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INTRODUCTION

A major pillar of the field of agricultural and resource economics (referred to hereafter
as agricultural economics) is its tradition of interdisciplinarity, especially in linking so-
cioeconomic and biophysical processes. In contrast to economic analysis in other fields,
agricultural economists are more likely to broaden their experimental perspective to in-
clude interaction or feedback between humans and the natural world. This orientation
has led in large part to increased interest in studies of economic processes over both
time and space, using both dynamic optimization and spatial analysis (Kennedy 1986;
Miranda and Fackler 2002; Nelson 2002).

A second pillar of agricultural economics is its tradition of empirical testing of
carefully derived hypotheses. However, when modeling human-environment interactions,
economics in general has had difficulty linking traditional deductive theoretical models,
which include just a few state variables and feedbacks for tractability, with inductive
statistical models that include many independent variables but often exclude explicit
representations of the underlying processes. Current analytical models are also limited
in their ability to represent human learning and adaptation, a factor that is particularly
important when future conditions depend heavily on the actions of other economic
decision makers.

Agricultural economists recognize that individual and environmental heterogeneity
are key components of dynamic human-natural systems. However, theoretical and econo-
metric models remain somewhat limited in terms of their ability to portray heterogeneous
decision-making individuals in a heterogeneous environment and in terms of modeling
significant interactions between economic agents, where economic interaction can be
generated by activities, such as resource transfers through local markets and imitative
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behavior, as well as through spatial externalities. In addition, current spatial models are
often founded on the assumption that neighborhood conditions are fixed and that the
supply or demand decision of a particular neighbor will not alter the spatial environment
for a given individual, an assumption that rarely holds in reality. Relevant examples in
agriculture include a decision to extract groundwater resources by one farmer that affects
water availability for other farmers in a catchment area, or a decision by a farmer to rent
out or sell land that will certainly affect the land rental options, sales, and production
choices of neighboring farmers.

Concurrent with these issues, it is also the case that optimization-based farm and
resource management models, often operating under short time scales with purely fi-
nancial objectives, have become increasingly sophisticated over the past half century in
part because of technical advances in computer hardware and software combined with
improved training of students in mathematical modeling. Researchers continue to try
to advance the ability of these models to capture economic and ecosystem uncertainty,
irreversible thresholds (e.g., bankruptcy, destruction of shallow lakes due to excessive nu-
trients), as well as interpersonal (interhousehold, interfirm) and dynamic natural resource
management challenges.

As the latter models have become more realistic and sophisticated, operating over
longer time scales and incorporating higher degrees of human-environment feedback,
they too have become more difficult to solve analytically. Ultimately, the response of
the profession to all of the shortcomings described above has been the development of
the field of computational economics.! As such, the field encompasses both numerical
optimization (Glover and Laguna 1993) as well as simulation methods.

In this special issue, we examine recent advancements in two computational eco-
nomics modeling approaches used within agricultural economics—stochastic dynamic
programming (SDP) and agent-based modeling (ABM). SDP is used to address uncer-
tainty in applied research, while ABM is a simulation methodology that is increasingly
used increasingly in other social sciences (Berry et al 2002; Hernandez et al 2008; Waldrop
2009), particularly in cases where agents are heterogeneous and the system may be out
of equilibrium. One goal of this special issue is to familiarize the wider agricultural eco-
nomics profession with these powerful tools, while also providing a context with which
many readers are likely familiar.

This introductory paper provides some background to these methods, albeit mostly
in an informal and nontechnical fashion. In the next section, we provide a brief overview
of how uncertainty is treated using SDP, as well as outline more recent advances in this
field. In third section, ABM is described in more detail. Since these are computational
methods, the fourth section briefly discusses software issues. Section fifth provides an
overview of the applications of computational economics represented in this special issue,
while sixth section concludes by listing some of the challenges facing modelers who may
choose to use these computational methods.

