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Abstract: The AMES Wholesale Power Market Test Bed is an agent-based com-
putational laboratory designed for the systematic experimental study of restructured
wholesale power markets. These notes show how AMES can be recast in more standard
state-space equation form. The result is a highly nonlinear and highly coupled system
of first-order stochastic difference equations. The AMES state-space equation represen-
tation is used to explain how AMES constitutes an open-ended dynamic game among
multiple strategically-learning players. It is also used to explain how AMES permits the
development and experimental study of a wide variety of test cases.

The AMES Wholesale Power Market Test Bed has been developed by a group of researchers at Iowa
State University to facilitate the systematic experimental study of restructured wholesale power
markets. The release of AMES(V1.31) was announced at the IEEE Power and Energy Systems
General Meeting in June 2007, and the release of AMES(V2.01) was announced at the IEEE Power
and Energy Systems General Meeting in July 2008. AMES is an acronym for Agent-based M odeling
of E lectricity Systems.

AMES is “agent based” in the sense that it is a computationally constructed virtual world
comprising multiple agents (encapsulated software programs) whose various interactions drive all
world events over time. Here “agents” must be broadly interpreted to include structural entities
(e.g., transmission grids), institutional entities (e.g., markets), non-cognitive biological entities (e.g.,
switchgrass crops), and cognitive entities (e.g., energy traders and market operators).1

As is true for any agent-based model, AMES is most naturally explained in terms of verbal de-
scriptions, diagrams, and pseudo-code expressing the logical flow of agent processes and interactions
over time, as an accompaniment to the actual source code. Detailed descriptions of AMES taking
these forms can be found in [4, 5, 6], and the source code for the latest AMES version release can
be found at the AMES home page [7].

In contrast, models within economics and power systems are typically represented as systems of
equations. The question then arises whether AMES can be represented as a system of equations.
Moreover, if so, what use can be made of this representation?

The purpose of these notes is three-fold. First, I will demonstrate how AMES can be recast in
more standard state-space equation form. The result is a highly nonlinear and highly coupled system
of first-order stochastic difference equations. Second, I will use the AMES state-space equation

∗Helpful comments from Jim McCalley, Sarah Ryan, and Nanpeng Yu are greatly appreciated.
1See [1] for extensive introductory resources on agent-based computational modeling, including tutorials, readings,

software, and websites. Comprehensive surveys of agent-based research in many different economic application areas
can be found in [2]; agent-based research specifically focused on electricity markets is highlighted at [3].
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representation to explain how AMES constitutes an open-ended dynamic game among multiple
strategically-learning players. Third, I will use the AMES state-space equation representation to
explain how AMES permits the development of a wide variety of test cases suitable for research,
teaching, and training purposes.

Many extensions are planned for future versions of AMES. For example, a real-time market
paralleling the day-ahead market will be incorporated to implement a fully active two-settlement
system, and a Financial Transmission Rights (FTR) market will be incorporated to permit hedging
of congestion and price volatility in the day-ahead market. However, these extensions should not
substantially change the general state-space equation representation determined below specifically
for AMES(V2.01).

1 Representation of the System State Vector

Collection of Agent Types

Structural Agents:

AMES(V2.01) has S=2 structural agents [the world (W) and the transmission grid (TG)]

Institutional Agents:

AMES(V2.01) has H = 1 institutional agents [a day-ahead market (M)].

Cognitive Agents:

AMES(V2.01) has C = [1 + J + I] cognitive agents, as follows: 1 market operator (referred to
as the ISO=Independent System Operation); J buyer traders (referred to as LSEs=Load-Serving
Entities); and I seller traders (referred to as GenCos=Generation Companies).

Agents in Total:

The total number of agents in AMES(V2.01) is A = [S + H + C].

Agent Characterizations

Each agent a = 1,...,A is an encapsulated software program characterized by its internal meth-
ods (functions, routines, processes, procedures,...) and internal data (parameter values, attributes,
stored information,...). The methods and data for the AMES World, the AMES Transmission Grid,
the AMES Day-Ahead Market, the AMES ISO, and a typical AMES LSE and AME GenCo are
schematically depicted in Figures 1 through 6.

