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Chapter 1

Introduction

Duncan K. Foley

1.1 Dynamical systems

One of the most fruitful conceptions in scientific investigation has been the
idea of representing the state of a system of interest (whether the system
is physical, biological, or social) at a given time as a vector, xt in a space
X, the state space of the system. Interesting systems are those that change
through time. Thus we are led to consider the idea that the evolution of
a system is governed by certain laws that define a dynamical process. In
a large class of situations it turns out that the state of the system in the
current time period is the only information available about the influences
on its state in the next time period. Thus whatever lawful regularities the
system possesses can be summarized by the relation:

xt+1 = Fa(xt) (1.1)

In this expression Fa is an operator on the state space and the vector
a represents potentially changeable parameters of the system.

The operator Fa(.) may represent a deterministic or stochastic process.
In the deterministic case the lawful regularities determine xt+1 uniquely
given a and xt, while in the stochastic case some margin of uncertainty
may remain about the exact value of xt+1. The systems studied in this
book are deterministic. Since deterministic systems can be regarded as
degenerate stochastic systems, the conclusions we draw about deterministic
systems apply to at least some stochastic systems. Negative results and

3



4 CHAPTER 1. INTRODUCTION

counterexamples established for the deterministic case must apply a fortiori
to stochastic systems as well.

The method of dynamical system analysis has been successfully applied
to a huge range of phenomena in the physical and biological sciences, as
well as to a wide range of social and economic problems. Thus a great deal
of mathematical effort has gone into studying the behavior of dynamical
systems like (1.1).

1.1.1 Linear dynamical systems

The possible range of behaviors of one class of dynamical systems, lin-
ear systems, is completely understood. In a linear dynamical system the
operator Fa is a matrix, A, so that the system can be written:

xt+1 = Axt (1.2)

The trajectories of this system can be decomposed into independent mo-
tions of three types (see Hirsch and Smale, 1974, for a complete exposition
of this theory). One type of motion is geometric expansion or contraction
along a particular ray. This motion is associated with a real, positive eigen-
value of the matrix A; the ray is the corresponding eigenvector. A second
type is geometric expansion or contraction in which the system jumps from
one side of the origin to the other on a particular line in alternate periods.
This motion is associated with a real, negative eigenvalue of A; the associ-
ated eigenvector again determines the line to which the motion is confined.
The third type is inward or outward spiraling in a particular plane. This
motion is associated with a pair of complex eigenvalues of the matrix A;
the corresponding real and imaginary components of the associated eigen-
vector define the plane in which it takes place. (The use here of the word
“complex” to describe numbers having a real and an imaginary part is, of
course, quite different from the use we will make of “complex” to describe
properties of whole systems in what follows.)

The magnitude of the eigenvalues determines the stability of the corre-
sponding motion. If an eigenvalue (or pair of complex eigenvalues) has a
magnitude smaller than 1 the corresponding component of the motion will
be stable, moving toward the origin. If an eigenvalue (or pair of complex
eigenvalues) has a magnitude greater than 1, the corresponding component
of the motion will be unstable, moving away from the origin indefinitely.
Eigenvalues with magnitude just equal to 1 are neutral, neither stable nor
unstable. The corresponding component of the motion is neutral as well:
if the eigenvalue is +1, the system will remain indefinitely at any point on
the line corresponding to its eigenvector; if the eigenvalue is −1, the system
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will indefinitely oscillate in reflections around the origin; if a pair of com-
plex eigenvalues has magnitude 1 (thus lying on the unit circle in complex
coordinate space), the system, started at any point in the plane defined by
the corresponding eigenvectors, will rotate indefinitely on a circle around
the origin through the starting point.

The actual motion of a linear system starting from any initial point x0

can appear quite complex, but can always be decomposed into a combina-
tion of these simple independent motions.

1.1.1.1 Example: The linear oscillator

Consider the linear system defined by the equations of motion:

xt+1 = λ cosωxt − λ sinωyt
yt+1 = λ sinωxt + λ cosωyt (1.3)

Here λ > 0 and ω 6= 0 are parameters that govern the equations of
motion of the system. The matrix A in this case is[

λ cosω λ sinω
λ sinω λ cosω

]
The eigenvalues of this matrix are λ(cosω ± i sinω), which are stable

if λ < 1, and unstable if λ > 1. The trajectories of this system from any
arbitrary starting point except the origin are inward spirals if it is stable,
outward spirals if it is unstable, and circles in the borderline case λ = 1.
The sign of the parameter ω determines the direction of spiraling, and the
magnitude of ω its speed.

1.1.1.2 Linearity and predictability

The possibility of decomposing the trajectories of linear dynamical sys-
tems into simple independent motions suggests that it might be possible to
predict the motion of linear systems by observing their past trajectories.
A clever predictor might use the past trajectories of this system to infer
the values of the matrix A, and then could use standard mathematical
techniques to extrapolate the future trajectory of the system. Sophisti-
cated and robust techniques for estimating the structure of linear systems,
even when the observations of the trajectories are contaminated by errors
of observation, have been developed by econometricians, epidemiologists,
physicists, and engineers who deal with time series.
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Linear systems have the convenient property that their behavior in all
regions of the state space is proportional to their behavior in a small neigh-
borhood of the origin. Thus observation of a linear system in a small part
of the state space is potentially sufficient to understand its behavior every-
where. This behavior contrasts sharply with those of systems that evolve
in different ways at different scales.

Linear systems also have the convenient property that smooth changes
in the parameters a, which in the case of linearity define the elements in
the matrix A, lead to smooth changes in the behavior of the trajectories.
The speed of expansion or contraction of a solution along a ray, and the
location of the ray itself, may vary with the elements of A, but in a smooth
and gradual way. Two real eigenvalues may coalesce into a pair of complex
eigenvalues, their eigenvectors becoming the real and imaginary compo-
nents of the complex eigenvectors, but this takes place so smoothly that
the corresponding trajectories are close to each other for small changes in
the parameters.

Linear systems may have many dimensions, and their trajectories may
seem to be quite complicated, but in fact they are simple, because with
enough information, even local information in one region of the state space,
about the past trajectory of the system, it is possible to infer the future
trajectory to any desired degree of accuracy.

1.1.1.3 Example: The linear oscillator continued

The linear oscillator we have studied exhibits the smooth dependence of
linear systems on changes in parameters. It is convenient to rewrite this
system in polar coordinates, (r, θ), where r(x, y) =

√
x2 + y2, and θ =

arctan( yx ). In these coordinates the laws of motion become:

rt+1 = λrt

θt+1 = θt + ω (1.4)

In polar coordinates it is clear that the expansion or contraction of the
system depends on the parameter λ, while its speed of rotation depends
on the parameter ω. If we hold ω constant and increase λ from a value
smaller than 1 through 1 to a value larger than 1, the trajectories change
smoothly from inward spirals to circles to outward spirals as in Fig. 1.1. If
we hold λ constant and vary ω, say from a negative value through 0 to a
positive value, we see the spiraling on the trajectory slow down, stop, and
then reverse direction, as in Fig. 1.2. When ω = 0, the eigenvalues of the
system are no longer a complex conjugate pair, but two real numbers, both
equal to λ. In this situation the system decomposes into pure motions in
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Figure 1.1: As λ moves from stable to unstable values, the trajectories of the
linear oscillator change smoothly from inward spirals through a circle to outward
spirals.
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Figure 1.2: As ω moves from positive to negative values, the spiral trajectories
of the linear oscillator slow down, and reverse direction. When ω = 0, the system
moves along a straight line toward or away from the origin.

the x- and y-directions, which are both unstable or stable, depending on
the value of λ.

1.1.2 Nonlinear dynamical systems

The situation where the operator Fa(.) is not linear is quite different. Sup-
pose, for convenience, that the origin of the state space is an equilibrium of
the system, in the sense that the laws of motion require that if the system
starts at the origin it will stay there:

0 = Fa(0)

For points close to the origin the laws of motion can be approximated
by expanding the operator Fa(.) as a Taylor’s series:
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xt+1 = Fax(0)xt +
1
2
xTt Faxx(0)xt + . . .+

= (Fax(0) +
1
2
xTt Faxx(0))xt + . . .+ (1.5)

Here Fax(0) represents the vector of first derivatives of Fa evaluated
at the origin, and similarly for Faxx(0). This approximation suggests that
we regard nonlinear systems as perturbations of linear systems, where the
perturbing effects appear in the quadratic, cubic, and higher order terms
of the power series. The second form emphasizes one important aspect of
the nonlinearity of the system; the laws of motion of the system change
as the system moves in the state space. In a nonlinear system it is no
longer generally possible to make inferences about the global behavior of
the system from local information.

1.1.2.1 Bifurcations and chaos

Nonlinear dynamical systems display a much greater range of behavior than
linear systems. For example, if we gradually vary the parameters in a linear
system with a pair of complex eigenvalues so that the eigenvalues move from
being stable to being unstable, the corresponding motion changes from a
stable spiral toward the origin, through neutral circling of the origin, to an
unstable spiral away from the origin. In particular, the motion can remain
bounded and cyclical only in the knife-edge case where the eigenvalues have
magnitude exactly equal to 1.

In a nonlinear dynamical system matters are quite different. As a pair
of complex eigenvalues moves across the unit circle (the Hopf bifurcation)
the system becomes locally unstable, since the linear forces tend to push it
in ever widening spirals. But as the system moves away from the origin, the
nonlinear forces become more important. It is possible that the nonlinear
forces will be stabilizing, so that the system will develop a stable limit cycle,
generating bounded oscillations indefinitely for a range of parameter values
and a range of initial conditions. This behavior is qualitatively different
from the possible behavior of linear systems, which can produce indefinite
bounded oscillations only in the fragile case where the parameters lead to
a pair of neutral complex eigenvalues; even in this special case the cycle
that results changes with each change of initial conditions.

The interplay of destabilizing linear forces and stabilizing nonlinear
forces in a nonlinear system can produce even more complicated trajecto-
ries. The nonlinearities may couple the independent motions of the linear
system. In this situation the system may be unable to achieve a limit cy-
cle, because its motion disturbs a third variable, which in turn changes the



1.1. DYNAMICAL SYSTEMS 9

local laws of motion. The system may wander indefinitely in a confined
part of the state space, so that it is globally stable, never exactly repeating
its previous trajectory. The resulting patterns of motion are called chaotic,
a terminology that does not do complete justice to the combination of
organization and unpredictability that results.

Chaotic systems are organized in that their asymptotic trajectories (or
attractors) occupy only a part of the available state space, so that knowl-
edge of the underlying dynamics of the system allows an observer to predict
that they cannot assume certain configurations. (This type of knowledge
would be of great practical value, for example, in speculating on the mo-
tions of financial asset prices. Even though an observer might not be able
to predict the exact trajectory of prices very well, knowledge that certain
related movements are impossible would allow for profitable informed spec-
ulation.) Furthermore, chaotic systems are locally predictable, because the
laws of motion change only gradually over the state space. If the system re-
turns to a position in state space close to an earlier trajectory, its trajectory
will for a while follow the previous trajectory closely. Furthermore, chaotic
systems produce statistically regular outcomes; every trajectory tends to
spend the same proportion of time in different portions of the state space.
Knowledge of these statistical properties is also of great practical value,
since certain risks can be excluded from consideration.

1.1.2.2 Example: The perturbed linear oscillator

We can introduce a stabilizing nonlinear force into the linear oscillator eas-
ily by adding a quadratic term that tends to push the system back toward
the origin when it gets far away from it. This is particularly transparent
in polar coordinates:

rt+1 = λrt − λr2
t = λrt(1− rt)

θt+1 = θt + ω (1.6)

This modified oscillator continues to behave like the linear oscillator
when the linear part is stable, that is, when λ < 1, as Fig. 1.3 shows.
The system continues to spiral inward to the origin. The reason for this
is that in this case both the linear forces and the nonlinear forces are
stabilizing: as the system approaches the origin the nonlinear forces, which
are proportional to the square of the distance of the system from the origin,
become negligible in comparison to the linear forces.