OPTIMIZATION, UNCERTAINTY, AND STOCHASTIC
DYNAMIC PROGRAMMING

Dynamic optimization, particularly the use of SDP, has a long history in agricultural and
resource economics. Oscar Burt was the first to apply SDP in agricultural economics,
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with his first paper in agricultural economics appearing in 1963 (Burt and Allison 1963).
Building upon the work of Howard (1960), who adapted Bellman’s (1957) pioneering
approach to include stochasticity, Burt and Allison (1963) examined the trade-off between
moisture and soil conservation in a wheat-fallow crop rotation to recommend adaptive
decision making based on soil moisture content that would reduce the time fields were
summer fallowed (and thus reduce soil erosion).

Burt employed the Markov assumption (that all information about the past is em-
bodied in the last observation of the state variable), developed state probability transition
matrices for each control variable, and solved the problem using backward recursion based
on Bellman’s equation. For the policy iteration approach, Burt’s method for obtaining
the long-run expected return associated with each state variable was a bit awkward, with
Hastings (1973) providing a much simpler approach. Subsequently, Burt and Taylor (1989)
provided a means for including a two-period lag into the Markov framework. While the
standard approach to SDP is relatively straightforward, it provides only an approximate
solution that depends on how the state equation/variable is discretized—the fineness of
the grid for the probability transition matrix.

Judd (1998) proposed a ‘collocation’ method for solving problems with a continuous
state variable. The approach is similar to that used to linearize nonlinear functions for
linear programming (see Loucks et al 1981). Compared to the ‘standard’ approach,
collocation is much more difficult to implement (see Miranda and Fackler 2002). One
of the SDP papers in this issue uses collocation, while the other employs a Monte Carlo
approach, both of which extend the methods originally developed by Burt.

To put SDP in context, it is worthwhile noting that economists prefer an analytical
approach based on optimal control methods (i.e., the maximum principle), but this has
also made it much more difficult to address risk. To incorporate risk into optimal control
theory requires increased mathematical sophistication that involves stochastic processes
and the Ito calculus (Dixit and Pindyck 1994). Although originally adapted to address
problems in finance, stochastic optimal control has been employed in some areas of
natural resource economics, but has thus far made few inroads elsewhere in economics,
including finance. In this regards, SDP still seems to be the preferred approach.

AGENT-BASED MODELING

Agent-based models are effectively micro-level simulation models that represent het-
erogeneous decision-making entities as well as their interactions with their social and
physical environment. In contrast to mathematical or computational techniques tradi-
tionally used in agricultural economics, ABM is simulation based, not equilibrium based.
Although models may reach equilibrium, it is the result of interactions among lower-level
entities. Thus, they are suitable for modeling domains where the complex relationships
between agent heterogeneity, interactions and cross-scale feedbacks render traditional
equilibrium-based models analytically intractable (Parker et al 2003).

An elaboration of the structural differences between traditional microeconomic and
agent-based models clarifies the specific ways in which ABM can address some of the
limitations of traditional models, and also illustrates what is gained and lost in the move
to an alternative methodological approach. The mechanisms of a traditional model are
illustrated in Figure 1. On the supply side, the individual supply functions of several
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Figure 2. Agent-based spatial market

firms—potentially heterogeneous and potentially located at particular points in space
in relation to markets—are aggregated to form a market supply function. Similarly, the
demand functions of several potentially heterogeneous and spatially located firms are
aggregated to form a market demand function. These two functions are combined with
an assumed equilibrium condition that defines a market price and quantity. From these
values, economic outcomes, such as income and welfare, are derived.

In the comparable agent-based framework (Figure 2), producer and consumer agents
may be similarly heterogeneous and spatially situated in relation to markets. However,
their spatial relationships with other consumers and producers may influence their sup-
ply and demand functions, particularly through neighborhood relationships. Interactions
may also occur through social and informational networks: on the demand side, for
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example, through imitative behavior and social networks; on the supply side, through
technology adoption and strategic interactions. Rather than aggregating individual sup-
ply and demand functions into market demand and supply functions, agents interact
through a simulated market. When agents for whom gains from trade are positive con-
nect, successful transactions occur. As these transactions take place over time, if market
conditions remain stable then a market equilibrium may emerge. If market conditions
are constantly evolving—for example, as price expectations or available resources change
dynamically based on previous transactions—the market may not reach equilibrium. In
either case, economic outcomes, such as income and welfare, can once again be derived.