As seen in Figure 1, the World agent manages each AMES simulation run. For example, it
implements the user-specified simulation stopping rule(s), and it collects and displays data in the
graphical user interface in accordance with user specifications. The Transmission Grid agent depicted
in Figure 2 and the Day-Ahead Market agent depicted in Figure 3 illustrate how non-cognitive agents
in AMES encapsulate methods and data that permit interactions over time with the cognitive agents
(i.e., the GenCos, LSEs, and ISO).

As seen in Figures 4 through 6, the GenCos in AMES(V2.01) have relatively more cognitive
capabilities and autonomy than the LSEs and ISO in that they have learning methods permitting
them to adaptively choose their actions on the basis of their private data. Note, also, that GenCo
private data can include accumulated historical data (as is true for other agent types as well).

The Time Frame

Time Indicator: T=(H,D), where H = 00,01,...,23 and D = 1, 2, ...,DMax

Divide time into 24-hour days by defining

Day 1 ≡ {(00,1),(01,1),. . . ,(23,1)},
Day 2 ≡ {(00,2),(01,2),. . . ,(23,2)},
...
Day Dmax ≡ {(00,DMax),(01,DMax),. . . ,(23,DMax)}
Then the system runs for days D = 1,...,DMax.
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The System State Vector

Let xa(D) denote the collection of all internal methods and internal data characterizing agent a at
the beginning of day D. The system state vector at the beginning of each day D=1,...,DMax is then
given by

x(D) = (x1(D),x2(D), . . . ,xA(D)) (1)

As indicated in Figures 1 through 6, the private data for the state vector components xa(D)
in (1) can contain adaptively changing agent attributes as well as accumulations of historical data.
Consequently, both the contents and the “dimensions” of these components can vary over time.

2 Decision Functions Implemented by the Cognitive Agents

Between hour 00 and hour 11 of each day D, each LSE j chooses a demand bid dLj(D) as a function

dLj(D) = d(xLj(D),wLj(D)) (2)

of its own state xLj(D) and (possibly) a vector wLj(D) of day-D demand-side disturbances.2 LSE
j reports this demand bid to the ISO at the end of hour 11 of day D.

Also, between hour 00 and 11 of each day D, each GenCo i chooses a supply offer sGi(D) as a
function

sGi(D) = s(xGi(D),wGi(D)) (3)

of its own state xGi(D) and (possibly) a vector wGi(D) of day-D supply-side disturbances.3 GenCo
i reports this supply offer to the ISO by the end of hour 11 of day D.

Let xJ(D) and wJ(D) denote J-dimensional vectors comprising the day-D states and disturbances
of the J LSEs, respectively. Also, let xI(D) and wI(D) denote I-dimensional vectors comprising the
day-D states and disturbances of the I GenCos, respectively. Then the vector

z(D) = (dL1(D), . . . , dLJ(D), sG1(D), . . . , sGI(D)) (4)

comprising the day-D demand bids (2) and supply offers (3) of the LSEs and GenCos that are
reported to the ISO at the end of hour 11 of day D can be expressed as a function

z(D) = Z(xJ(D),xI(D),wJ(D),wI(D)) (5)

of these states and disturbances.
Between hour 12 and hour 18 of each day D, the ISO determines a 24-hour schedule of cleared

real-power bid/offer commitments Pow(D) and locational marginal prices LMP(D)for the day-ahead
market for day D+1 as the solution to 24 hourly DC-OPF problems. By construction, this schedule
is a function of the current state xTG(D) of the transmission grid, the current state xDAM (D) of the
day-ahead market, the ISO’s own current state xISO(D), the vector z(D) of current LSE demand
bids and GenCo supply offers, and (possibly) a vector wS(D) of day-D system disturbances.4 Let
this function be denoted by

(Pow(D), LMP (D)) = DCOPF (xTG(D),xDAM (D),xISO(D), z(D),wS(D)) (6)

At the beginning of the final hour 23 of each day D, the ISO communicates the commitment/LMP
schedule (6) to the LSEs and GenCos and settles all payments. The activities of the ISO during a
typical day D are schematically depicted in Figure 7.

