\$/bushel) for the last bushel it purchases at Q.

Bushels Q Price $P = D_1(Q)$

1	\$84
2	\$76
3	\$70
4	\$ 0

Buyer 1's demand for apples is "satiated" at 3 bushels.

Note: "Maximum purchase price" ≡
"maximum willingness to pay" is also
called a "(purchase) reservation value."

Buyer 2's Demand Bid: $P = D_2(Q)$, where P = Price and Q = Quantity

For each Q: $P = D_2(Q)$ is Buyer 2's *max purchase price* (\$/bushel) for the last bushel it purchases at Q.

Bushels Q Price $P = D_2(Q)$

1	\$50
2	\$30
3	\$20
4	\$ 0

Buyer 2's demand for apples is "satiated" at 3 bushels.

Buyer 3's Demand Bid: $P = D_3(Q)$, where P = Price and Q = Quantity

For each Q: $P = D_3(Q)$ is Buyer 3's max purchase price (\$/bushel) for the last bushel it purchases at Q

Bushels Q	$Price P = D_3(Q)$
	4

\$90
 \$80
 \$0

Buyer 3's demand for apples is "satiated" at 2 bushels.

Total System (Inverse) Demand Function: P = D(Q)

Competitive Market Clearing (CMC) Points

Points (Q,P) where the aggregate supply curve P = S(Q) intersects the aggregate demand curve P = D(Q): P = S(Q) = D(Q)

Can also possibly have <u>multiple</u> CMC points with a <u>range</u> of CMC quantities

Can also possibly have a unique CMC point

Unique CMC Point:

Seller & Buyer Net Surplus Amounts at CMC Points

A different selected CMC point

→ different seller & buyer net surplus amounts

Total Net Surplus at a CMC Point

(If multiple CMC points exist, TNS = same for each point.)

Standard Measure of Market Efficiency

(Non-Wastage of Resources)

Inframarginal vs. Extramarginal Quantity Units at CMC Points

Market Efficiency < 100% can arise if ...

- some inframarginal quantity unit fails to trade
 - E.g., physical capacity withholding ("market power" *)
- some extramarginal quantity unit is traded
 - a more costly unit is sold in place of a less costly unit ("out-of-merit-order dispatch")
 - and/or a less valued unit is purchased in place of a more valued unit ("out-of-merit-order purchase")
- * Market Power: Ability of a seller or buyer to extract more net surplus from a market than they would achieve at a CMC point.

Example: Exercise of market power by Seller S1 that results in ME < 100%

Example: ME < 100% ... Continued

Market Efficiency vs. Social Welfare

- Efficiency for one market at one time point is a very narrow measure of resource non-wastage.
- Ideally, <u>social</u> efficiency should be measured by resource non-wastage across <u>all</u> markets and across <u>all</u> current and future time periods.
- Moreover, economists measure social welfare in terms of the "utility" (well-being) of people in their roles as consumers/users of final goods and services.
- ◆ Social <u>efficiency</u> is <u>necessary but not sufficient</u> for the optimization of social <u>welfare</u>.

Market Efficiency, Social Welfare, and the Extraction of Net Surplus by "Third Parties"

- Suppose [price P_S paid to a seller] < [price P_B charged to a buyer] for some quantity unit sold in a market
- → Net surplus [P_B-P_s] is extracted by some type of "third party"

Examples: Gov't tax revenues; **ISO net surplus extractions** that result from grid congestion in **D**ay-**A**head **M**arkets (**DAM**s) for grid-delivered energy (MWh) settled by means of **L**ocational **M**arginal **P**rices **LMP**(b,H) (\$/MWh) conditional on grid delivery location b and operating hour H.

- "First order effect" of this third-party extracted net surplus is a decrease in the net surplus going to sellers & buyers.
- Social efficiency/welfare implications of this third-part extracted net surplus depend on precisely how/ it is extracted and to what uses it is subsequently put.

AMES DC-OPF Formulation

Caution: Notation Switch

- P (in MWs) now denotes <u>amounts of power</u>
- LMP_{k,T} (\$/MWh) = <u>Locational Marginal Price</u> at bus k for operating period T, roughly defined as the least cost of maintaining one additional MW of generated power at bus k during operating period T.