As mentioned above, ABMs are generally used in situations where model complexity
leads to analytical intractability, meaning that equilibrium conditions either cannot be
identified or analytically solved. The corollary to this generalization is that agent-based
models generally relax assumptions of full rationality inherent in traditional economic
models. In contrast to full rationality, models of bounded rationality assume that eco-
nomic agents have limited information, computational capabilities and resources (Simon
1996). Agents may still be modeled as goal oriented and even as optimizers, but in a
complex system they cannot be modeled as fully rational optimizers. If the creator of the
model herself lacks the information, resources, and computational capabilities to solve
her model specification, it is simply impossible to endow her modeled agents with this
capability.

The modeled actors can be endowed with adaptive mechanisms to learn about their
economic environment, the behavior of other actors, and the strategies resulting in the
highest payoffs. Via their interactions in a simulated market, this group of agents can act
as a type of inductive search algorithm to identify an economic equilibrium, one that has
the standard property that no actor has an incentive to change his behavior, given the
economic environment and actions of the other actors. This behavior instantiates the story
of decentralized interactions guided by an “invisible hand” that is used to motivate the
existence of the equilibrium conditions imposed on analytical models. When the macro-
scale properties of this equilibrium—market-clearing prices, resource allocations, paths
of resource depletion over time, structural patterns of land use—depend on these path-
dependent interactions between micro-level agents such that the macro-scale outcomes
cannot be explained by or derived from the properties of the micro-scale elements in
isolation, these macro-scale properties are often refer to as “emergent” (Holland 1998;
Arthur 2006).

Whether or not the economic model is designed to attain equilibrium, without
closed-form analytical solutions the modeler can no longer use traditional techniques,
such as comparative static analysis to investigate the relationship between exogenous
model parameters and endogenous model outcomes. Without such analytical methods,
it is difficult for the modeler to completely characterize the behavior of the modeled
system, especially when combinations of parameters lead to nonlinear changes. However,
sensitivity analysis that sweeps parameter spaces can bring the modeler quite close to a
comprehensive understanding of the behavior of her model (Judd 1998).

What is gained in return for the loss of analytical tractability, full rationality, and
well-defined and explored equilibria? The gain comes in terms of a much broader range
of research questions that can be explored via ABM. These questions allow exploration
of the influence of agent and environmental heterogeneity; interdependencies among
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agents, between agents and their environment, or both; and dynamic feedbacks across
levels/scale. They may also allow investigation of the effects of temporal phenomena, such
as path dependence (sensitivity of the modeled system to initial conditions and/or random
elements), learning, and adaptation. In short, agent-based models have the flexibility to
explore research questions motivated by the characterization of economies as complex
mathematical systems.

COMPUTATIONAL ECONOMICS: SOFTWARE

Computational methods in economics would not be accessible to practitioners if not
for the existence of high-quality specialized software. Today, there are many numeri-
cal optimization software packages used in the profession, though among agricultural
economists GAMS (www.gams.com) appears to be the most popular. While traditionally
popular in mathematics and engineering, MATLAB (http://www.mathworks.com/) is
also becoming a standard software tool used by economists to solve a large array of
numerical optimization problems, ranging from statistical estimation to constrained opti-
mization to approximation and ad hoc solutions. The collocation method is implemented
primarily using MATLAB, for example (see Miranda and Fackler 2002). But each soft-
ware package has its advantages and drawbacks. Programming is simpler in MATLARB, it
is easier to input and output data, string variables can be readily identified, and there exist
a very large number of extremely useful and easy to implement built-in and third-party
functions (including an optimization toolbox). But MATLAB does not have the ability
(whereas GAMS does) to call high-powered solvers without modifying the underlying
code. Although researchers can work exclusively in one software environment, it is now
possible to take advantage of the best capabilities of both software packages by calling
GAMS from within MATLAB (see Ferris 2005; Wong 2009).