2AMES(V2.01) has no demand-side disturbances, such as sudden spikes in demand caused by unancipated weather
patterns. However, provision for demand-side disturbances is planned for future versions of AMES.

3In AMES(V2.01) the day-D “disturbance” wGi(D) for GenCo i is its random draw of a supply offer in accordance
with its latest updated action choice probability distribution, as dictated by its VRE reinforcement learning method.
This random draw is implemented by means of a pseudo-random number generator that constitutes part of GenCo i’s
supply-offer learning method. Currently, however, there are are no external supply-side disturbances such as spikes in
fuel costs causing changes in cost functions or forced outages of generation units causing changes in GenCo operating
capacities. Provision for external supply-side disturbances is planned for future versions of AMES.

4AMES(V2.01) has no system disturbances, such as sudden transmission line outages. However, provision for
system disturbances is planned for future versions of AMES.
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During the final hour 23 of day D each LSE j estimates – based on its day-D state and disturbance
vector – the amount of money it anticipates it would truly be willing to pay for its scheduled demand
bid commitments for day D+1. It then calculates its net earnings for day D as the difference between
its estimated willingness to pay for its scheduled demand bid commitments on day D+1 and the
actual LMP payments it made to the ISO for these commitments at the beginning of hour 23. Thus,
the day-D net earnings for LSE j can be expressed as a function

NELj(D) = NE(Pow(D), LMP (D),xLj(D),wLj(D)) (7)

of the commitment/LMP schedule (6), LSE j’s day-D state vector xLj(D), and LSE j’s day-D
disturbance vector wLji(D).

During the final hour 23 of day D each GenCo i estimates – based on its day-D state and
disturbance vector – the total variable costs it will actually have to pay to meet its scheduled supply
offer commitments for day D+1. It then calculates its net earnings for day D as the difference
between the LMP payments it received from the ISO at the beginning of hour 23 for its scheduled
day D+1 supply offer commitments and its estimated total variable cost for these commitments.
Thus, the day-D net earnings for GenCo i can be expressed as a function

NEGi(D) = NE(Pow(D), LMP (D),xGi(D),wGi(D)) (8)

of the commitment/LMP schedule (6), GenCo i’s day-D state vector xGi(D), and GenCo i’s day-D
disturbance vector wGi(D).

3 Updating the System State Vector from Day D to D+1

The system state vector x(D) in (1) represents the state of the system at the beginning of day D.
This system state vector is updated at the end of the final hour 23 of day D (i.e., at the beginning
of the first hour 00 of day D+1).

The components of the system state vector x(D) are the individual states xa(D) of the A agents
at the beginning of day D. Consequently, to construct the update mapping for x(D), it suffices to
construct the update mapping for each of its component states xa(D).

As previously noted, the A agents of AMES(V2.01) consist of the World W, the Transmission
Grid TG, the Day-Ahead Market M, the ISO, J LSEs, and I GenCos. The state update mapping
for each of these agents will now be derived, using a reversed order to facilitate exposition.

Each GenCo i updates its day-D state xGi(D) to include all new information obtained between
the start of day D and the end of day D. This new information consists of the day-D disturbance
vector wGi(D), the ISO schedule (6), and the net earnings (8). Checking the functional forms of the
latter two pieces of information, it is seen this state updating can be expressed as a mapping having
the following form:

xGi(D + 1) = FGi(x(D),w(D)) , (9)

where
w(D) = (wJ(D),wI(D),wS(D)) (10)

is the vector consisting of all LSE, GenCo, and system disturbances occuring during day D.
Each LSE j updates its day-D state xLj(D) to include all new information obtained between the

start of day D and the end of day D. This new information consists of the day-D disturbance vector
wLj(D), the ISO schedule (6), and the net earnings (7). Checking the functional forms of the latter
two pieces of information, it is seen this state updating can be expressed as a mapping having the
following form:

xLj(D + 1) = FLj(x(D),w(D)) (11)

The ISO updates its day-D state xISO(D) to include all new information obtained between the
start of day D and the end of day D. This new information consists of the day-D system disturbance
vector wS(D), the vector z(D) of LSE and GenCo demand bids and supply offers in (5), and the
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ISO schedule (6). Checking the functional forms of the latter two pieces of information, it is seen
this state updating can be expressed as a mapping having the following form:

xISO(D + 1) = FISO(x(D),w(D)) (12)