Discussion of double auctions, market efficiency, & social welfare specialized to an ISO managed Day-Ahead Market (DAM) for grid-delivered energy (MWh) with LMP settlements (\$/MWh):

Day-ahead market activities on a typical operating day D

ISO Net Surplus Extraction: DAM Example (adapted from Harold Salazar, MS Thesis, Nov 2008)

- -- A Day-Ahead Market (DAM) is held on day D for an operating hour H on day D+1
- -- The transacted good is grid-delivered energy (MWh), expressed in terms of power levels p (MW) to be maintained during hour **H** (1h)
- -- G1, G2 = Generation Companies (GenCos) located at grid buses B1 and B2
- -- p_L = Total demand (MW) of a Load-Serving Entity (LSE) at bus B2 for hour H
- -- p^F_L = <u>Fixed</u> (i.e., <u>not price sensitive</u>) demand (MW) of **LSE** at bus **B2** for hour **H**
- -- p^s_I = <u>Price-sensitive</u> demand (MW) of **LSE** at bus **B2** for hour **H**
- -- LMP₁ = Locational Marginal Price (\$/MWh) at bus **B1** for hour **H**
- -- LMP₂ = Locational Marginal Price (\$/MWh) at bus **B2** for hour **H**
- -- r = Regulated rate (\$/MWh) for **LSE** <u>retail resale</u> of fixed demand for hour **H**

ISO Net Surplus Example ... Continued

Cleared load = p_L^F . LSE at bus 2 pays LMP₂ > LMP₁ for each unit of p_L^F . M units of p_L^F are supplied by cheaper G1 at bus 1 who receives only LMP₁ per unit.

ISO collects payment difference:

ISO Net Surplus

- = [LSE Payments
 - GenCo Revenues]
- $= M \times [LMP_2 LMP_1]$

Note: The transmission line capacity limit \mathbf{M} is <u>binding</u> in this example. Otherwise, the market-clearing price outcome is $LMP_1 = LMP_2 = CMC$ Point!

ISO Net Surplus Example ... Continued

ISO Net Surplus:

INS = $M \times [LMP_2 - LMP_1]$

GenCo Net Surplus:

GNS = Area S1 + Area S2

LSE Net Surplus:

LNS = Area B

Total Net Surplus:

TNS = [INS + GNS + LNS]

ISO Objective (Optimal Power Flow):

Maximize **TNS** subject to transmission & generation constraints.

AMES GenCo Supply Offers

Hourly supply offer for each GenCo i = Reported linear marginal cost function over a reported operating capacity interval for real power p_{Gi} (in MWs):

$$MC_{i}^{R}(p_{Gi}) = a_{i}^{R} + 2b_{i}^{R}p_{Gi}$$

$$Cap_i^L \le p_{Gi} \le Cap_i^{RU}$$

GenCos can learn to report *higher-than-true* marginal costs and/or to report *lower-than-true* maximum capacity.

AMES LSE Demand Bids

Hourly demand bid for each LSE j = Fixed demand bid +

Price-sensitive demand bid

- Fixed demand bid = pF_{Lj} (MWs)
- Price-sensitive demand bid = Inverse demand function for real power p^S_{Lj} (MWs) over a purchase capacity interval:

$$F_j(p_{Lj}^s) = c_j - 2d_j p_{Lj}^s$$

 $0 \le p_{Li}^s \le SLMax_i$

AMES Illustration: **Total Net Surplus (TNS)** in Hour 17 for 5-Bus Test Case with 5 GenCos and 3 LSEs

ISO Net Surplus Experiments (Li/Tesfatsion, 2009)

(Experiments run with AMES Wholesale Power Market Test Bed)

Five GenCo sellers G1,...,G5 and three LSE buyers LSE 1, LSE 2, LSE 3

R Measure for Demand-Bid Price Sensitivity

Note: In actual U.S. ISO energy regions, price-sensitivity $R \cong 0.01$

For LSE j in Hour H:

pF_{Li} = Fixed demand for real power (MWs)

SLMax_i = Maximum potential price-sensitive demand (MWs)

$$R = SLMax_{j}/[p_{Lj}^{F} + SLMax_{j}]$$

(100% Fixed Demand)

(100% Price-Sensitive Demand)

Experimental Outcomes:Varied Price-Sensitivity for Demand Bids

Average LMP Outcomes on Day 1000

(under varied GenCo learning & LSE demand price-sensitivity treatments)

Average ISO Net Surplus Outcomes on Day 1000 for varied learning & demand treatments

ISO Net Surplus, Market Efficiency, and Social Welfare

- Two-bus example and experimental findings suggest ISO net surplus extractions can be substantial, and can dramatically increase with:
 - decreases in price sensitivity of demand
 - increases in GenCo learning ability resulting in the reporting of supply offers at higher-than-true costs (especially profitable in presence of fixed demand)
- ◆ Important Issue: How to ensure ISO financial incentives are properly aligned with goal of ensuring market efficiency/soc welfare?

AMES Calculation of TNS: General Form (Note LMPs cancel out of TNS expression!)