When we destabilize the linear system by increasing λ above 1, how-
ever, we see a dramatic difference between the behaviors of the linear and
nonlinear systems. The linear system with λ > 1 always spirals indefinitely
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Figure 1.3: The perturbed linear oscillator behaves like its linear counterpart
when λ < 1, spiraling inward toward the origin from any starting point.

outward from the origin, but the nonlinear system establishes a limited,
stable oscillation at a particular distance from the origin that depends on
λ, when λ is not too much larger than 1, as Fig. 1.4 shows. In this situation
the nonlinear stabilizing forces are in conflict with the linear destabilizing
forces on the system. When the system is close to the origin, the nonlin-
ear forces are very weak compared with the linear forces, so the nonlinear
system behaves like the linear system and spirals outward. But as the sys-
tem moves farther from the origin, the stabilizing nonlinear forces become
stronger, and eventually balance the destabilizing linear force, creating the
observed limit cycle through a Hopf bifurcation.

If we continue to increase λ, the stable limit cycle itself begins to break
up into more and more cycles as in Fig. 1.5, until finally the nonlinear
oscillator reaches the chaotic state illustrated in Fig. 1.6. Trajectories of
this system that start at very nearby points will diverge exponentially over
time: small errors of measurement of initial conditions will lead to larger
and larger errors of prediction.

Figure 1.7 illustrates a further nonlinearization of the oscillator. When-
ever this system enters the small window of states, the value of λ is reduced
to .5, the value of ω becomes 0, and the system moves on a straight line
to the origin. We might think of the window as representing the solution
to some difficult problem: the system casts around almost randomly seek-
ing it, but once it has found it, finds its way to the ultimate equilibrium.
The trajectories of this system diverge initially, but sooner or later all of
them will converge on the origin. As we will see, this type of regime shift,
in which the diversity of behavior of the system first expands and then
contracts, is characteristic of highly complex systems.
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Figure 1.4: When λ is increased moderately above 1, the perturbed, nonlinear
oscillator establishes a stable limit cycle at a distance from the origin depending
on λ.
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Figure 1.5: As λ increases above 1, the limit cycles of the perturbed oscillator
break up into multiple cycles.
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Figure 1.6: As λ approaches 4, the trajectories of the perturbed oscillator become
chaotic. Here only the points of the trajectory are plotted.
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Figure 1.7: When the system enters the window (the gray square), its dynamics
change and it moves on a straight line to the origin.



1.1. DYNAMICAL SYSTEMS 13

1.1.2.3 Dynamical systems from an informational viewpoint

A fruitful way to think of a stable dynamical system is as a signal pro-
cessor. The input to the system is its initial condition, and its output is
the attractor set representing the asymptotic trajectories. A dynamical
system, for example, that maps each initial condition onto a finite number
of point attractors can be seen as a pattern recognition device: the ini-
tial condition represents the data the system confronts, and the particular
equilibrium to which it tends from the initial condition can be interpreted
as the underlying pattern it associates with these data.

Chaotic systems, on the other hand, are unpredictable. It is relatively
easy to predict the trajectories of a stable dynamical system with a simple
attractor such as a point or a stable limit cycle. Wherever the system
starts, its trajectory will approach the stable attractor, which itself has
a relatively simple structure. Furthermore, trajectories that start from
nearby initial conditions will actually become closer together as the system
evolves. Thus small errors in measuring the initial condition of the system
will become negligible factors in disturbing the accuracy of the predicted
trajectory. Chaotic systems also tend to attractors, but the attractor is
a geometrically complicated structure. One trajectory, starting from one
set of initial conditions, may be very different in detail from the trajectory
starting from a very slightly different set of initial conditions. In fact, in
chaotic systems trajectories starting from slightly different initial conditions
diverge progressively as the system evolves. Thus small errors in measuring
initial conditions of a chaotic system are magnified over time, and lead to
increasingly inaccurate predictions.

Chaotic systems are familiar aspects of human life, the weather being
a paradigmatic case. Modern research suggests that chaos is the rule in
real nonlinear dynamical systems, and that systems with simple attractors
like points and limit cycles are relatively rare results of highly controlled
interactions. Furthermore, the widespread existence of chaos suggests that
many systems often viewed as being purely stochastic—that is, varying
without any discernible order at all—may have the type of structure asso-
ciated with chaotic dynamics.

1.1.2.4 Complexity and self-organization

Human experience also embraces the phenomena we associate with liv-
ing organisms, which are, in principle, dynamical systems, moving on a
trajectory through some large state space. Living organisms display be-
havior that is qualitatively different from chaotic systems like geological or
meteorological interactions. First of all, living organisms are highly struc-
tured, and have powerful homeostatic mechanisms that stabilize important
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aspects of their behavior. On the other hand, some living organisms, cer-
tainly human beings, produce state space trajectories that appear not to be
even partially statistically predictable like chaotic systems. Human beings,
for example, seek solutions to problems, which may involve an exploration
of the relevant state space which does not have the repetitive features of
chaotic motions. In solving a problem, a human being may pursue one
approach, exhibiting one type of behavior, for a while, and then determine
that this approach is a dead end, and suddenly (from the point of view
of an external observer) shift to a qualitatively different type of behavior
embodying an alternative approach to the problem. Furthermore, if the hu-
man is lucky enough to solve the problem, the problem-solving trajectory
may come to an end. The terminal state is a kind of stable attractor for
the problem-solving system, but is clearly not very well modeled by stable
linear or nonlinear systems with simple attractors, because the trajectories
leading to it may diverge before they eventually converge on the solution.

Thus there exist at least some nonlinear dynamical systems that are
self-organizing and exhibit dynamic behavior qualitatively different both
from simple stability and chaos. Although it is not easy to character-
ize these systems in general mathematical terms, they are called complex,
adaptive systems. Their basis has to be nonlinear dynamics, since the mo-
tions of linear dynamics are not rich enough to support complex behavior.
In complex systems the nonlinear dynamics can sustain self-organized and
self-reproducing structures, and these structures in turn are capable of in-
teractions that mimic the behavior of living organisms.

Complex adaptive systems are of great interest to human beings, since
they include ourselves and other life forms, and in particular our processes
of conscious thought. This book addresses the question of the degree to
which the social interactions of human beings, especially their economic
relationships, also constitute complex adaptive processes.

Human beings are very intelligent compared to systems with simple
point attractors, though even these systems sometimes pose subtle prob-
lems to human understanding. We are intimately familiar with the behavior
of massive objects falling to rest in the field of gravity, for example, though
it is not so easy for us to throw a spear with force and accuracy at a distant
target. Oscillatory systems pose a more complicated, but still conceptu-
ally soluble problem to human intelligence. The oscillatory system falls
into a repetitive pattern that we can with long observation and attention
recognize and learn to predict. But this process is not easy, either: many
generations of human observation and thought were required to unravel the
oscillatory motion of the planets, for example.

Chaotic systems pose an even higher barrier to human understanding,
because their regularities are subtler, and require more observation and
more careful analysis to discover. Our learning and knowledge of chaotic
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systems take a structural, statistical form, in contrast to the precise pre-
dictions we can make about point-stable and oscillatory systems. We often
regard chaotic systems as simply stochastic, through missing the subtle
structures that determines their attractors. The deepest understanding we
can reach of a chaotic system is a knowledge of its underlying laws of mo-
tion, even though this knowledge does not practically allow us to predict
the evolution of the chaotic system in detail.

Complex adaptive systems pose novel problems for theories of human
knowledge and learning that go beyond the realm of the chaotic. The
problem is that these systems are inherently at the same (or perhaps a
higher) level of complexity as our own consciousness, which provides the
tools with which we learn and know the world. There does not seem to
be any economical way to predict the problem-solving efforts of another
human being, for example. We can try to solve the problem ourselves, thus
reenacting the dynamical process which we are studying, but this effort
may not (in many cases will probably not) replicate the problem solving of
another person very closely. Even if we can solve the problem, that does
not allow us to say very much about whether another person will solve it,
or arrive at the same solution.

As we will see, the choice to regard human and social interactions as
the aspects of complex systems poses deep questions for received models of
human behavior, especially for the models of maximizing rationality that
are the foundation of much existing social and economic theory.

1.1.3 Cellular automata as models of nonlinear
dynamical systems

There is a bewildering variety of nonlinear dynamical systems, and it is
unlikely that any very general laws apply to all of them. Our current un-
derstanding of these systems is largely the result of two research strategies.
The first looks at the consequences of the simplest and most manageable
nonlinearities and attempts to understand the resulting systems through
rigorous mathematical analysis. The second seeks to identify very partic-
ular systems that are capable of a wide range of complex behavior and to
study these examples through computer simulation to get clues as to the
possible range of behavior of nonlinear systems in general.

The second strategy underlies much of the work reported in this book.
One conceptually simple, but exceedingly rich model of nonlinear systems,
the cellular automaton, serves as a laboratory for the exploration of the dif-
ficult general questions raised by nonlinearity and complexity. The cellular
automaton is an array of cells with a particular geometry (arranged on a
line segment, a circle, a segment of the 2-dimensional plane, or a torus,
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for example). In each period of a simulation each cell is characterized by
a certain state, chosen from a finite set of possibilities. This concept is
motivated in part by quantum mechanical ideas, since in quantum theory
the states of physical systems are confined to a finite or countable range
of possibilities, and in part by certain common nonquantum physical sys-
tems, such as oscillators, that can be excited only at a certain range of
frequencies, and saturating systems that move to a finite range of stable
limiting configurations. The restriction of the states of the cells to a finite
set is already a reflection of the underlying nonlinearity of the system being
modeled.

The cellular automaton advances through time with the cells synchro-
nized to a common periodic clock external to the system. The state of
each cell in the next period depends on the current state of the cells in
the system as a whole. In most of the cellular automata that have been
studied in detail, the evolution of any single cell depends only on the past
states of the cells in a neighborhood containing it. Because of the physical
motivation for much of the research in cellular automata, where the system
being modeled consists of a large number of identical particles or subsys-
tems, it is frequently assumed that all the cells obey exactly the same rule
of evolution.

The simplest cellular automaton, for example, might consist of n cells
arranged on a circle, each of which can be in one of two states (on or off ).
The neighborhood of each cell might consist of the k (perhaps 1) cells on
either side of it. There are eight possible configurations of the three cells in a
neighborhood, so the law of evolution of a two-state, radius-1 neighborhood
circular cellular automaton can be described by a list of eight bits (0 or 1),
interpreted as the next state of the cell when the current configuration of
neighboring cells is described by each of the eight possibilities (000, 001,
010,...,111).

Figure 1.8 illustrates the evolution of a one-dimensional two-state cel-
lular automaton in a format frequently used in this book. The cells are
displayed horizontally, with the state of each cell in one period indicated
by its shading (in a two-state cellular automaton typically white and black).
The state of the system after a clock tick is plotted directly beneath the
original state, so that the time evolution of the state of any cell can be
traced vertically.

Cellular automata are obviously very simplified models, but they are
capable of a remarkably wide and interesting range of behaviors. They can
mimic, for example, all four of the types of nonlinear dynamic behavior we
have discussed: stability toward a single state, stability toward a pattern
of regular oscillation, nonrepetitive chaotic motions (within the limits im-
posed by the large, but finite number of states a finite cellular automaton
can occupy), and complex evolutions with sharply changing regimes and
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Figure 1.8: The evolution of a one-dimensional cellular automaton.

unpredictable stopping points.

Cellular automata have great research advantages, since they are easy
and cheap to emulate on a computer, and exhibit such a wide range of pos-
sible nonlinear behavior. Certain cellular automata can emulate general-
purpose computers (Turing machines), and are thus capable of producing
output at the highest complexity level of formal language theory. They also
have limitations as models of human social and economic interaction, which
will be explored in some depth in this introduction and in the later chapters
of the book. As a result of these limitations the logic of this research is
largely that of the counterexample: if certain hypotheses about human be-
havior can be shown to be impossible or implausible in the environment of
cellular automata, they will a fortiori be impossible or implausible in more
general (and perhaps even more complex) nonlinear environments. But a
demonstration that a certain strategy or behavior is plausible or functional
in a particular cellular automaton may not generalize to other automata
or to other nonlinear systems.