The day-D state xM (D) of the day-ahead market at the start of day D is updated at the end
of day D to the extent that the methods and data comprising this state have been affected by the
vector w(D) of day-D disturbances, the vector z(D) of LSE and GenCo demand bids and supply
offers in (5), and the ISO schedule (6). Checking the functional forms of the latter two pieces of
information, it is seen this state updating can be expressed as a mapping having the following form:

xM (D + 1) = FM (x(D),w(D)) (13)

The day-D transmission grid state xTG(D) at the start of day D is updated at the end of day D
to the extent that the methods and data comprising this state have been affected by the vector w(D)
of disturbances occuring during day D. Although in general this updated state will only depend on
the past transmission grid state (plus disturbances), it is notationally convenient to express this
update mapping as a function of the complete past system state vector as follows:

xTG(D + 1) = FTG(x(D),w(D)) (14)

Finally, the world state xW (D) at the start of day D is updated at the end of day D to the extent
that the methods and data comprising this state have been affected by the vector w(D) of day-D
disturbances, the vector z(D) of LSE and GenCo demand bids and supply offers in (5), and the ISO
schedule (6). Checking the functional forms of the latter two pieces of information, it is seen this
state updating can be expressed as a mapping having the following form:

xW (D + 1) = FW (x(D),w(D)) (15)

The state updating functions developed above for each of the A agents in AMES can be compactly
expressed in the following system state update mapping :

x(D + 1) = F (x(D),w(D)) , (16)

where
F (x(D),w(D)) = (F1(x(D),w(D)), . . . , FA(x(D),w(D))

x(D) = (x1(D),x2(D), . . . ,xA(D))

w(D) = (wJ(D),wI(D),wS(D)) = (wL1(D), . . . ,wLJ(D),wG1(D), . . . ,wGI(D),wS(D))

It follows from (16) that, rendered into dynamic state-space equation form, AMES is a system of
stochastic difference equations. The system is “first order” (Markovian) in form, in the sense that
the system state vector x(D+1) for day D+1 depends only on the system state vector x(D) for day
D together with day-D disturbances.

Nevertheless, it is doubtful indeed whether one would ever want to actually attempt to “solve”
AMES by means of (16).5 First, note there is no way that the components of the system state
vector x(D) can be dynamically uncoupled from each other, resulting in A independent stochastic
difference equations. In particular, xa(D+1) can depend on the day-D states xa′(D) and/or day-
D disturbance vectors wa′(D) for other agents a’. Moreover, a disturbance can contemporaneously
affect many agents at the same time. For example, a system disturbance wS(D) (e.g., a transmission
outage) during day D could affect LSE demand bids and/or GenCo supply offers during day D and
so constitute part of the demand-side disturbance vector wJ(D) and/or the supply-side disturbance
vector wI(D).

Consequently, the system (16) of stochastic difference equations is highly nonlinear and highly
coupled. Morever, the components xa(D) of the system state vector x(D) can contain accumulated
historical data not representable in the form of fixed-dimension sufficient statistics. In this case
these components will not be expressible as elements of some fixed-dimension space.

5AMES is in fact “solved” conditional on given user specifications for exogenous variables and functional forms by
compiling and running its Java code. See the AMES homepage [7] for details.
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4 AMES as an Open-Ended Dynamic Game

A multi-agent system is a game if: (i) the payoff for at least one agent a’ depends in part on the
action(s) of another agent a*; and (ii) agent a’ deliberately selects its own actions in an attempt
to exploit (or protect itself against) this dependence on a*. In this case agent a’ is said to act
strategically with respect to agent a*.

Perhaps the simplest form of game is a “game against nature” in which an agent is attempting
to optimize its action choices within some form of random environment; the latter is then modeled
as a second agent who happens to be choosing its actions purely randomly. At the other extreme
are systems for which multiple cognitive agents have learning capabilities and all are attempting to
optimize their own payoffs over time through appropriate strategic action choices over time.