Agent-based models are almost universally implemented using a variety of pro-
gramming languages and software libraries (Castle and Crooks 2006; Miller and Page
2007; Gilbert and Troitzsch 2005). While many of the first generation of social science
researchers programmed their own agent-based environments, there are now a few good
specialized open source ABM packages available to the practitioner, including the pop-
ular NetLogo (http://ccl.northwestern.edu/netlogo/; simple to program but limited to
smaller applications) and RePast (http://repast.sourceforge.net/; more difficult to pro-
gram but more flexible for larger applications). ABM models are now mostly programmed
using third generation programming languages, the so-called object-oriented program-
ming (OOP) languages (e.g., C++, Java) that can manipulate complex data structures in
an efficient and transparent way. In the context of agricultural economics and simulation
modeling, the programmed objects can represent farm-households (for convenience, they
are then called “agents”), as well as other items, such as plots, machinery, cattle, or higher
level entities like villages, districts, or water catchments (Berger and Ringler 2002).

COMPUTATIONAL ECONOMICS: APPLICATIONS

This issue contains several current applications of computational modeling in agricultural
economics using either agent-based or SDP models. This section of the paper provides
the interested reader with an overview of each of the special issue papers, classified by
research topic and/or methodology.
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Neighborhood Amenities and Urban Development

In recent years, there has been growing concern regarding fragmented patterns of devel-
opment at the rural-urban fringe, patterns often characterized as “urban sprawl” (Tor-
rens and Alberti 2000), as well as concurrent interest in the public value of open-space
amenities (McConnell and Walls 2005). Inherent to these issues are the potential path
dependence of land-use patterns and the influence of land-use decisions by a large number
of neighbors. Agent heterogeneity may play an important role in the evolution of land-use
patterns—city dwellers will be inherently different than rural land owners, while develop-
ers are a heterogeneous group. Ultimately, land values will be spatially interdependent,
with neighboring land uses and parcel characteristics influencing parcel value.

These phenomena have been explored to an extent using econometric modeling (Bell
and Irwin 2002), and cellular automaton models (Benenson and Torrens 2004; Batty
2005). In recent years, a number of authors have developed ABM approaches to meet
the need for more detailed structural models capable of exploring the complex dynamics
that generate these patterns, reviewed in detail in Parker and Filatova (2008). In this issue
Filatova et al (2009) expand on this previous research by analyzing the effect of both
positive and negative influences (coastal amenities and flood risk) on urban development
and land rents. They specifically explore the effects of heterogeneous, potentially biased
flood risk perceptions, demonstrating the limitations of analysis based on representative
agent assumptions.

Agricultural Value Chains

There is a growing recognition that modern agricultural systems (production, distribution,
marketing) are in a state of transition. Increasingly numerous and heterogeneous agents
characterize evolving agricultural value chains. Little is understood about how and to
what extent these varied agents interact in the value chain, which affects both system and
firm performance. The Ross and Westgren (2009) and the Ameden et al (2009) papers use
ABM to examine theoretical and applied issues within modern agricultural value chains.
Ross and Westgren (2009) build on their previous research to reveal interactions between
entreprencurial behavior and the performance of firms in the current and future agri-food
system. In the spirit of Austrian economics, they use an agent-based model to simulate a
set of entrepreneurial “capabilities” within a stylized agri-food sector and report on how
these capabilities affect individual firm performance.

Ameden et al (2009) focus on an important portion of an agricultural value chain that
harbors the potential to inflict extensive economic damage—they simulate the interaction
between border management and the infiltration of invasive species in agricultural trade.
As a form of dynamic game, border agents, and importers interact on a repeated basis,
gaining information about how the other agents’ behavior evolves over time. By modeling
the problem using ABM, Ameden et al (2009) are able to develop a set of dynamic policies
that they hope will improve allocation of scarce border resources in a low probability but
potentially high damage economic environment.

Structural Change in Farming

Researchers are using ABM to examine the structure of farming in various regions
around the world. In this issue, Happe et al (2008) build upon their prior research to
analyze farm structural change in a relatively new European Union member country
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(Slovakia), Schreinemachers et al (2009) examine current policy issues in Thai greenhouse
agriculture, and Freeman et al (2009) describe historical structural change in agriculture
on the Canadian prairies. Each region is obviously very different, but all experience land
scarcity that limits farm expansion and scale efficiencies.