1.2 Dynamical systems in social
and physical science

Social scientists have been tempted to apply the powerful methods of dy-
namical system analysis to social systems. In carrying out this project,
however, one immediately runs into the fact that social systems com-
prise the interactions of conscious human beings, unlike physical systems
in which the behavior of the elements arises purely from their physical
properties. The later chapters of this book raise these issues sharply and
concretely in a variety of research contexts, but it is worth reviewing them
briefly here.
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1.2.1 Local and global interaction

In most physical systems the forces carrying the interactions of particles or
molecules decay rapidly with distance. It is natural in this circumstance to
model the system as evolving through local interactions. Cellular automata
reflect this presupposition by making the next state of any cell depend only
on the current states of cells in it neighborhood.

Many models of human social interaction, on the other hand, assume
that the agents in the society have at least some kind of global information
that influences their behavior. In one standard economic model of markets,
for example, every agent in the market is supposed to determine her net
demand for the commodity in the next period on the basis of a market price
established in the current period. But this market price in turn depends on
the net demands of all the agents in the market, not just a limited subset
that might be regarded as the informational neighbors of the agent.

The essay “Qualitative Effects of Monetary Policy in ‘Rich’ Dynamic
Systems,” chapter 4 in this volume, offers another instance of the same
issue. Policy signals such as the short-term interest rates largely controlled
by central bank intervention in markets are common information to all
the firms in the economy. In deciding its investment policy the firm takes
into account this global signal in addition to local information consisting of
the current investment decisions of its neighbors. In addition to the local
interactions modeled by classic cellular automata, there are at least weak
global interactions mediated by markets and policy makers that have to be
taken into account in economic models.

Systemwide interactions in cellular automata raise novel issues concern-
ing the dynamics and evolution of complex systems. Economists believe, for
example, that the relatively limited information contained in market prices
is sufficient to stabilize and organize potentially chaotic market transac-
tions. Classical studies of cellular automata give us a good sense of the
complexity and instability inherent in even relatively simple patterns of
local interaction in nonlinear dynamical systems, but we have very little
feel for the impact of weak global interactions in these contexts.

1.2.2 Topology and geometry in physical
and social models

Physical systems consist of particles located in a highly structured geo-
metrical space (typically Euclidean space). In this situation there is no
ambiguity about the distance between particles or the identity of the par-
ticles closest to a given particle at a given moment of time. This geometry
carries over into cellular automata, though it is simplified in important



1.2. SOCIAL AND PHYSICAL SCIENCE 19

ways. Rather than considering a full three-dimensional space, it is compu-
tationally much easier to study the evolution of cellular automata in one-
or two-dimensional spaces. The geometry of the spaces is further simplified
by considering only a finite or countable set of lattice points as sites for
cells. Rather than coping with the complexity of smoothly decaying inter-
actions (like gravity or electrical fields), the cellular automata are assumed
to respond only to the states of immediate neighbors within an arbitrarily
chosen radius.

Notions of closeness have played a powerful and fertile role in social and
economic theories as well, but are inherently much more ambiguous and
rich. The simplest cases are those where the economic agents are deployed
in a real physical space, for example, locational models in economics. The
notion of closeness and neighborhood relevant to a spatial economic model
is almost the same as in a physical model, since, for example, transportation
costs are often proportional to geographical distance between agents.

But even this very favorable example of transportation costs as de-
termining economic distance signals additional levels of mathematical dif-
ficulty. Transportation costs depend not only on geographical distance,
but also on topographical features (mountains, rivers, and the like) and on
transportation facilities (railroads, highways, canals, and so forth). In a city
built on a grid plan the economically relevant distance between two points
is not ordinary Euclidean distance, because travel on diagonals across the
grid plan is not feasible. Furthermore, the relevant economic distance mea-
sured by the time or cost of movement of people or goods between two
points may vary depending on traffic congestion and street capacity. The
economic distance between a customer and supplier is really the cost of
moving goods from one to another, which may also vary according to the
good being shipped. Bulk sea freight may bring cities half the world away
from each other economically closer for certain commodities than these
cities are to their geographically much closer suburbs.

But spatial models are only one context in which the concept of social
or economic distance plays a key role. In models of the business cycle
demand is often assumed to diffuse through the economy from customer
to supplier. The injection of a given amount of government spending in
one sector of the economy creates a cascade of further spending as the
immediate producers hire workers and buy supplies to meet the demand,
creating demands for other sectors. In this context the relevant economic
neighbors of an agent are determined not geographically but functionally
in terms of their technological positions in the hierarchy of production.
This example also indicates mathematical difficulties. To say that firm A
is a neighbor of firm B because orders to firm A will create demand for
firm B does not necessarily imply that firm B is reciprocally a neighbor of
firm A. Demand for B may have no, or very weak, effects on the demand
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seen by A. In Euclidean space the distance metric is symmetric, so that
the distance from point A to B is the same as the distance from point B
to A, but this may not be true for many relevant conceptions of economic
distance. Economic distance is also evidently not necessarily additive: the
distance from A to C is not necessarily the sum of the distances from A
to B and from B to C, because A and C may have economic relations that
are independent of B altogether.

The same considerations apply to models of the diffusion of technical
change through economies. Technical change in one sector of the econ-
omy (say, the introduction of a new metallurgical process yielding a higher
strength alloy) tend to ripple through the customers of that sector (the
building industry can build higher buildings with fewer structural compo-
nents). Bottlenecks in one sector are important incentives for technological
changes in supplier sectors (power looms require stronger thread to reduce
the costs of thread breakage). Cellular automata are natural simplified
models of diffusion, but in the social context the problematic character of
the geometry of the space in which the cells are located has always to be
kept in mind.

1.2.3 Time and causality

Physical theories have progressed in part because of their decision to regard
time and causality as flowing in only one direction. The past is allowed to
influence the future but not vice versa. This presupposition is reflected in
the cellular automata developed to model physical systems in the assump-
tion that the state of the system in the next period depends only on its
state in the current period. Human beings, on the other hand, act with an
eye to the future consequences of their actions. Thus the future, at least
through actors’ conceptions of the future, plays a different role in social
and physical interactions.

This difference in point of view in the physical and social sciences lies
at the heart of some of the most vexing and controversial problems about
modeling human action. One resolution is to distinguish between the ac-
tual future and agents’ conceptions or expectations of the future. If we
take agents’ expectations as part of their current state, then we can rig-
orously regard their actions as determined only by the present and past,
not by the future itself, even though their conceptions of the future are
acknowledged as part of their motivation and calculation. This point of
view has its own set of conceptual problems and tangles. Expectations,
for example, are not directly observable, and as a result must be inferred
from agents’ actions, which the expectations are supposed to explain. It is
tempting for economists to suppose that agents can use the same processes
of rational calculation to form expectations that they are assumed to use in
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allocating budgets and other resources, leading to the economic theory of
rational expectations. One of the central questions addressed in this book
is the plausibility of the assumption of fully rational expectations in envi-
ronments evolving according to complex nonlinear dynamics. For example,
is it reasonable to assume that agents can costlessly solve mathematical
problems of any degree of complexity, or make measurements of the cur-
rent state of their environment to any degree of accuracy? As we shall see,
these issues take on a sharp clarity and poignancy in the models considered
here.

1.2.4 Identity and diversity

Physical systems often consist of one or a small number of types of interact-
ing particles. Many interesting phenomena can conveniently be analyzed
in systems with only one type of particle, since the interactions of inter-
est (exchange of momenta, resonance, and the like) can take place among
identical particles. As a consequence the widely studied cellular automata
models of complex system interaction assume that all cells are subject to
identical laws of motion.

The situation in models of society and the economy is different, because
diversity of interest is often central to social interactions. Take for exam-
ple the simple standard textbook model of a market. A number of agents
(which might be thought of as cells of a cellular automaton) respond to
a publicly announced market price with a particular net (or, in economic
terms, excess) demand for the commodity being exchanged in the mar-
ket. A positive excess demand indicates that the agent wants to buy that
amount of good at the announced price, while a negative excess demand
indicates that the agent wants to sell. The problem to be solved by the
market is to find a price at which the sum of the excess demands is zero,
so that the market clears.

We could model this system as a cellular automaton in which the state
of each cell represents the excess demand for the commodity. (It is tradi-
tional in economics to regard excess demands as continuous variables, but
it would not do much violence to the conception to restrict the levels of
excess demand to a finite, but perhaps large, set of possible values.) As we
have already noted, the dependence of each agent’s excess demand on an
announced market price that reflects, say, the total excess demand in the
previous period departs from the usual cellular automaton assumption that
each cell’s state depends only on the state of the neighboring cells in the
previous period. But the traditional image of market clearing involves the
division of the agents into buyers and sellers at the announced market price.
If all the agents are identical, as in the cellular automaton model, they will
all assume exactly the same state once a market price is announced. It
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may still be possible to clear the market by finding a price at which every
agent’s excess demand is zero, but this is a somewhat restricted image of
the activity of real-world markets, since if every agent’s excess demand is
zero there would be no actual transactions in the market.

Chapter 5 in this volume, “Decentralized, dispersed exchange without
an auctioneer,” deals with these modeling problems in some detail. In
this essay the agents are identical in tastes (though not in endowments,
and thus not in excess demand functions), but the assumption of a single
market price announced to all of them is relaxed. Instead we assume that
the agents trade with their neighbors, so that effectively each agent sees
only a small part of the whole market. Because the agents are arrayed in
a circle, the various submarkets corresponding to different neighborhoods
are indirectly linked. Simulations show how such an indirect linkage can
lead to some of the same results as the textbook model of a single market
price, though not all.

The issue of diversity does not arise in all economic models. In fact, con-
temporary macroeconomic theory tends, for the sake of computability and
conceptual simplicity, to make the assumption of a representative agent,
that is, that the economic behavior arising from the interactions of many
agents in the economy can be modeled as if it were the behavior of a single
agent. One way this might happen is if all the agents were in fact identical
(and there were no externalities, that is, nonmarket-mediated interactions
between them). Here the cellular automaton assumption that all the cells
are governed by the same law of motion would be consistent with the tradi-
tional economic model. These considerations, however, reveal the fact that
the traditional economic models have built-in assumptions that simplify
their trajectories. Take the textbook market model with identical agents
as an example. Suppose that the agents start in a random configuration of
excess demands. In the next period a price will be announced, and all of
them will pass into the same state, responding to this market price. Then
the market price will be adjusted to eliminate excess demand or supply,
and all of the agents will move together from one state to another until
they reach the equilibrium. This type of behavior clearly has low inherent
complexity: there is no local interaction of the agents. In fact, the evolu-
tion of the system as a whole after the first period is simply an n-fold copy
of the evolution of any individual agent.

To retain the possibilities of complex evolution in economic models we
must either relax the economic assumption that all the agents respond to
the same systemwide signals (such as market price) or relax the cellular
automaton assumption that all the agents are identical.
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1.3 Economic models of fully rational
behavior

The essays in this volume critically examine some of the most fundamental
assumptions in widely accepted economic models. For the sake of clarity in
terminology, and as a service to readers who are not familiar with economic
modeling practice, in this section we review the general form of economic
models of rational behavior and consider the details of a representative
sample of such models.

The central issues revealed by this survey concern the information-
processing and computing capacities implicitly attributed to rational eco-
nomic agents in various contexts. These issues become particularly acute,
as we shall see, when the modeling context involves decisions over a large
number of time periods and when the agent is uncertain about key aspects
of the future environment.

1.3.1 The rational choice program

The cornerstone of received economic theory is the idea that human agents
behave rationally. Rationality is supposed to underly the predictability
of human behavior, and thus to establish it as a candidate for systematic
scientific investigation.

The concept of rationality itself has no content without further elabo-
ration and specification. For the economist rationality has come to mean
behavior that can be viewed as maximizing some consistent mathemati-
cal function of behavioral and environmental variables. The rational agent
can be seen as pursuing a definite and unambiguous goal, and her ac-
tions are predictable in this light. The most general form of the rational
model, then, is that the agent’s actions x maximize her objective function
ua(x), where a represents parameters describing the environment. Thus
we predict that the agent’s behavior can be described by a lawful relation
x(a) = arg maxx ua(x). That is, the agent chooses the action x that maxi-
mizes her objective function ua(x) given the environment a. In particular,
the economist will try to infer the objective function u from the agent’s ob-
served behavior, and then predict that her actions in the face of a change
in the environment will follow the law x(a).