Total Net Surplus for Hour H of Day D+1, based on Day D Supply Offers and Demand Bids:

$$= \ \mathsf{LSENetSur}(H,D) + \mathsf{GenNetSur}(H,D) + \mathsf{ISONetSur}(H,D)$$

$$= \sum_{j=1}^{J} GS_{j}(H, D) - \sum_{i=1}^{I} [C_{i}^{a}(H, D)]$$

where

$$GS_{j}(H,D) = [r \cdot p_{Lj}^{F}(H,D) + \int_{0}^{p_{Lj}^{S}(H,D)} F_{jHD}(p)dp]$$

$$C_i^a(H,D) = \int_0^{p_{Gi(H,D)}} MC_i(p) dp \blacktriangleleft$$

LSE j's gross surplus from its retail fixed demand sales

LSE j's gross surplus from its retail price- sensitive demand sales

GenCo i's total avoidable costs of production

AMES Basic DC-OPF Formulation:

SI unit representation for AMES ISO's DC-OPF problem for hour H of the day-ahead market on day D+1, solved on day D.

DC-OPF formulation is derived from AC-OPF under three assumptions:

- (a) Resistance on each branch km = 0
- (b) Voltage magnitude at each bus k= base voltage V_o
- (c) Voltage angle difference d_{km} = [delta_k delta_m] across each branch km is small so that $cos(d_{km}) \cong 1$ and $sin(d_{km}) \cong d_{km}$

 $\max TNS^R$ (15)

with respect to LSE real-power price-sensitive demands, GenCo real-power generation levels, and voltage angles

$$p_{Lj}^{S}$$
, $j = 1,...,J$; p_{Gi} , $i = 1,...,I$; δ_{k} , $k = 1,...,K$ (16) subject to

(i) a real-power balance constraint for each bus k=1,...,K:

$$\sum_{i \in I_k} p_{Gi} - \sum_{j \in J_k} p_{Lj}^S - \sum_{km} P_{km} = \sum_{j \in J_k} p_{Lj}^F$$
 (17)

where, letting x_{km} (ohms) denote reactance for branch km, and V_o denote the base voltage (in line-to-line kV),

$$P_{km} = [V_o]^2 \cdot [1/x_{km}] \cdot [\delta_k - \delta_m]$$

(ii) a limit on real-power flow for each branch km:

$$|P_{km}| \leq P_{km}^U \tag{18}$$

(iii) a real-power operating capacity interval for each GenCo i = 1,...,I:

$$\operatorname{Cap}_{i}^{L} \leq p_{Gi} \leq \operatorname{Cap}_{i}^{U}$$
 (19)

(iv) a real-power purchase capacity interval for price-sensitive demand for each LSE j=1,...,J:

$$0 \leq p_{Lj}^S \leq \text{SLMax}_j \tag{20}$$

(v) and a voltage angle setting at angle reference bus 1:

$$\delta_1 = 0 \tag{21}$$

TNS^R = Total Net Surplus based on <u>reported</u> GenCo marginal cost functions rather than <u>true</u> GenCo marginal cost functions.

Lagrange multiplier (or "shadow price") solution for the bus-k balance constraint (17) gives the LMP_k at bus k

AMES DC-OPF problem is a special type of GNPP, and LMPs are Lagrange Multiplier Solutions for this GNPP

General Nonlinear Programming Problem (GNPP):

- x = nx1 choice vector;
- c = mx1 vector & d = Sx1 vector (constraint constants)
- f(x) maps x into R (all real numbers)
- h(x) maps x into R^m (all m-dimensional vectors)
- z(x) maps x into R^s (all s-dimensional vectors)

GNPP: Minimize f(x) with respect to x subject to

$$h(x) = c$$
 (e.g., DC-OPF bus balance constraints)
 $z(x) \ge d$ (e.g., DC-OPF branch constraints & GenCo capacity constraints)

AME DC-OPF as a GNPP ... Continued

• Define the Lagrangean Function as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \mathbf{c}, \mathbf{d}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathsf{T}} [\mathbf{c} - h(\mathbf{x})] + \boldsymbol{\mu}^{\mathsf{T}} [\mathbf{d} - \mathbf{z}(\mathbf{x})]$$

Assume Kuhn-Tucker Constraint Qualification (KTCQ)
holds at x*, roughly stated as follows:

The true set of feasible directions at **x***

= Set of feasible directions at **x*** assuming a linearized set of constraints in place of original set of constraints.