Happe et al (2008) and Schreinemachers et al (2009) show that agent behavior can be
created in the tradition of individual farm linear programming models, with mathematical
programming methods and econometric results, respectively, used to represent decision-
making processes within the agent-based simulation. While Happe et al (2008) analyze the
nature of farm transition and evolution in a dramatically changing agricultural economy,
Freeman et al (2009) describe the recent history of a mature agricultural region and
develop a set of counterfactual simulations to examine how policy changes could have
altered the path of structural change. In both papers, intergenerational transfers of land
and material are extremely important to industry sustainability. Finally, Schreinemachers
et al (2009) use ABM to simulate policy changes in a very exotic agricultural economy
and, like the other two papers, find agricultural policies in the region lead to misallocation
of resources that is incompatible with environmental sustainability.

Uncertainty and Stochastic Dynamic Programming
Bond and Loomis (2009) are interested in adaptive ecosystem management, meaning
that their Bellman equation is no longer recursive. They use Monte Carlo simulation
(varying the ecosystem parameters) in combination with optimization to find optimal
nutrient loadings. They also compare outcomes of a stochastic learning process with a
deterministic one. Bond and Loomis (2009) write their code in GAMS, which enables
them to take advantage of mathematical programming within a user-written loop.
Lohano and King (2009) utilize SDP to investigate the impact of stochastic land
prices and crop returns on the investment decisions over farm size for Southwestern
Minnesota farms. Land values and crop returns interact and jointly determine the land
investment (disinvestment) decision. The dynamic nature of the investment decision leads
to increased variability in the stochastic variables, even under the assumption of risk-
neutral preferences, an unusual result that would not have been obtained using static
analysis. The inclusion of an outside investment option increases the variability of farm
income as well as the probability of a complete exit from farming compared to the case
where the outside option is absent. In policy simulations, the authors find that likely farm
sizes are bimodal, clustered at either 400 or 2000 acres. Lohano and King (2009) use
collocation with a program written in MATLAB (their code is available to the interested
reader).

DISCUSSION AND CONCLUSIONS

There remain significant challenges for researchers interested in applying the compu-
tational techniques contained in this special issue. Although dynamic programming is
relatively well established as a methodology and has been practiced in agricultural eco-
nomics since the early 1960s, it is clear that better algorithms/approaches for dealing
with continuous state and control variables in a nonlinear context need to be found. For
example, as Bond and Loomis (2009) show, adaptive management under uncertainty is
difficult to implement in an optimization framework, and learning methods need to be
employed (see Eiswerth and van Kooten 2007).
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But due to its relative novelty, more broadly acknowledged challenges for ABM exist.
While these challenges are general to social science applications, some are particularly
significant for agricultural economists who wish to conduct research using agent-based
methods. These include:

Model Communication

Since ABMs are written in computer code and can rely more on heuristics than on formal
mathematics, concise communication of model rules and mechanisms can be challenging.
Several alternative protocols for standard communication have been proposed, but no
consensus has yet emerged regarding an accepted standard (Allesa et al 2006; Richiardi et
al 2006; Polhill et al 2008). Development of standard and comprehensive communication
protocols may be particularly important for ABM to gain acceptance in the agricultural
economics community, where readers are accustomed to formal (mathematical) represen-
tations of models.

Data Needs

Applied ABMs often possess greater data requirements than mathematical programming
or econometric models, simply because these models generally capture large numbers of
micro-level processes. Empirical parameterization of agent decision models is a particular
challenge (Robinson et al 2007). This is an area where agricultural economists can make
a strong contribution to the development of ABMs, given the long tradition in agricul-
tural economics of detailed fieldwork and surveys and the more recent contributions
of agricultural economics in geographic information systems analysis and experimental
economics.

Model Calibration, Verification, and Validation

Due to their complex model structure and intensive data requirements, ABMs face partic-
ular challenges for model calibration, verification (model testing to ensure conceptually
and technically correct operation), and validation (comparison of model outputs to inde-
pendent real-world data). Given that many statistical methods for model validation are
designed for simpler systems, new methods must be developed specifically for analysis of
output from complex systems (Grimm et al 2005). Again, the empirical orientation and
statistical expertise of agricultural economists can be expected to contribute in this area,
particularly regarding issues, such as analyzing uncertainty and error propagation, and
development of methods for fitting models from data generated by complex systems (next
generation econometric models).