There are some well-known problems with this program of explanation
and prediction. In the first place, as suggested earlier, the hypothesis of
rationality puts no observational restrictions on an agent’s actions. We can
always rationalize behavior by positing an appropriate objective function.
For example, one might think it irrational for an agent to bet simultane-
ously for and against a certain event at odds that guarantee her a loss. But
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if her social position, for example, requires her participation in betting, she
may in this way be regarded as rationally meeting social norms at the lowest
cost. Second, if we allow the agent to change her mind over time, that is, for
the objective function u to change from one time to another, no practical
observations can disconfirm the hypothesis of rationality. What appears to
be irrational or inconsistent behavior may simply reflect a change in the
function being maximized between observations. Third, the program of
rationality seems to run afoul of Occam’s Razor, in that the utility func-
tion that is assumed to mediate between the environment and behavior is
inherently unobservable, so that it is not clear what explanatory advantage
its presence in the theory confers.

Furthermore, it is not obvious that rational behavior is more predictable
than irrational behavior. If we take self-destructive mental illness, for ex-
ample, as a paradigm of irrational behavior, it may be possible to establish
highly confirmable and replicable patterns of behavior associated with par-
ticular diseases. On the other hand, the behavior of a presumably rational
stock speculator, making complex calculations based on a constant flow of
new and subtle information, may be very difficult to predict lawfully.

Economists have long been aware of these problems with the concept
of rationality. Economic theory proceeds on a series of more or less tacit
assumptions that address them. For example, when economists speak of
objective functions, or utility functions, or preferences, there is an implicit
assumption that they remain invariant over the relevant period of analy-
sis. Despite the difficulty of actually observing utility functions, economic
models typically assume that they are known fully to the economist, or
take a particular functional form that makes them amenable to mathemat-
ical manipulation. Economic models implicitly assume that the legitimate
arguments of the utility function are confined to a certain range of rele-
vant factors, such as the physical consumption of the individual, or her
money income, and in most (though not all) cases rule out social status,
ritual perfection, aesthetic taste, and the like as arguments in the utility
function.

Much of existing economic and social theory consists of the application
of this rational choice paradigm to the explanation of human behavior
and social interaction. This effort constitutes a rational choice research
program, which seeks explanations for all social and economic phenomena
through identifying the preferences of the agents involved and uncovering
the rationality inherent in their actions.

The essays in this book, however, pursue another fundamental set of
questions raised in the work of Herbert Simon (1978, 1984) which challenge
the rational choice program. In assuming that the individual behaves so as
to maximize a utility function in a given environment, the economist also
assumes that the agent can costlessly process the information describing the
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environment and costlessly compute the optimal policy for coping with it.
In the past fifty years, however, the emergence of computers has, paradox-
ically, both drastically lowered the costs of computation and information
processing and made us acutely aware of these costs and of the limitations
of computability. The investigations reported in this book suggest that it
is impossible to formulate the hypothesis of rationality consistently so as
to take systematic account of the costs of computation.

It is tempting to think that the problem of computation and informa-
tion processing costs could be resolved by moving the rational decision to
a higher level, constructing a new rational choice problem in which com-
putation is one strategy. This idea, in other words, tries to formulate
a metaproblem, in which one component of the agent’s behavior is the
decision to undertake computation to improve her estimates of the conse-
quences of various fundamental actions. This approach, however, cannot
solve the problem, as Sidney Winter (1975) and John Conlisk (1988) have
pointed out, because the resulting metachoice problem is just as difficult to
solve computationally as the original problem. As we will see in more de-
tail later, one characteristic of computationally complex problems is that
there is in principle no way to predict the cost of solving them short of
undertaking a computation that does in effect solve the problem. Com-
putation costs might lead an agent to be content with an approximately
maximizing, thus only approximately rational solution to her maximization
problem: Herbert Simon has emphasized this type of behavior as bounded
rationality. Computational complexity, on the other hand, raises issues not
of costs but of logical feasibility, and thus appears to constitute a barrier
to rationality.

1.3.2 Individual decision models—intertemporal
optimization

The best way to understand how expectation formation in economic models
leads inevitably to the consideration of nonlinear dynamic systems and the
related problems of complexity is to look at some typical models in detail.

The simplest type of rational decision model considers a single agent
acting in effective isolation. Traditional economic theory views this situa-
tion as a paradigmatic case of modeling and explanation. The traditional
economics research program seeks to generalize the features of this type of
model to more complex social interactions that involve several agents.

1.3.3 The finite-horizon Ramsey problem

Consider the situation of an agent with a lifetime of T periods, who has
no interest in leaving a bequest, and who begins life with a fund of wealth
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W0, which can be invested at a constant real interest rate r, and faces the
choice in each period of how much of her wealth to consume. Thus W1 =
(1 + r)(W0−C0), and similarly for later periods, Wt+1 = (1 + r)(Wt−Ct).
For mathematical convenience, let us assume that the agent’s objective
function is the sum of the natural logarithms of her consumption over her
lifetime, each period’s utility being discounted at the constant factor β < 1.
This objective function has a natural interpretation. In each period the
agent experiences a utility proportional to log(Ct). The shape of the loga-
rithm function reflects a declining marginal utility of consumption, that is,
the agent puts lower values on additional units of consumption the higher
her consumption already is in each period. Utility in the future counts less
for the agent than utility in the present, and this temporal discounting is
represented mathematically by multiplying the utility of consumption in
period t by βt, where, since β < 1, the discount factor declines geometri-
cally with time.

This model can be summarized as a mathematical programming prob-
lem:

choose (C0, C1, . . . , CT ) so as to
maximize log(C0) + β log(C1) + . . .+ βT log(CT )

subject to Wt+1 = (1 + r)(Wt − Ct) for t = 0, 1, . . . , T
WT+1 ≥ 0
W0 given (1.7)

The constraint WT+1 ≥ 0 is required to make the problem well deter-
mined: otherwise the agent could always increase her utility by consuming
more and going deeper into debt. Since the logarithm function has the
limit −∞ as C → 0, it is clear that the agent will be better off consuming
some finite amount in each period than choosing not to consume at all.
Furthermore, the agent has no reason to choose a policy with WT+1 > 0
under the assumption that she has a finite known lifetime. She will be
better off consuming her whole wealth in period T , so that WT+1 = 0 on
the optimally chosen path.

There are a variety of equivalent mathematical approaches to the so-
lution of this problem. One approach effectively transforms the problem
of finding the optimal consumption policy into the problem of finding the
trajectory of a particular dynamical system, thus revealing the close links
between the problem of rational optimization and dynamical systems.

To see how this link is established, let us use the Lagrangian method
to solve the programming problem. We introduce a series of Lagrange
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multipliers, which economists often call shadow prices, βtPt, t = 0, 1, . . . , T ,
corresponding to the T + 1 constraints. The Lagrangian function is then:

L({Ct,Wt+1, Pt}Tt=0) =
T∑
t=0

βt(log(Ct)− Pt(Wt+1 − (1 + r)(Wt − Ct)))

The solution to the programming problem corresponds to a saddle point
of the Lagrangian function: at the optimum choice it must not be possible
to reduce the value of Lagrangian by changing the {Pt}, nor to increase it
by changing {Ct,Wt+1}. The first condition ensures that the constraints
are met, since if Wt+1 > (1 + r)(Wt − Ct), the coefficient of Pt would be
positive, and it would be possible to reduce the value of the Lagrangian by
increasing Pt. The second condition ensures that the objective function is
maximized.

The first-order conditions for the problem, which ensure local optimality
on the path by testing whether shifting consumption from one period to
the next will increase the value of the Lagrangian are:

β−t
∂L
∂Ct

=
1
Ct
− (1 + r)Pt = 0

β−t
∂L

∂Wt+1
= −Pt + β(1 + r)Pt+1 = 0

β−t
∂L
∂Pt

= −Wt+1 + (1 + r)(Wt − Ct) = 0

The first equation tells us that (1 + r)Pt is the marginal utility of con-
sumption in period t, and allows us to eliminate Ct = 1/((1 + r)Pt). Then
we are left with a dynamical system in the variables (W,P ):

Pt = β(1 + r)Pt+1

Wt+1 = (1 + r)(Wt −
1

(1 + r)Pt
)

The optimal policy must be one of the trajectories of this dynamical
system. We have two boundary conditions, W0 given, and WT+1 = 0,
which choose out a particular trajectory which is optimal. To look at this
in a slightly different way, we could consider an arbitrary choice for PT ,
which would, from the first dynamic equation, determine the whole path of
Pt. Plugging this solution into the second dynamical equation, we would
determine the path of Wt. If we start with a very high PT , the whole
path of Pt will be high, consumption will be low, and WT+1 > 0, which
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is not optimal. If we choose a very low PT , consumption will be high and
WT+1 < 0, which is infeasible. The optimal path corresponds to the choice
of PT which just makes WT+1 = 0.

This relatively simple problem reveals the basic structure of intertem-
poral optimization. Local optimality considerations establish a dynamical
system, whose trajectories are the candidates for the rationally optimiz-
ing decision. Some of these trajectories are infeasible because they violate
economically important constraints. There are typically many feasible tra-
jectories, each of which leads to a different level of the objective function
over the whole time path; the agent must then choose the one that yields
the highest value for the objective function, by choosing a trajectory that
respects the boundary conditions on the problem.

The problems of complexity and computation costs arise in rational in-
tertemporal decision making when the dynamic systems that result become
chaotic or complex. In these cases the rational agent faces the formidable
problem of working out the full trajectory corresponding to a whole range of
initial choices; only when she has accomplished this task can she determine
which one is in fact optimal.

1.3.4 Market models

Many economic models represent the economy as a group of agents inde-
pendently optimizing, with market prices acting so as to coordinate their
potentially inconsistent decisions. The very influential Walrasian model of
market equilibrium, for example, posits an auctioneer who cries out a sys-
tem of market prices. Each agent then maximizes her utility subject to her
budget constraint at these prices, and announces her excess demands to the
auctioneer. In general the agents’ plans will not be consistent: their excess
demands will not sum to zero. In the Walrasian model, the auctioneer then
adjusts the market price vector so as to try to eliminate the market excess
demand. Equilibrium results when the auctioneer has succeeded in finding
a vector of prices at which the sum of the agents’ excess demands is zero.

Walrasian models in their full generality are quite difficult to solve,
because the excess demands as functions of the announced market price
vector can be arbitrary nonlinear functions. In order to get some insight
into the structure of Walrasian equilibrium, economists often look at sim-
plified economies in which it is easier to analyze the excess demand vectors
mathematically. One popular simplification is to assume that all the agents
in the economy are exactly alike in that they have the same preferences,
technology, and endowment. This assumption might be viewed as a first
approximation to an economy in which the agents differ only to a small de-
gree. It has the virtue of greatly simplifying the analysis of equilibrium, but
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the disadvantage that in the resulting equilibrium no trading takes place.
Since all the agents are identical, they will always report the same excess
demand vector in response to the same market prices, so that the only
way to achieve equilibrium is to announce prices at which each individual
agent’s excess demand vector is zero.

One way to compute the equilibrium price vector in identical-agent
models is to maximize a representative agent’s utility over the technology
and endowment constraints, using the technique of Lagrange multipliers.
The resulting production and consumption plans will be the equilibrium
production and consumption plans, and the vector of Lagrange multipliers
is equal to the equilibrium relative price vector.

Because identical-agent models are simpler than the general Walrasian
model, any degree of complexity that can arise in identical-agent equilib-
rium models must a fortiori be possible in the general Walrasian model.
The converse conclusion, of course, does not hold: it may be possible to
demonstrate simple structure in identical-agent models that does not hold
in general. An example is the observation that equilibrium in identical-
agent economies always implies no actual trading among the agents, a
conclusion which does not hold in general.