In AMES(V2.01), only the GenCos have learning capabilities. The specific learning algorithm
currently implemented for these GenCos is the VRE reinforcement learning (VRE-RL) algorithm.
Given the VRE-RL form of learning, each profit-seeking GenCo learns to choose its supply offers
over time on the basis of its own past net earnings. Each GenCo clearly recognizes its net earnings
are determined in part by its own supply offers and in part by the DC-OPF method used by the ISO
to produce daily commitment/LMP schedules. Consequently, each GenCo clearly recognizes that it
is participating in a game with the ISO. The payoffs for each GenCo are its net earnings, whereas
the payoffs for the ISO are market performance as measured by total net cost of operations and the
reliability of operations over time.

More elaborate forms of games can be obtained by specifying more sophisticated forms of learning
for the GenCos (e.g., belief-based), or by permitting the LSEs or ISO to have learning capabilities
along with the GenCos. The functional form (5) for the vector of LSE demand bids and GenCo
supply offers is very general in terms of the information it permits each of these agents to have about
the state of each other agent, and even about the disturbances affecting other agents, prior to its
own choice of actions.

As seen from (16), however, even if each AMES cognitive agent in each day D is permitted to
have complete information about the day-D states and disturbances of all other agents prior to
determining its own day-D actions, AMES in state-space equation form still reduces to a system of
first-order stochastic difference equations.

5 AMES Test Case Development

The concept of a “test case” has been used in a variety of ways by different researchers. Here we try
to develop the concept in a manner applicable for agent-based test beds as well as more standard
equation-based models.

Let a scenario be defined as a collection of consistent (i.e., non-contradictory) modeled relation-
ships. Let input data for a scenario be defined as specific values and forms for all of the scenario’s
variables and functions that are exogenous, i.e., determined outside of the scenario. The variables
and functions of a scenario whose values and forms are determined as functions of the scenario’s
input data are called endogenous.

Define a test case to be a scenario together with input data. A solution for a test case is a
determination of values and forms for the test-case scenario’s endogenous variables and functions,
conditional on the test-case input data. A suite of related test cases can be generated for a given
scenario by introducing systematic changes in its input data.

The structure of the AMES(V2.01) test bed consists of the exogenous initial system state vector
x(1) together with the exogenous disturbances { w(D) | D = 1,. . .,DMax }. In particular, as
previously explained, the state vector x(1) comprises methods and data for all of the AMES agents
at the start of day 1; hence, by necessity, its contents must be exogenously given.

As seen from a backwards recursion of (16), the system state vector x(D+1) for any day D+1
can in principle be expressed as a function of x(1) together with the disturbances realized through
day D:

x(D + 1) = f(x(1),w(1), . . . ,w(D)) (17)
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Moreover, suppose the disturbances { w(D) | D = 1,. . .,DMax } are proxied by successive draws from
pseudo-random number generators (PRNGs). Then the functional forms of these PRNGs, together
with the vector s of initial seed values for these PRNGs, can be included in x(1) and the disturbances
appearing in (17) can be omitted. For expositional purposes, however, it will continue to be assumed
below that these disturbances are externally streamed-in data rather than PRNG-generated data.

Table 1 lists the exogenous variables included in x(1) for AMES(V2.01), along with their corre-
sponding admissibility restrictions. The latter restrictions are meant to ensure that the particular
values selected for the exogenous variables are empirically meaningful.

Test cases can be constructed for AMES(V2.01) by systematically varying the values for any
of the exogenous variables in Table 1 within their admissibility limits. In addition, test cases can
be constructed for AMES(V2.01) by streaming in systematically varied values for the exogenous
disturbances { w(D) | D = 1,. . .,DMax }. Of particular relevance for restructured wholesale power
markets are the following types of disturbances: unanticipated changes in fixed demands (loads);
unanticipated changes in fuel costs; unanticipated (“forced”) generation outages; and unanticipated
transmission line losses.