AMES DC-OPF as a GNPP ... Continued

Given KTCQ, the *First-Order Necessary Conditions (FONC)* for \mathbf{x}^* to solve (GNPP) are: There exist vectors $\boldsymbol{\lambda}^*$ and $\boldsymbol{\mu}^*$ of *Lagrange multipliers (or "shadow prices")* such that $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ satisfies:

$$\begin{split} 0 &= \nabla_x L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*, \mathbf{c}, \mathbf{d}) \\ &= \left[\ \nabla_x f(\mathbf{x}^*) \ - \boldsymbol{\lambda}^{*\top} \bullet \nabla_x h(\mathbf{x}^*) \ - \ \boldsymbol{\mu}^{*\top} \bullet \nabla_x z(\mathbf{x}^*) \ \right] \ ; \\ h(\mathbf{x}^*) &= \mathbf{c} \ ; \\ z(\mathbf{x}^*) &\geq \ \mathbf{d}; \ \ \boldsymbol{\mu}^{*\top} \bullet [\mathbf{d} \ - \ z(\mathbf{x}^*)] \ = \ 0; \ \boldsymbol{\mu}^* \geq \mathbf{0} \end{split}$$

These FONC are often referred to as the Karush-Kuhn-Tucker (KKT) conditions.

Solution as a Function of (c,d)

By construction, the components of the solution vector $(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$ are <u>functions</u> of the constraint constant vectors c and d

$$\bullet x^* = x(c,d)$$

•
$$\lambda^* = \lambda(c,d)$$

•
$$\mu^* = \mu(c,d)$$

GNPP Lagrange Multipliers as Shadow Prices

Given certain additional regularity conditions...

The solution λ* for the m x 1 multiplier vector λ is the derivative of the minimized value f(x*) of the objective function f(x) with respect to the constraint vector c, all other problem data remaining the same.

$$\partial f(x^*)/\partial c = \partial f(x(c,d))/\partial c = \lambda^{*T}$$

GNPP Lagrange Multipliers as Shadow Prices ...

Given certain additional regularity conditions...

The solution μ* for the s x 1 multiplier vector μ is the derivative of the minimized value f(x*) of the objective function f(x) with respect to the constraint vector d, all other problem data remaining the same.

$$0 \le \partial f(\mathbf{x}^*)/\partial \mathbf{d} = \partial f(\mathbf{x}(\mathbf{c},\mathbf{d}))/\partial \mathbf{d} = \mu^{*T}$$

GNPP Lagrange Multipliers as Shadow Prices ...

Consequently...

- The solution λ^* for the multiplier vector λ thus essentially gives the *prices (values)* associated with unit changes in the components of the constraint vector \mathbf{c} , all other problem data remaining the same.
- The solution μ^* for the multiplier vector μ thus essentially gives the *prices (values)* associated with unit changes in the components of the constraint vector **d**, all other problem data remaining the same.
- Each component of λ^* can take on *any sign*
- Each component of μ^* must be *nonnegative*

Counterpart to Constraint Vector c for AMES DC-OPF?

AMES DC-OPF Has K Equality Constraints:

Below is the kth Component of Kx1 Constraint Vector c:

$$\sum_{j \in J_k} \, p^F_{Lj} \, \, = \, \operatorname{FD}_{\mathbf{k}} \, = \, \operatorname{Total \, Fixed \, Demand \, at \, Bus \, k}$$

LMP as Lagrange Multiplier

- TNS*(H,D) = Maximized Value of TNS(H,D) from the ISO's DC-OPF solution on Day D for hour H of the dayahead market on Day D+1
- LMP_k (H,D) = Least cost of servicing one additional MW of fixed demand at bus k during hour H of day-ahead market on day D+1

$$LMP_k(H,D) = \frac{\partial TNS^*(H,D)}{\partial FD_k}$$

Online Resources

Notes on DC-OPF Formulation in AMES https://www2.econ.iastate.edu/tesfatsi/DCOPFInAMES.LT.pdf
AMES Wholesale Power Market Testbed https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
Market Basics for Price-Setting Agents https://www2.econ.iastate.edu/classes/econ458/tesfatsion/MBasics.SlidesIncluded.pdf
Optimization Basics for Electric Power Markets https://www2.econ.iastate.edu/classes/econ458/tesfatsion/OptimizationBasics.LT458.pdf
Power Market Trading with Transmission Constraints https://www2.econ.iastate.edu/classes/econ458/tesfatsion/OPFTransConstraintsLMP.KS6.1-6.3.2.9.pdf

Online Resources ... Continued

- L. Tesfatsion (2009), "Auction Basics for Wholesale Power Markets:
 Objectives & Pricing Rules," IEEE PES General Meeting Proceedings, July.
 https://www2.econ.iastate.edu/tesfatsi/AuctionBasics.IEEEPES2009.LT.pdf (Paper)
- H. Li & L. Tesfatsion (2011), "ISO Net Surplus Collection and Allocation in Wholesale Power Markets Under Locational Marginal Pricing," IEEE Transactions on Power Systems, Vol. 26, No. 2, pp 627-641.

https://www2.econ.iastate.edu/tesfatsi/ISONetSurplus.WP09015.pdf