1.3.4.1 The corn-steel model and the stable manifold

To get a concrete sense of the logic of intertemporal equilibrium in market
models, consider an economy (see Burgstaller, 1994) with two goods, corn,
K, and steel, S, each of which is the sole input into the production of
the other. Thus to produce 1 unit of corn in the next period requires aSK
units of steel this period; to produce 1 unit of steel next period requires aKS
units of corn this period (perhaps to feed workers who produce the steel).
The stocks of both corn and steel depreciate at the same constant rate δ
each period. The typical agent of the economy consumes only corn in each
period, Ct, but has no way to produce it except by producing steel first, so
that she has a motive for producing both goods. The typical agent starts
with an initial endowment of corn, K0, and steel, S0. She has to decide how
much of the corn to consume and how much to devote to the production
of steel for the next period. We assume as in the previous example that
the agent’s utility in each period is equal to the logarithm of the amount
of corn produced, and that she discounts utility with a factor β < 1. Thus
the typical agent’s utility maximization problem can be written:

choose {Ct, St+1,Kt+1}∞t=0 ≥ 0

so as to maximize
∞∑
t=0

βt log(Ct)
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subject to aSK(Kt+1 − (1− δ)Kt) ≤ St t = 0, 1, . . .

aKS(St+1 − (1− δ)St) ≤ (Kt − Ct) t = 0, 1, . . .

K0, S0 given (1.8)

A convenient and economically insightful way to solve this problem is
to use the Lagrangian method. Let βtPSt and βtPKt, t = 0, 1, . . ., be
the Lagrange multipliers (shadow prices) associated with each of the two
constraints in each period. Then the Lagrangian function is:

L({Ct, St+1,Kt+1, PSt, PKt}∞t=0) =

∞∑
t=0

βt log(Ct)

−
∞∑
t=0

βtPSt(aSK(Kt+1 − (1− δ)Kt)− St)

−
∞∑
t=0

βtPKt(aKS(St+1 − (1− δ)St)− (Kt − Ct))

The optimal policy again corresponds to a saddle point of the La-
grangian, a sequence {Ct, St+1,Kt+1, PSt, PKt}∞t=0 at which no marginal
change in {Ct, St+1, Kt+1}∞t=0 can raise the value of the Lagrangian, and
no marginal change in {PSt, PKt}∞t=0 can lower the value of the Lagrangian.
The second condition assures us that the constraints must be satisfied, and
the first that the utility function is at a maximum, since if it were not,
it would be possible to increase the value of Lagrangian by adjusting the
consumption and production plans.

These first-order conditions can be written:

β−t
∂L
∂Ct

=
1
Ct
− PKt = 0, t = 0, 1, . . .

β−t
∂L

∂Kt+1
= βPKt+1 + aSK(1− δ)βPSt+1 − aSKPSt = 0, t = 0, 1, . . .

β−t
∂L
∂St+1

= βPSt+1 + aKS(1− δ)βPKt+1 − aKSPKt = 0, t = 0, 1, . . .

β−t
∂L
∂PSt

= aSK(Kt+1 − (1− δ)Kt)− St = 0, t = 0, 1, . . .

β−t
∂L
∂PKt

= aKS(St+1 − (1− δ)St)− (Kt − Ct) = 0, t = 0, 1, . . .



1.3. ECONOMIC MODELS 31

From the first set of equations, we see that PKt measures the marginal
utility of consumption of corn in period t, which must always be a strictly
positive magnitude, given the assumption of logarithmic utility. If we sub-
stitute 1

PKt
for Ct in the last equation, we can eliminate Ct altogether, and

we get a nonlinear dynamical system in the variables {PK , PS ,K, S}:

PKt = β((1− δ)PKt+1 +
1

aKS
PSt+1)

PSt = β(
1

aSK
PKt+1 + (1− δ)PSt+1)

Kt+1 = (1− δ)Kt +
1

aSK
St

St+1 = (1− δ)St +
1

aKS
(Kt −

1
PKt

)

K0, S0 given

As in the simpler optimal consumption model with a single asset, the
optimal consumption/production path for the agent must be one of the
trajectories of this dynamical system. But the system has four variables,
{PK , PS ,K, S}, and the terms of the problem impose only two initial con-
ditions, K0 and S0. Any arbitrary choice of PK0 and PS0 will lead to a
trajectory that satisfies the local conditions for optimality. The agent, in
order to solve the problem, must then evaluate her utility on each of these
candidate trajectories in order to find the optimal one.

In this example the problem is somewhat simplified because the dynam-
ical subsystem involving the shadow prices is independent of the quantities,
and is also linear. Analysis of the eigenvalues and eigenvectors of this sub-
system reveals that the eigenvector corresponding to the smaller of its two
roots in magnitude is positive, while the eigenvector corresponding to the
larger of its two roots in magnitude has prices of opposite sign. Any solu-
tion that activates the larger root will eventually lead to one of the prices
becoming negative, which signals a trajectory that cannot be economically
optimal. Thus the only trajectories that are candidates for the optimal
policy are those that set the prices of steel and corn on the eigenvector
corresponding to the smaller of the two roots, that is, those on the stable
manifold of the dynamical system. This requirement adds one boundary
condition to the problem.

This still leaves the question of the absolute magnitude of the shadow
price of corn. As in the optimal consumption model, if we choose the initial
shadow price of corn very low, consumption will be high, and the stock of
corn will eventually become negative, which is economically infeasible. If
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we choose the initial shadow price of corn very high, consumption will rise
so slowly that the agent will accumulate stocks of corn and steel that will
never provide her with increased consumption because of their enormous
depreciation costs. The optimal policy corresponds to a choice of the initial
level of PK0 that maintains feasibility and avoids overaccumulation of the
stocks. Once again, the choice of the optimal policy requires the agent to
look at the complete trajectories of a dynamical system in order to weed
out infeasible or suboptimal policies.

Once we have the optimal solution, with its shadow prices, we also have
the market equilibrium for this model. If the market prices are announced
proportional to the shadow prices of the optimal policy, the utility maximiz-
ing agent will be led to the optimal policy, which will also clear the market
since it is feasible. The important mathematical point to be gleaned from
this example is that the establishment of a Walrasian equilibrium requires
(or is equivalent to) the determination of the trajectories of a dynamical
system. In the cases we have looked at, the dynamical systems that arise
are fairly simple and exhibit only a small range of the possible spectrum
of dynamical repertoire of nonlinear systems. In these cases it is possible
to convince oneself that the discovery of the market equilibrium is com-
putationally feasible for highly motivated and clever agents, who might
use methods of trial-and-error extrapolation to determine the consistent
current prices of assets.

1.3.4.2 The potential complexity of equilibrium paths
in investment models

The preceding examples show the close connection between rational choice
in an intertemporal framework and the behavior of dynamical systems.
From a mathematical point of view the determination of an optimal in-
tertemporal consumption/production policy is equivalent to the solution
of a boundary value problem for a dynamical system. The solution of these
problems is relatively easy in the examples we have studied, because the
trajectories of the dynamical system are relatively simple.

But even highly simplified intertemporal choice models can give rise to
complex trajectories. M. Boldrin and L. Montrucchio (1986), for exam-
ple, have shown that an arbitrary dynamical system can be interpreted as
arising from an intertemporal model of optimal consumption with several
capital goods (or equivalently, the identical-agent market equilibrium for
the same situation) without violating any of the common assumptions of
economic models, such as diminishing returns. In particular this means
that the trajectories rational agents have to compute may have any degree
of complexity that dynamical systems can exhibit: they may be chaotic,
have sensitive dependence on initial conditions, and so forth.
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Jess Benhabib and Richard Day (1981), and a substantial literature
their work has spawned, have shown that chaotic behavior can arise in a
wide range of economically relevant intertemporal models. These math-
ematical facts raise serious questions for the methodological plausibility
of the Walrasian equilibrium concept that underlies these models. If Wal-
rasian equilibrium can be established only through the interaction of agents
who must carry out computations we know to be impossible or impractical,
what warrant do we have for regarding Walrasian equilibrium as a relevant
model of real market interactions?

1.3.5 Game theory models

Competitive market equilibrium theory manages to approach the problem
of analyzing the interactions of many rational agents through the assump-
tion that the number of agents is very large, so large, in fact, that each
agent can ignore the effects of her actions on any other particular agent.
Under these circumstances each agent can be viewed as maximizing against
a market price system on which her behavior has a negligible impact. The
potential complexity of interagent interactions is finessed by the assump-
tion that all these interactions are mediated by market prices. We have
seen that taking computational costs into account calls into question the
viability of long-accepted formal solutions to the problem of competitive
interaction.

But there are many important spheres of social and economic life where
the assumption of perfect competition is a violent distortion. In the first
place, perfect competition itself is an ideal approximation to the complex
behavior of economic systems with large but finite numbers of agents. In
order to achieve a completely satisfactory theory of competitive equilib-
rium it would be necessary to demonstrate exactly how this approximation
works, that is, how the behavior of a large system of interacting agents ac-
tually converges to the perfectly competitive limit as the number of agents
increases without bound. In order to carry out this program, we need
to have a theory of what actually happens when competition is less than
perfect.

In fact, it is a common observation of life in market-directed societies
that competition always breaks down at least locally. When one comes to
make a transaction, no matter how competitive the market, one has to deal
with one or a small number of other agents, and there is always some lati-
tude in price, quality, or other dimensions of the transaction for bargaining.
These noncompetitive spheres may be negligible from the point of view of
the whole economy, or market, and the economic theorist may reasonably
choose to abstract from them for the sake of a simple and tractable the-
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ory. But a complete theory should at least embrace and account for these
pervasive features of economic reality.

Finally, there are many extremely important economic interactions that
simply do not involve a large number of competitive agents. Many impor-
tant markets are oligopolies, in which a few very large sellers interact with
an acute awareness of the impact of their behavior on each other. In many
cases these interactions are of critical importance for economic develop-
ment. A large investment in the construction of a transportation facility
may be justified if complementary large directly productive investments
will be forthcoming to generate a sufficient level of traffic. The investment
in direct production, in turn, may be profitable only if the transportation
facilities are available to bring the product to market. In this situation the
productive investor and the transportation investor are inherently involved
in a strategic interaction, in which each has a strong incentive to outguess
the other, or, at least, to anticipate the other’s behavior.

The formal analysis of situations of strategic interaction leads to the
general theory of games. A game is formalized by specifying the number of
players, their strategic options, the information conditions that link their
actions, and the payoffs or utilities that characterize their evaluation of the
outcomes of any combination of strategic choices. The research program
of game theory hopes to find general characterizations of the behavior of
rational agents interacting strategically. This program is a kind of general-
ization of the theory of rational agents interacting on competitive markets
to the analysis of strategic interactions.

Here again the chapters in this volume show the critical importance
of the issues of complexity and computational costs. As we will explain,
even games of relatively simple structure rapidly give rise to computational
problems of extremely high complexity, in which the assumptions of ratio-
nality are impossible to maintain. Once again, the logical structure of
the argument is that of counterexample. If serious computational issues
arise in relatively simple contexts, they must, a fortiori, be present in more
complicated contexts.

1.3.5.1 Cournot-Nash equilibrium

There is a vast literature on various general solution concepts for ab-
stract games (see, for example, Binmore and Dasgupta, 1986). The most
popular starting point for most analysis of noncooperative games is John
Nash’s proposed equilibrium, generalizing an idea of Auguste Cournot. The
Cournot-Nash equilibrium singles out strategy choices for the players of a
game that have the property that no player can improve upon her outcome
unilaterally, by changing her strategy, assuming that the strategies of the
other players will remain unchanged.
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This idea has considerable intuitive appeal, since at least in a repetition
of the same game it is hard to see why players would be content to continue
with strategies when alternatives offering a higher payoff are available. But
it also has serious methodological difficulties. To begin with, in general
the set of Cournot-Nash equilibria of a game is large, and in many cases
includes outcomes that are uninteresting or implausible. Thus the Cournot-
Nash equilibrium appears to be incomplete as a theory: we require further
considerations to reduce the multiplicity of equilibria. But even when the
problem of multiplicity of equilibrium has somehow been dealt with, there
is some question as to why we should expect agents to choose Cournot-
Nash equilibrium strategies. It is plausible that if an agent knew for sure
that her fellow players would play their equilibrium strategies she will play
hers, since it is by definition the best response she can make. But why
should she have any confidence that her fellow players will behave in the
way predicted by the equilibrium? The motivation for the Cournot-Nash
concept of equilibrium lies in considerations of symmetry that have more
potency as a mathematical postulate than credibility as a theory of human
behavior. Once we acknowledge the possibility that an agent might doubt
that her opponents will follow the predicted strategies, we must also admit
the possibility that the opponents might doubt her commitment to it as
well, and the whole structure of the equilibrium concept unravels.

