
1

Agent-Oriented Programming: Intro 

Presenter:

Leigh Tesfatsion

Professor of Economics

Courtesy Professor of Mathematics

Iowa State University

Ames, Iowa 50011-1070
https://www2.econ.iastate.edu/tesfatsi/

tesfatsi@iastate.edu

26 February 2008

https://www2.econ.iastate.edu/tesfatsi/
mailto:tesfatsi@iastate.edu


2

Outline

 What is Object-Oriented Programming (OOP)?

 Agent-Oriented Programming (AOP) vs. OOP?

 AOP via “Computational Laboratories”

 Example of a Computational Laboratory 

The Trade Network Game (TNG) Laboratory

https://www2.econ.iastate.edu/tesfatsi/tnghome.htm

https://www2.econ.iastate.edu/tesfatsi/tnghome.htm


3

Object-Oriented Programming (OOP)

 Object
− Methods (behaviors, functions, procedures,…)

− Attributes (data, state information,...)

− Access:  public, private, or protected

 Class

 Interface

 Encapsulation

 Inheritance (subclass, superclass)

 Composition

KEY CONCEPTS:



4

Object-Oriented Programming (OOP)

 An object is a software entity containing 
attributes plus methods that act on these 
attributes.

 An object controls access to its attributes and 
methods by declaring them 
 public (accessible to all other objects);

 private (inaccessible to all other objects);

 or protected (accessible only to certain designated 
other objects).

 A class is a blueprint for an object, i.e., a 
template used to create (“instantiate”) an object.



5

Class = Object Template

Class Employee

Ann Ping Mario Dan

Employee Objects (Instances of Employee)



6

Illustration: Employee Class

Class EMPLOYEE
{
Public Access:

Methods:

getSocialSecurityNumber( ) ;

getGender( ) ;

getDateOfBirth( ) ;

Private Access:

Attributes:

SocialSecurityNumber ;

Gender ;

DateOfBirth ;

Trustworthyness ;
}



7

OOP … Continued

 The public methods and public attributes of an 
object are called the interface of the object.

 Objects communicate with each other via their 
public methods, i.e., by activating (“invoking”) 
the public methods of other objects.



8

OOP … Continued

 In “good” OOP design, an object should only 
reveal to other objects what these objects need 
to know to interact with it.

 Each class template specifies the interfaces for 
its instantiated objects -- it completely describes 
how users of these instantiated objects can 
interact with these instantiated objects. 



9

Illustration: Employee Class

Class EMPLOYEE
{
Public Access:

Methods:

getSocialSecurityNumber( ) ;

getGender( ) ;

getDateOfBirth( ) ;

Private Access:

Attributes:

SocialSecurityNumber ;

Gender ;

DateOfBirth ;

Trustworthyness ;
}



10

Illustration: Payroll Class
(invokes public methods in Employee class)

Class  PAYROLL
{
Public Access:

Methods:

calculateEmployeePay( );

payEmployee( );

Employee.getSocialSecurityNumber( ); 

Employee.getGender( );

Employee.getDateOfBirth( );

Private Access:

Attributes:

CurrentProfits;

EmployeePayoll;
}



11

OOP … Continued

 Encapsulation in conventional OOP is the 
process of determining which aspects of a class  
are not needed by other classes, and then hiding 
these aspects from other classes.

 More precisely, encapsulation of a class is the 
process of dividing the class into two distinct parts:

(1) (public) interface; 

(2) private (or protected) stuff that other classes do 

not need to know about.



12

Class Inheritance 

 A class C can inherit the attributes and methods 
of another class B. 

 Class C is then called the subclass of class B, 

and class B is called the superclass of class C.  

 A subclass can also include specialized attributes 
and methods not present in the superclass.



13

Class Inheritance: Example 

TradeBot
attribute        Price;

method         trade( );

Buyer
Price     =  BidPrice ;

trade( )  =  buy( ) ;  

calculateUtility( ) ;

Seller
Price      =  AskPrice ;

trade( )   =  sell( ) ;

calculateProfits( ) ;

Superclass of Buyer and Seller

Subclass of TradeBot Subclass of TradeBot



14

Composition vs. Inheritance 

 Objects can be built -- or “composed” -- from 

other objects.  This is called composition.

Example: A firm is composed of employees.

 A composition relationship between objects 
is often termed a “Has-A” relationship.  A firm 
“has an” employee. 

 An inheritance relationship between objects 
is often termed an “Is-A” relationship.  A buyer  
“is a” trader.



15

AOP vs. OOP

 What is an agent ?

 How does Agent-Oriented Programming 

(AOP) extend conventional Object-Oriented 

Programming (OOP) ?



16

What is an Agent ?

According to Nick Jennings (2000), an agent is an 

object capable of displaying...