Getting Started

Given its relative novelty in the field, there are both challenges and opportunities for
a researcher or Ph.D. student wanting to construct an agent-based simulation model.
Although few formal courses for economists are available, it is possible for a motivated
researcher working independently to complete an ABM exercise by leveraging external
resources. A current listing is provided in the appendix to this article. The challenge of
mastering object-oriented computer programming is often mentioned as a significant
barrier to entry to ABM. Fortunately, small scale models can be easily developed in
Netlogo (see the Ameden et al (2009) and the Freeman et al (2009) papers), but we note



426 CANADIAN JOURNAL OF AGRICULTURAL ECONOMICS

that the current research level ABM software of choice in the social sciences seems to be
RePast.

Regarding ABM in agricultural economics, we are at a time of transition making this
special issue very timely. Currently, colleagues using ABM in the social sciences (including
agricultural economics) are beginning to complete the training of the next generation of
graduate students in the use of appropriate models and software. It is an opportune
time to get involved in this new form of computational modeling, a time not unlike
the explosion of econometric work begun in the 1960s when relevant and accessible
computer software became available for applied researchers. The technical skills and
attention to detail of the agricultural economics community are much-needed potential
assets to ABM. In addition to the applications discussed here, ABMs can and have been
applied to many other related research projects, including livelihood vulnerability and
degradation in developing country agricultural communities, the relationship between
natural resource scarcity and civil violence, the environmental and economic effects of
biofuel production, the dynamics of the housing foreclosure crisis, and the effects of
regional and global carbon markets. The agricultural economics profession has a strong
tradition of methodological innovation, and, building on this tradition, we invite members
of this community to harness their creativity and technical expertise to develop the next
generation of agent-based economic models.

NOTE

I'This is no different than the situation in the biological and physical sciences. For example, global
circulation models that project future temperatures and precipitation are nothing more than ex-
tremely large mathematical models (consisting of thousands of interlinked mathematical relations)
that take many days to solve on super computers.
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APPENDIX: RESOURCES FOR ABM IN THE SOCIAL SCIENCES

Several websites provide information and resources:

o Leigh Tesfatsion’s Agent-based Computational Economics (ACE) site pro-
vides start-up information and resources and current news items (http://www.
econ.iastate.edu/tesfatsi/ace.htm);

o The CORMAS site provides links to software, models, and publications
(http://cormas.cirad.fr/indexeng.htm);
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o The GIS and ABM blog focuses on integrating ABM and GIS (http://gisagents.
blogspot.com/);

o The Open ABM site (under development) provides a model archive library, examples
of model documentation protocols, and discussion forums related generally to ABM
(http://www.openabm.org/site/);

Two earlier overviews were published as part of a 2001 ABM land use workshop (Parker
etal 2002; Parker et al 2003), while updates to this literature have been made more recently
(Castle and Crooks 2006). Several good overviews of ABM and related economic topics
have been updated and published as part of the recent Handbook of Computational
Economics (Tesfatsion and Judd 2006).

Organized sessions and symposia at professional meetings and special journal issues
provide presentation and publication opportunities. For example, ABM work has been
presented as part of an ongoing set of sessions on “Geographic Perspectives on Com-
plexity” at the American Association of Geographers since 2000, and periodically at the
Geocomputation meetings, resulting in several special issues. (See Parker and Filatova
2008, for a comprehensive list.)

Two electronic mailing lists provide opportunities for announcement posting, technical
inquires, and discussion:

o SIMSOC (http://www.jiscmail.ac.uk/lists/SIMSOC.html) focuses in general on
agent-based social simulation;

o MaSpace (https://listserv.indiana.edu/cgi-bin/wa-iub.exe?A0=MASPACE-L) fo-
cuses on landscape-based spatial models of human-environment interactions.

In North America, a number of workshops and training programs are available (this list
does not include current European programs):

o Academic programs at the George Mason University (Graduate Certificate and PhD)
and the University of Michigan (Graduate Certificate);

o Training workshops at the Santa Fe Institute (Graduate summer schools in complex
systems and in computational economics);

o Additional special and reoccurring training workshops are regularly announced in
the ACE newsletter and through the electronic mailing lists referenced above.