But, as the chapters in this volume show, there are serious computa-
tional issues raised by the Cournot-Nash concept of equilibrium as well.
Even if players have implicit faith that some version of the Cournot-Nash
theory will correctly describe the outcome of their interactions, and even
if the theory can be made to single out a unique outcome, how confident
can we be that the agents can carry out the computations necessary to
characterize the equilibrium?

1.3.5.2 The one-shot Prisoners’ Dilemma

A great deal of the work relating game theory to larger social theory issues
has centered on a particular game situation, the Prisoners’ Dilemma.. This
game poses particularly sharply the classic social dilemma of opportunism
and the paradoxes of the pursuit of self-interest. In its simplest form the
Prisoners’ Dilemma involves two players, each of whom has two strategies,
often called cooperate and defect. If both agents cooperate, they share a re-
ward. But if one cooperates and the other defects, the defector gets a larger
reward, while the cooperator suffers a penalty. If both defect, they share a
smaller penalty. Thus regardless of what the other player does, it is in the
direct individual interest of each player to defect: defection is a dominant
strategy. The only Cournot-Nash equilibrium of the Prisoners’ Dilemma
is mutual defection. But this is disturbing because both players would
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be better off if they avoided the temptation of defection and cooperated.
In economic terms the “invisible hand” that supposedly guides individual
competitors pursuing their own self-interest to a socially desirable outcome
misguides them in the Prisoners’ Dilemma.

The Prisoners’ Dilemma can be seen as an abstract model of a huge
range of human interactions. Hobbes’s state of nature can be viewed as
a Prisoners’ Dilemma, and Hobbes’s proposed solution in the form of a
coercive external force a major rationalization of institutions of power.
Thoughtful economists from Adam Smith on have recognized that the ben-
efits of the invisible hand depend on the existence of a stable institutional
structure (such as property rights) supported by political power which can
prevent competition from destroying itself. Wherever the development of
property rights lags behind the emergence of economically important in-
terests, as in the area of environmental pollution, a social space emerges
where the opportunism modeled by the Prisoners’ Dilemma has a free run.

Hobbes’s Leviathan may be the explanation for the absence of private
armies in modern industrial societies, but there are lots of other spheres of
life where cooperative behavior survives without the support of the orga-
nized violence of the state. People manage to function in families, neigh-
borhoods, clubs, bureaucracies, and firms where cooperative behavior is
essential and the direct police power of the state weak or absent. There is
a need for a theory of what Robert Axelrod (1984) has called the “evolution
of cooperation,” the spontaneous maintenance of cooperative behavior in
the face of the strong temptations modeled by the Prisoners’ Dilemma.

1.3.5.3 Repeated games

The argument that agents caught in a Prisoners’ Dilemma will fall into
the mutual defection equilibrium is strongest when we imagine them to be
playing the game just once. If agents know they are going to interact many
times, it may be easier for them to establish a pattern of mutually advan-
tageous cooperation. This consideration leads to the model of a repeated
game, which is a major focus of the essays in this volume. The agents in
a repeated game know that they will encounter each other many times in
situations structured the same way. Each agent can condition her strategic
choices on the past behavior of the other player.

The structure of repeated games is inherently much more complex than
the structure of the corresponding one-shot games. If each player has just
two strategies available in each one-shot game (like cooperation and de-
fection in the Prisoners’ Dilemma) the record of a player’s behavior in a
game repeated n times consists of a vector of dimension n, each compo-
nent recording the player’s strategy choice on one round. There are 2n

such pairs of vectors. In principle an agent’s strategy in the n+ 1st round
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of the repeated game could be conditioned on this full information, giving
rise to a game with 2n+1 strategies for each player on the nth round. As
n increases, the number of strategies becomes very large indeed. A full
strategy for the entire repeated game, would be a plan telling what the
player will do on the first round, then what she will do on the second move
depending on what the opponent did on the first round (two possibilities),
then what she will do on the third round depending on what the opponent
did in the first two rounds (four possibilities) and so on. Even if the player
knows the game will be repeated a finite number of times, and were to
be fortunate enough to know the exact strategy chosen by her opponent,
the examination of her own enormous strategy set in a search for a best
response, the core of the Cournot-Nash concept, is a daunting prospect.

Once again we see the issues of computational feasibility and costs aris-
ing naturally and centrally in the development of a theory of completely
rational action. The difficulties of computation strongly suggest truncating
the strategic choice problem in some plausible way. The full strategy prob-
lem, for example, requires the player of the game to remember the behavior
of her opponent on every previous round; in a game repeated N times, she
would need N memory cells to devote to this task. Since memory (either
human or machine) is expensive, we might reasonably restrict her strat-
egy choices to those that could be implemented with a smaller number of
memory cells. This is a practical and plausible, but not strictly rational
strategy. Strictly rational logic would require the agent to consider whether
she would be better off allocating 1, 2, . . . , N memory cells to this game.
Of course, to decide how many memory cells the game is worth, the agent
would have to solve an even much more complex problem, and spend even
more computing resources to do it. In the essays in this book the cost of
computation is often represented, crudely to be sure, by limitations on the
computing power of the agent.

Suppose that the agent can devote only 1 memory cell to a repeated
game, for example. Then she is restricted in her strategy choice to those
strategies that are sensitive only to whatever statistic she chooses to record.
If she remembers only the last choice of her opponent, she has reduced the
size of her strategy space from

∑N
n=1 2n to 4 (since she has two strategy

choices on the n+ 1st round of the game for each of the two possible plays
of her opponent on the nth round). In this much reduced strategy space it
may be easier to evaluate strategies.

1.3.5.4 The repeated Prisoners’ Dilemma

The specific case of the Prisoners’ Dilemma has been the subject of con-
siderable theoretical attention. A moment’s thought shows that even in a
repeated Prisoners’ Dilemma of known finite length N , defection is still a
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dominant strategy. On the last round, it is clear that defection dominates,
since both players know that this is the last episode of interaction. But if
each knows the opponent will defect on the last round, there is no point
to cooperating on the next-to-last round, and so forth back to the very
first round. To get around this analytical hurdle, it is common to assume
that the players face a positive probability of the game continuing on every
round, so that there is at least the possibility that the prospect of future
cooperation can influence their behavior at all times.

The full analysis of the repeated Prisoners’ Dilemma on rational grounds
remains a major research area. There may be a very large set of Cournot-
Nash equilibria for the metagame, but we do not know very much about this
set. Mutual defection is always a Cournot-Nash equilibrium, since if you
know your opponent will defect there is no point in your cooperating. One
equilibrium that seems to be capable of sustaining cooperation is a trigger
strategy: the player cooperates on the first round, but shifts to permanent
defection if her opponent ever defects. If the game will continue a long
time with high probability, the prospective losses from facing permanent
defection can outweigh the one-shot gain from defection against a cooper-
ator, making the trigger strategy a best responses to itself, and therefore
a Cournot-Nash equilibrium. The trigger strategy requires only one bit of
information to implement, a record of the opponent’s worst behavior in the
game up until the present. Thus it has the advantage of computational
cost-effectiveness. Everyone has probably encountered people who adopt
trigger strategies in life, but they are notoriously difficult people to get
along with. The trigger strategy is too unforgiving of errors in percep-
tion or execution, for example, to be a very good method for sustaining
cooperation in real human interactions.

Considerable attention has been given to another low-computation cost
strategy, tit-for-tat. An agent playing tit-for-tat cooperates on the first
round of play, and thereafter plays whatever strategy the opponent played
on the last round. In effect, tit-for-tat punishes defection by defecting just
once, as long as the opponent returns to a policy of cooperation. Tit-for-
tat defends itself better against unconditional defection than unconditional
cooperation does, since it shifts promptly to defection on encountering a
defecting opponent. It also requires only a single memory cell to implement,
a record of the opponent’s play on the last round. But it is not a best
response to itself, and therefore not a Cournot-Nash equilibrium.

1.3.5.5 Repeated local interaction multiperson
Prisoners’ Dilemma on the torus

The complexity of the Prisoners’ Dilemma even in the two-person repeated
game model is high, but plausible and interesting extensions of the two-
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person game lead rapidly to even more complex situations. Peter Albin
in Chapter 6 below proposes such a generalization, which reveals close
links between game theory and cellular automata: the local interaction
multi-person Prisoners’ Dilemma played on a lattice. In this model each
player occupies a node of a lattice in two dimensions. The upper and lower
boundaries of the lattice are identified, as are the right and left boundaries,
so that in effect the players find themselves on the surface of a torus. The
payoffs to an agent depend on the number of her neighbors (including
herself) who cooperate in the game. The payoff structure generalizes the
Prisoners’ Dilemma in that defection is a dominant strategy (no matter
what your neighbors do, your one-shot payoff is higher if you defect than if
you cooperate), but the payoffs to uniform cooperation are higher than to
uniform defection. As in the original Prisoners’ Dilemma, private incentives
are at sharp variance with social goals.

This is a simple and plausible abstract representation of social inter-
actions and the collective action problem. In real societies neighborhood
effects (or small group effects) are extremely important to the welfare of
individuals. The externalities modeled by the Prisoners’ Dilemma corre-
spond to a wide range of real social problems. The cleanliness of the street
depends on the actions of the relatively small number of users; the psy-
chological health of an office depends on the resistance of fellow workers to
rumormongering and scapegoating; the effectiveness of education depends
on students’ reluctance to cheat. But an agent’s neighbors in one interac-
tion are involved in turn with other agents with whom the first agent has no
direct contact. Just as we are exposed to disease by the behavior of people
we do not know through people we do know, our social environment can
be influenced by the behavior of strangers who interact with our friends.

Despite its simplicity and appeal as an abstract model of social inter-
action, the complexity of Albin’s local interaction multiperson Prisoners’
Dilemma considered from the point of view of rational choice theory (say,
Cournot-Nash equilibrium) is staggering. Strictly speaking, the relevant
state of the repeated game at any moment from the point of view of one
of the agents depends not just on her own and her neighbors’ past be-
havior, but on her neighbors’ neighbors’ past behavior as well, in fact, on
the behavior of all the agents indirectly linked through the neighborhood
structure. Since each agent’s strategic choices can in principle depend on
her neighbors’ past behavior, which in turn may be conditioned on the
neighbors’ neighbors’ past behavior, all of the agents in the whole society
are indirectly linked. A full Cournot-Nash equilibrium has to consider the
best response of each agent to the strategies, not just of her neighbors, but
of all the agents in the society. The problems of computational cost and
feasibility obtrude immediately and unavoidably.

As Albin shows in his essay, there are actually two levels of computa-
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tional complexity problems in this kind of situation. On the one hand it
may in principle be feasible to set up algorithms to predict the detailed
evolution of the system in response to a particular action of one agent (say,
a change in her strategy choice), but very expensive because of the chaotic
nature of the ramifications. The cost of the computation constitutes a
bound to rationality, and suggests limiting the strategic plans of agents to
a subset of all those that are in principle relevant. For example, we might
limit the agent to strategies that are conditioned on the past behavior of
her neighbors (since she may have difficulty even observing the behavior of
her neighbors’ neighbors and further degrees of separation). Even here, as
the discussion of the two-person Prisoners’ Dilemma shows, the complexity
of the strategy space is quite high, and may exceed reasonable estimates
of the computing power available to an agent. These considerations lead
us to study boundedly rational agents who pursue their self-interest within
limits imposed by computational costs.

But Albin’s analysis also reveals a further remarkable problem implicit
in the multiperson Prisoners’ Dilemma. Albin shows by construction that
there are bounded rationality strategies (one, e.g., which is mathematically
equivalent to John Conway’s cellular automaton Life) which will lead to a
level of complexity in the social interactions represented that is equivalent
to that of a general-purpose computer or Turing machine, or to an un-
restricted formal language. In this context the computational issues that
arise when an agent tries to work out the consequences of a change in her
strategy are not just those of cost, but include issues of feasibility. If the
society as a whole has the complexity level of a general-purpose computer,
it will be impossible for any other general-purpose computer to work out
its evolution except by direct simulation. To carry out the program of ra-
tional explanation of behavior in this context would require positing that
each individual agent in society had some way of simulating the potential
evolution of a system of interlinked Turing machines. At this point the
rational explanation program runs into deep paradoxes of self-reference.
Albin explores these paradoxes in Chapters 2 and 6 of this volume.