➢ (Structural) Reactivity: Changes in internal 
structure in response to environmental changes

➢Social Ability: Interaction with other agents 
through some form of language.

➢Pro-Activity: Goal-directed actions.

➢Autonomy: Some degree of control over its own 
actions (“self-activation”).



17

Key Distinction is Autonomy

 Distributed control, not simply distributed actions.

 According to Jennings, conventional objects  

encapsulate attributes and methods but not 

self-activation and localized action choice.

 See N. R. Jennings (Artificial Intelligence, Vol. 17 

(2000), pp. 277-296) for an extended discussion of 

this viewpoint.



18

Autonomy means...

 Each agent effectively has its own persistent 

thread of control.

 Each agent decides for itself which actions to 

perform at what time, based in part on external 

environmental conditions and in part on private

internal aspects (current beliefs, desires,…).

 Thus, in multi-agent systems, a potential 

source of uncertainty for each agent is not 

knowing for sure what other agents will do 

(called “behavioral” or “strategic” uncertainty).



19

Example: Worker Agent 

Public Access:

// Public Methods
Protocols governing job search
Protocols governing negotiations with potential employers
Protocols governing unemployment benefits program
Methods for retrieving Worker data

Private Access:
// Private Methods

Method for calculating my expected utility assessments
Method for calculating my actual utility outcomes
Method for updating my worksite strategy (learning)
Methods for updating my methods (learning to learn)

// Private Attributes
Data about myself (my history, utility fct., current wealth…)
Data recorded about external world (employer behaviors,…)
Addresses for potential employers (permits communication)



20

Computational Laboratory = 
Computational framework for the study of 
complex system behaviors by means of 
controlled and replicable experiments.

 Graphical User Interface (GUI) permits 
experimentation by users with no 
programming background.

 Modular/extensible form permits framework 

capabilities to be changed/extended by users  

who have programming background.

AOP via Computational Laboratories



21

 Evolution of trade networks among strategically 

interacting traders (buyers, sellers, and dealers)

 Traders are instantiated as “tradebots,” i.e.,  as 

autonomous software entities with internal attributes 

and methods.

 Tradebots engage in event-driven communication

 Tradebots evolve their trade methods over time, 

starting from initially random trade methods

Example: The Trade Network Game Lab (TNG) Lab



22

TNG Lab Architecture

 Four-Layer Architecture:

◼ SimBioSys (C++ class framework)

◼ TNG/SimBioSys (extension classes)

◼ TNG/COM (permits interactive display)

◼ TNG Lab (graphical user interface)

 Downloadable as Freeware in a Zip file that includes 

an automatic installation wizard 

https://www2.econ.iastate.edu/tesfatsi/tnghome.htm

https://www2.econ.iastate.edu/tesfatsi/tnghome.htm


23

TNG Lab 4-Layer Architecture
(McFadzean, Stewart, and Tesfatsion, IEEE-TEC, 2001)

xxx



24

SimBioSys (McFadzean, 1995)

 Simulation toolkit

 C++ class library

 Designed for artificial life simulations (populations 

of autonomous interacting agents evolving in a 

virtual spatial world)



25

TNG/SimBioSys

(McFadzean/Tesfatsion 1997)

sss

TNG

SimBioSys



26

 Internalized social norms (market protocols) 

taken as given

 Internally stored state data that can change 

through experiences

 An internal trade method (personality) that 

the tradebot evolves over time in an attempt to 

increase its profit (net payoff).

Each Tradebot has...



27

TNG Flow Diagram

 INITIALIZATION

 LOOP Through TMax Trade Cycles

◼ Trade Cycle:

- Search for Trade Partners;

- Interactions with Trade Partners;

- Update Expectations about Trade Partners.

 EVOLUTION STEP (Update Trade Methods)

 LOOP Through TMax Trade Cycles . . .



28

TNG Settings Screen



29

TNG Results Screen

sss



30

TNG Chart Screen

sss



31

TNG Network Animation Screen

sss



32

TNG “Interaction Physics” Screen

sss



33

Related Online Resources

 ACE/CAS General Software and Toolkits
https://www2.econ.iastate.edu/tesfatsi/acecode.htm

 ACE/CAS Computational Laboratories
https://www2.econ.iastate.edu/tesfatsi/acedemos.htm

 Research Area: Development and Use of 

Computational Laboratories
https://www2.econ.iastate.edu/tesfatsi/acomplab.htm

 TNG Lab Home Page
https://www2.econ.iastate.edu/tesfatsi/tnghome.htm

https://www2.econ.iastate.edu/tesfatsi/acecode.htm
https://www2.econ.iastate.edu/tesfatsi/acedemos.htm
https://www2.econ.iastate.edu/tesfatsi/acomplab.htm
https://www2.econ.iastate.edu/tesfatsi/tnghome.htm