More generally, AMES(V2.01) has been fully developed in Java in order to achieve a modular
and extensible architecture. Users can thus develop more sophisticated test cases for AMES(V2.01)
that involve changes in the initial forms of the agent methods included in x(1), not just changes in
the initial values of agent data. For example, experiments can be designed to test what happens
when agents use structurally distinct forms of learning methods (e.g., VRE-RL versus Q-learning),
or when the ISO institutes a change of policy (e.g., a changed supply-offer price cap).
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Figure 1: The AMES(V2.01) World: A structural agent

Figure 2: The AMES(V2.01) Transmission Grid: A structural agent

Figure 3: The AMES(V2.01) Day-Ahead Market: An institutional agent
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Figure 4: The AMES(V2.01) ISO: A cognitive agent

Figure 5: An AMES(V2.01) LSE: A cognitive agent

Figure 6: An AMES(V2.01) GenCo: A cognitive learning agent
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Figure 7: Activities of the AMES(V2.01) ISO during a typical day D
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Table 1: Admissible Exogenous Variables for AMES(V2.01)

Variable Description Admissibility Restrictions

K Total number of transmission grid buses K > 0

N Total number of physically distinct network branches N > 0

J Total number of LSEs J > 0

I Total number of GenCos I > 0

Jk Set of LSEs located at bus k Card(∪Kk=1 Jk) = J

Ik Set of GenCos located at bus k Card(∪Kk=1 Ik) = I

So Base apparent power (in three-phase MVAs) So ≥ 1

Vo Base voltage (in line-to-line kVs) Vo > 0

Vk Voltage magnitude (in kVs) at bus k Vk = Vo

km Branch connecting buses k and m (if one exists) k 6= m

BR Set of all physically distinct branches km, k < m BR 6= ∅
xkm Reactance (ohms) for branch km xkm=xmk > 0, km in BR

Bkm [1/xkm] for branch km Bkm=Bmk > 0, km ∈ BR

PU
km Thermal limit (MWs) for real power flow on km PU

km > 0, km ∈ BR

δ1 Reference bus 1 voltage angle (in radians) δ1 = 0

µ Penalty weight ($/H·radians) for voltage angle differences in DC-OPF µ > 0

PF
Lj(H) Hour-H fixed demand (MWs) for LSE j PF

Lj(H) ≥ 0

SLMaxj(H) Hour-H upper limit for LSE j’s price-sensitive demand (MWs) SLMaxj(H) ≥ 0

cj(H),dj(H) Hour-H demand coefficients ($/MWh,$/MW2h) for LSE j cj(H),dj(H) > 0

DjH(p) DjH(p) = cj(H) - 2dj(H)p = LSE j’s hour-H price-sensitive dem. fct. for power p DjH(SLMaxj(H)) ≥ 0

FCosti Hourly pro-rated fixed cost ($/h) for GenCo i FCosti ≥ 0

CapL
i Lower real power operating capacity limit (MWs) for GenCo i CapL

i ≥ 0

CapU
i Upper real power operating capacity limit (MWs) for GenCo i CapU

i > 0

ai,bi Cost coefficients ($/MWh,$/MW2h) for GenCo i bi > 0

MCi(p) MCi(p) = ai+2bip = GenCo i’s true MC function for real power p MCi(CapL
i ) > 0

InitMoneyi Initial money holdings ($) of GenCo i InitMoneyi > 0

Mi Cardinality of the action domain ADi for GenCo i Mi ≥ 1

M1i,M2i,M3i Integer-valued density-control parameters for ADi construction
∏3

j=1 Mji = Mi

RIMaxL
i Ordinate range-index parameter for ADi construction RIMaxL

i ∈ [0, 1)

RIMaxU
i Slope range-index parameter for ADi construction RIMaxU

i ∈ [0,1)

RIMinC
i Capacity-withholding range-index parameter for ADi construction RIMinC

i ∈ (0, 1]

SSi Slope-start control parameter for ADi construction SSi > 0

MaxDNEi Estimate of max daily net earnings ($/D) for GenCo i from ADi MaxDNEi > 0

qi(1) Initial propensity ($/D) for GenCo i (learning) qi(1) ∝ MaxDNEi

Ti Temperature cooling parameter for GenCo i (learning) Ti > 0

ri Recency parameter for GenCo i (learning) 0 ≤ ri ≤ 1

ei Experimentation parameter for GenCo i (learning) 0 ≤ ei < 1

PCap Price cap ($/MWh) imposed on GenCo supply offers by ISO PCap > 0
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