1.4 Definitions and measures of complexity

We can see that issues of complexity arise inexorably in social and economic
theory once we contemplate seriously the possibility of nonlinearity in the
underlying lawful behavior of agents. The development of economic theory
in particular has managed to finesse these issues by focusing attention on
idealizations like perfect competition, which abstract from the interactions
of individual agents, and on situations in which the structure of equilibria
is relatively simple, like the saddle-point stable trajectories of intertempo-
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ral accumulation models. Some such maneuver was probably functional to
the progress of social science, especially during periods in which the mathe-
matical and philosophical understanding of complexity issues was relatively
undeveloped. But if complex interactions indeed play a fundamental role
in the evolution of social reality, this abstraction may have imposed a high
price on the relevance of accepted economic and social theory.

The emergence of computers and of a mathematical theory of language
has transformed our understanding of these issues at an abstract level.
Albin’s work in this volume shows how central these concerns are to the
further development of social theory. One of the key achievements of com-
putational and linguistic theory has been to propose explicit definitions of
system complexity, and to provide a qualitative classification and quanti-
tative measures of complexity. A brief review of these developments can
help put the essays in this volume in context.

The intuitive concept of complexity that lies behind most measures is
that simple systems are easy to describe with a small amount of informa-
tion, while the description of a complex system requires a large amount of
information. This idea can be unpacked in several different contexts, which
turn out to be closely related. We can, for example, measure the complex-
ity of a system by the size of the smallest computer program capable of
describing it. More complex systems require larger programs. Or we could
measure the complexity of the system by the computer resources required
to represent it, in time and memory. A more complex system requires more
time and memory to describe than a simple one. Or we could measure the
complexity of a system by the richness of the language required to describe
it. A simple system can be described by a minimally structured language,
while a complex one requires a language rich in possibilities.

1.4.1 Computational complexity

Mathematicians have always been interested in solving problems, that is,
developing algorithms that allow a computing system (up until 1940 usually
a human equipped with pencil and paper) to transform one description of
a situation (the problem) into another description in a more functional
and usable form (the solution). Mathematics has also from its earliest
beginnings recognized a relation between the computational tools available
and the range of problems that can be solved. Greek geometry, for example,
stipulates constructions with straight-edge and compass as a computational
limit: the trisection of an angle is not possible with these tools, though
it is possible with the addition of more powerful computational devices.
Those mathematicians who pursued the practical solution of real problems,
such as the computation of artillery trajectory tables, or the compilation
of ephemeridae describing the motion of heavenly bodies, became acutely
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aware of the wide gap between the discovery of methods that in principle
are capable of solving certain problems, and the implementation of these
methods in practical situations.

Our understanding of the relation between systems and the sophistica-
tion of the machines needed to describe or represent them has been most
completely developed for formal languages (see Hopcroft and Ullman, 1979,
and Révész, 1983, for thorough surveys of these results). The next two sec-
tions summarize these accounts. This theory establishes the existence of
parallel four-level hierarchies of complexity for machines and languages. A
similar four-part hierarchy appears in the study of nonlinear dynamical sys-
tems, such as cellular automata as well, and plays a central role in Albin’s
theory of the complexity of social and economic systems.

1.4.2 Linguistic complexity

Noam Chomsky (1959, 1963) defines a formal language as a set of rules
for producing strings from a finite alphabet of symbols. These rules es-
tablish certain strings as words (or sentences) in the language and define
procedures for producing new words by substitution in existing words. The
complexity of a language in Chomsky’s hierarchy corresponds to the restric-
tions imposed on the procedures for producing new words.

A brief sketch of this theory and its main results can help to clarify the
mutual relationship of linguistic, computational, and nonlinear dynamical
system complexities that informs Albin’s work.

A formal language is defined by a grammar, which is defined by a finite
alphabet T of terminal symbols, a finite set V of intermediary variables, a
finite set P of productions, rules for substituting new strings of symbols and
variables in existing strings, and a distinguished variable S, which serves
to start the productions of the language. The productions take the form
P → Q, where P is a string composed of one or more variables together
with zero or more terminals, and Q is a string composed of any combination
of variables and terminals. The terminal symbols are analogous to the
words of a natural language (nouns, verbs, and so forth); the variables are
analogous to grammatical forms (sentences, clauses, parts of speech); and
the productions are analogous to the grammatical rules of a language. The
productions of a natural language like English might take such forms as:
<sentence> → <noun phrase> <verb phrase>, and <noun> → “car,”
indicating that the variable <sentence> can be replaced by a noun phrase
followed by a verb phrase, and that the variable <noun> can be replaced
by (among many other things) the terminal “car” to produce grammatical
(but not necessarily meaningful) English expressions.

The potential complexity of the language generated by a grammar de-
pends on what restrictions, if any, are placed on the production rules.
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The languages produced by grammars satisfying the preceding definition
with no further restrictions on the production rules are called unrestricted
languages. The unrestricted languages include the most complex formal
languages (and all the simpler ones as well).

The first step in establishing Chomsky’s hierarchy of complexity of lan-
guages is to consider the subset of grammars for which all the productions
P → Q have the length of Q at least as long as the length of P . The lan-
guages generated by such grammars are called context-sensitive languages,
because it is possible to prove that all their productions have the form
P1PP2 → P1QP2, where Q is a nonempty string. This kind of production
rule allows the substitution of Q for P in the context P1 . . . P2, but not
necessarily in other contexts.

Note the monotonicity inherent in derivations arising from context-
sensitive languages: each application of a production to a word must result
in a word no shorter than the one we started with. This need not be true for
an unrestricted grammar: in general the application of productions might
first lengthen and then shorten the words produced. This monotonicity
greatly reduces the complexity of the languages generated. For example, if
we are trying to “parse” a word, that is, decide whether or not it could have
been generated from a given grammar and by what sequence of applications
of production rules, we know that a given word from a context-sensitive
language can have as its antecedents only expressions of the same length
or less, a finite set. Thus we can be sure of reaching a definite answer in
parsing context-sensitive languages, since we have only a finite number of
possible paths by which the word could have been generated. But if an un-
restricted grammar is not context-sensitive, a word of a given length could
be generated by intermediary expressions of any length whatsoever, thus
raising the specter that any parsing procedure might have to run for any
length of time before reaching a conclusion. It might even be impossible
for us to design a parsing procedure guaranteed to return an answer for
any word of such a noncontext-sensitive language in finite time.

The next subset in Chomsky’s hierarchy consists of languages generated
by grammars whose productions take the form P → Q, where P is a string
of variables (and Q a string composed of terminals and variables), without
contextual restrictions, called the context-free languages. The not immedi-
ately obvious fact is that the context-free languages that do not contain the
empty string are a strict subset of the context-sensitive languages, so that
they share the monotonicity property of the context-sensitive languages,
and have further complexity-reducing structure as well.

The final subset in the Chomsky hierarchy consists of languages gener-
ated by grammars with production rules of the form P → T or P → TQ,
where P and Q are variables and T is a string of terminal symbols, called
the regular languages. The regular languages are a strict subset of the
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context-free languages, and exhibit a further reduction in complexity.
The Chomsky hierarchy of complexities of formal languages is a key to

the characterization and analysis of the complexity of social and economic
systems because of its close relation to the complexity of computational
devices, on the one hand, and to the complexity of nonlinear dynamical
systems (e.g., cellular automata), on the other. As we have seen, we are
led to represent social and economic systems by nonlinear dynamic models,
and forced to consider the agents in social and economic interactions as
operating with meaningful costs of computation. Thus, as Albin’s work
shows, we must come to grips with the complexity hierarchy of social and
economic systems through the same methods and tools that have been
developed to analyze linguistic and computational complexity.

1.4.3 Machine complexity

A hierarchy of abstract models of computing devices parallels the Chomsky
hierarchy of formal languages. The simplest of these models, the finite au-
tomaton, has a finite number of internal states, and can read input symbols
from a tape. The automaton makes a move by reading a symbol from the
tape and entering a new state which depends on the symbol read and its
current state. The automaton is defined by stipulating its starting state, its
allowable moves, and a particular subset of states which signal that the au-
tomaton has accepted the input. A pocket calculator is a finite automaton.
It reads the alphabet of symbols present on its keyboard, and processes
them. If it encounters a sequence of symbols that are uninterpretable, it
enters an error state. In all states except the error state the calculator has
accepted the input stream. It is plausible to regard the finite automaton
from the economic point of view as the cheapest form of computational
capacity available to a decision maker.

The languages accepted by finite automata are precisely the regular lan-
guages that occupy the lowest rank in the Chomsky hierarchy. Conversely,
a finite automaton can be constructed to accept any regular language as
well, so that the correspondence between finite automata and regular lan-
guages is exact.

A consequence of this exact correspondence is that it is impossible to
construct a finite automaton to recognize a context-free language which
is not a regular language. We can, however, supplement the computa-
tional capacity of a finite automaton by adding an unbounded pushdown
stack on which the automaton can store and retrieve symbols on a first-in,
last-out basis. The resulting pushdown automata can recognize all context-
free languages (including, of course, regular languages). Conversely, given
any context-free language, it is possible to construct a pushdown automa-
ton that will recognize it, so that the correspondence between pushdown
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automata and context-free formal languages is exact. The pushdown au-
tomaton still represents a relatively primitive form of computing machine,
since its access to the information stored on the pushdown stack is highly
restricted: only the last stored symbol is available to influence the course
of the computation at any stage; the automaton can access symbols deeper
in the stack only by discarding those stored later above. A decision maker
equipped with a pushdown automaton, however, is in a position to recog-
nize and respond to a much larger and more complex set of patterns in the
world than one equipped only with the computational capacity of a finite
automaton.

A logical next step in extending the computational capacity of an au-
tomaton is to add a second pushdown stack, thus creating a two-pushdown
automaton. A two-pushdown automaton has access at any stage to all of
its stored information, since it can shift the symbols from one stack to the
other without losing any. The second pushdown stack provides the au-
tomaton with the ability to recognize languages of any complexity: a two-
pushdown automaton can be constructed to recognize any formal language
and, conversely, so that the two-pushdown automata correspond exactly to
the Chomskian unrestricted formal languages.

The two-pushdown automaton is equivalent in its computational power
to the abstract Turing machine, the generally accepted abstract model of
a general-purpose computer capable of implementing any conceivable sys-
tematic problem-solving procedure. The Turing machine is an automaton
which operates by reading and writing symbols on a single one-sided infi-
nite tape, with the possibility of moving forward and backward on the tape
depending on its state and the input stream. The class of Turing machines
also is equivalent to the class of unrestricted languages in complexity.

As we might expect, there is an intermediate level of computing power
between the pushdown automata and the two-pushdown automata corre-
sponding to the context-sensitive languages. This class of automata in-
cludes two-pushdown automata with bounded storage (where the bound
on storage may depend on the length of the input word), called linear
bounded automata. Intuitively, an automaton reading a word from a for-
mal language is inverting the production rules that govern the language,
thereby replacing parts of the word with the expressions that might have
produced it. The monotonicity of context-sensitive language production
rules assures that an automaton applying their inverse can never lengthen
the word, so that the space necessary for the work is bounded by the
size of the input word itself. Since the context-free languages without the
empty string are a strict subset of the context-sensitive languages, a linear
bounded automaton can also recognize all of the context-free languages.

From an economic point of view, the bounded storage of the linear
bounded automaton represents a qualitatively different computation cost



46 CHAPTER 1. INTRODUCTION

from the unbounded two-pushdown automaton. A decision maker using
a linear bounded automaton to analyze a problem can confidently budget
the cost of the computational resources required, while a decision maker
using a general two-pushdown automaton can never be sure how large the
computational costs of any given analysis might grow to be. This difference
in computational costs represents an economic trade-off in computational
capacity as well, since the costly general two-pushdown automaton can
carry out all the analyses possible for the linear bounded automaton and
many others as well.

1.4.4 Decidability, computational complexity,
and rationality

A fundamental question about any problem is whether there exists a com-
putational procedure for solving it that will eventually come up with an
answer. This question can be rigorously formulated as whether or not a
Turing machine (or equivalently, a two-pushdown automaton) exists which,
presented with the problem as input, will halt in finite time with the an-
swer. Problems of this type are decidable. One of the central mathematical
discoveries of the century is that undecidable problems exist (an idea which
can be expressed in a variety of forms, including formal language and au-
tomaton theory).

A second practical question about any decidable problem is how much
resources (e.g., time and machine memory) its solution will require. A
decidable problem may still become intractable if it requires computational
resources that grow rapidly with the size of the problem itself.

A decision maker trying to carry out the rational choice paradigm in a
complex environment faces the fundamental problem of the computational
cost of predicting the consequences of her various actions so as to choose
the best action in the situation. The theory of computability and compu-
tational complexity suggests that there are two inherent limitations to the
rational choice paradigm. One limitation stems from the possibility that
the agent’s problem is in fact undecidable, so that no computational pro-
cedure exists which for all inputs will give her the needed answer in a finite
time. A second limitation is posed by computational complexity in that
even if her problem is decidable, the computational cost of solving it may
in many situations be so large as to overwhelm any possible gains from the
optimal choice of action.
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1.4.5 Dynamical systems and computational
complexity

A rational decision maker confronting a dynamical system needs a ma-
chine that can evaluate the consequences of her actions to carry out the
program of rationality. The analysis of the computation power required of
the machine is thus closely connected with the cost the rational agent must
sustain.

Albin approaches this problem by associating the economic cost of com-
putation to the hierarchy of computing complexity: finite automata, push-
down automata, linear bounded automata, and two-pushdown automata
(Turing machines). These classes of computation can also be linked to the
character of dynamical systems.

A dynamical system with a unique globally attracting equilibrium state
from this point of view corresponds to a finite automata and to regular lan-
guages. A finite automaton needs no memory to record any of the data
it has read, and is therefore very cheap. A rational agent confronting a
single-point attractor dynamical system needs, therefore, only very primi-
tive computational resources.

Dynamical systems with a periodic attractor correspond to pushdown
automata and to context-free languages. The memory needed here, and
thus the cost of the device, is proportional to the length of the repetitive
patterns the dynamical system will generate. It is notable that most hu-
man beings can implement programs representing only very short periodic
attractors without becoming confused and losing track of the problem they
are working on. Most human beings can work out the dynamics of a two-
or three-state system (e.g., what happens if their spouse is angry at them
or is friendly with them), but very few can carry on chains of recursion of
even ten periods, not to speak of the hundreds or thousands that easily
arise in complex financial transactions or complex diplomatic or military
confrontations. Even periodic systems, if they involve a large number of
degrees of freedom, can challenge the computational resources built into
our brains by evolution.

Context-free languages can exhibit a long-distance correlation in data
strings: an opening parenthesis requires the eventual appearance of its
matching closing parenthesis, but an indeterminately large amount of ma-
terial (including many more parenthesis pairs) may intervene. This type
of long-distance correlation has not received much attention in economic
models, though in principle it may play an important role. For example,
the settling of debts has this recursive character. Agent B may borrow
from agent A, opening a parenthesis that will be closed by the eventual
repayment of the debt. But agent B may then turn around and lend to C,
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opening a second parenthesis. C’s repayment of B is the precondition for
the resolution of the original loan by B’s paying A.

Dynamical systems with a chaotic attractor correspond to linear bound-
ed automata and to context-sensitive languages. Small deviations in a
trajectory at one time ramify indefinitely over time and space, and are never
resolved by a closing parenthesis. This spreading out of chaotic trajectories
corresponds to the monotonicity property of production rules for context-
sensitive languages. While problems in this complexity class are typically
decidable in principle, they are often computationally intractable because
of rapid increases in computational cost associated with increases in the
complexity of the problem, the time horizon of interest, or the accuracy of
solutions required.

As Albin points out in his essay on the metalogic of economics (Chapter
2) if we regard human beings as having a complexity at the least equiv-
alent to that of Turing machines, then economic and social systems com-
posed of interacting human beings are in principle more complex than the
context-sensitive languages that correspond to linear bounded automata,
corresponding at least to the complexity of unrestricted formal languages.
The distinguishing characteristic of these systems is the nonmonotonicity
of the derivations of their states. If we choose some measure of complexity
(such as the length of a word generated, or the number of transactions we
observe in an economic market) to characterize the state of the system, we
cannot rule out the possibility that it evolved from an even more complex
state. Human beings, for example, may adopt apparently simple modes of
behavior on the basis of extremely complex and involuted reasoning that
considers much more subtle possibilities.

The representation of dynamical systems as a part of the rational choice
program thus raises two important questions involving computation. The
first is the more important from a practical perspective: how much will the
effective computation of the behavior of the system cost? This question, as
we have argued, poses a bound to the degree of rationality achievable in any
given situation. The second is the more important from a theoretical point
of view: is it possible in principle to compute the functions posited by the
rational choice program? This question, when answered in the negative,
poses an absolute barrier to the rational choice program.

The essays in this volume address these two questions in a variety of
economic modeling contexts.

1.5 Complexity in cellular automata

Cellular automata are, as we have seen, a simplified representation of gen-
eral nonlinear dynamical systems. Because they are defined by very simple
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rules, it is possible to investigate a substantial subset of the possible cellu-
lar automata in some detail by simulation, even within the limits posed by
the power of contemporary computers.

Stephen Wolfram’s studies of cellular automata are the foundation of
the economic and social models in this book.

Wolfram proceeds by classifying cellular automata in terms of the di-
mension of the lattice on which they exist, the number of states, k, each
site can occupy in each step, the radius defining the limits of one-step in-
fluence of sites, r, and the rule of evolution governing the evolution of the
automaton. One-dimensional cellular automata are the cheapest to simu-
late and the results of the simulation can be visualized in two-dimensional
plots, with the sites of the automaton arrayed horizontally and time repre-
sented vertically. Wolfram and others have also looked intensively at two-
dimensional cellular automata. As the dimension of the lattice increases,
the number of rules possible increases enormously, so that exploration by
simulation becomes an increasingly difficult program to carry out.

In general a cellular automaton rule can allow the next-step state of
each site to depend in an arbitrary way on the states of the cells in its
neighborhood. For example, in a one-dimensional cellular automaton with
k = 2 and r = 1 the next state of each site depends on three bits represent-
ing the current state of itself and its left- and right-hand neighbors. The
state of this neighborhood can take on eight configurations. In an arbitrary
rule, each of these configurations is mapped onto a 1 or a 0 representing
the next state of the center cell, so there are 256 possible cellular automa-
ton rules. Wolfram cuts down the number of possibilities by restricting
his attention to subsets of the possible rules that reflect natural physical
assumptions. In physical systems, for example, there is no reason to think
that influences on one side of a site are any different from influences on
another side, so that it is natural to concentrate attention on symmetrical
rules. In many physical systems the influences of neighbors are at least
approximately additive, so that it makes sense to look at totalistic rules, in
which the next state of the cell depends only on the total number of neigh-
bors (including itself) in each state, or to outer totalistic rules, in which the
next state of the cell depends separately on the total number of neighbors
(not including itself) in each state and the state of the cell itself. In many
physical systems the 0 state represents a minimum energy state of a cell,
so that it is plausible to require that when the neighborhood is all in the 0
state, the next state of the cell is 0 (legal rules).

These restrictions are plausible physically, there is no strong indica-
tion that the behavior of the totalistic, legal, or symmetric class of cellular
automata is unrepresentative of the behavior of the general case, and the
restrictions greatly increase the efficiency of the simulation exploration pro-
gram by restricting the parameter space it must examine. But it is worth
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noting that each of these physically plausible restrictions on cellular au-
tomaton rules is less compelling in a social than a physical context. If we
think, as Albin does in some of the essays in this volume, of the cells as rep-
resenting firms, then the concept of “neighboring firm” might be thought
of as “suppliers” and “customers.” In this interpretation the next state of
firm might be thought of as depending on the current state of its suppli-
ers and customers, since they determine the availability of inputs and the
demand for output from the firm. If we were to array the firms on a line
with suppliers to the left and customers to the right, the assumption of
symmetry in the cellular automaton representation would not necessarily
hold, since the impact of the state of its supplier on the future state of the
firm could be quite different from the impact of the state of its customer.

Similarly, totalistic rules make considerable sense in some social and
economic contexts, but are less attractive in others. In the exchange model
of Chapter 5, for example, an agent’s decision to undertake costly adver-
tising to enter the market depends on her estimate of the exact offer prices
of her neighbors, information which cannot easily be summarized by a sin-
gle statistic derived by addition. Even the restriction to “legal” rules, in
which the state of all 0s in a neighborhood determines a 0 for the next
state of the cell, might not be attractive in some economic models. If the
cell represents a possible production activity, and the neighborhood similar
production activities, 0s in neighboring cells might represent a competitive
opportunity, and lead to spontaneous generation of activity in a particular
location.

Since the rules governing the evolution of cellular automata are so sim-
ple, one might hope that it would be possible to derive simple and general
algorithms to predict the evolution of cellular automata from initial condi-
tions. Wolfram’s study is motivated largely by exploring the limits of this
program. His method is to look through simulation at the evolution of a
large number of cellular automata from either simple seeds (single nonzero
sites) or random seeds, to see what patterns emerge over time. His striking
findings are the basis for a number of the essays in this volume.

1.5.1 Complexity types

Wolfram finds that one-dimensional cellular automata can be classified into
four basic complexity levels. (He conjectures that these same four levels
also suffice for higher dimensional cellular automata.) The first three levels
of complexity are analogous to various types of attractors in nonlinear
dynamical systems.

Type 1 cellular automata evolve to uniform states from arbitrary initial
conditions. Alteration of the initial conditions leads to changes that die out
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over time as the system seeks out the uniform state. They are analogous
to dynamical systems that have a unique stable equilibrium.

Type 2 cellular automata evolve to periodic patterns of states from arbi-
trary initial conditions. Small change in initial conditions may change the
phase of the periodic limit, but not its basic pattern. They are analogous
to dynamical systems that have periodic attractors.

It is not difficult to predict the evolution of type 1 and type 2 systems:
once we have seen the pattern that evolves for a few initial conditions, we
pretty well know what is going to happen in any further experiment we do
on the system. Small errors in the measurement of the initial conditions
lead to errors in prediction which decrease over time.

Type 3 cellular automata evolve to nonrepeating, complicated pat-
terns from arbitrary initial conditions. A small change in initial conditions
changes features of the evolutionary pattern on a larger and larger scale
with time. They are analogous to dynamical systems with chaotic behav-
ior and chaotic attractors. While it is difficult to predict the evolution of
type 3 cellular automata in detail, it is possible to find statistical regu-
larities in the patterns that evolve, such as the average number of cells in
each state, and entropy measures of the diversity of patterns developed. In
some cases it is possible to identify types of patterns that can never evolve
in the automaton, despite the large and constantly changing patterns that
do evolve. Type 3 cellular automata, like the context-sensitive languages,
exhibit a monotonically increasing range of changes emanating from a local
perturbation of initial conditions.

Type 4 cellular automata produce propagating irregular structures from
arbitrary initial conditions. A change in initial conditions can lead to
changes that propagate coherently for large distances. The structures that
evolve from similar initial conditions may be quite different. In type 3
cellular automata the effects of changes in initial conditions spread out
constantly in space over time, but in type 4 systems the effects may spread
and then contract. As a result there is no way to tell in a type 4 system
how large the intermediate structures leading to a particular configuration
might be: a relatively simple final configuration of the system may be the
result of the distillation of immense and very complex intermediate struc-
tures. The type 4 cellular automata are thus analogous to formal languages
produced by unrestricted grammars.

From the dynamical systems point of view, type 4 cellular automata
lie on the boundary between types 2 and 3. A disturbance in the initial
conditions of a type 2 cellular automaton monotonically subsides into the
periodic attractor, and a disturbance in a type 3 system monotonically
explodes through the whole space. A disturbance in a type 4 system nei-
ther implodes nor explodes, but propagates irregularly through the system.
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Type 4 cellular automata are thus models of “complexity on the edge of
chaos,” systems just on the boundary between subcritical stability and su-
percritical instability.

1.5.2 Computability, predictability, and complexity
in cellular automata

Type 3 and type 4 cellular automata represent the boundaries and barriers
to rationality that are the theme of the essays in this book.

Type 3 cellular automata produce the propagating, irregular patterns
characteristic of chaotic dynamical systems. A small change in the initial
conditions of the system leads to ever-widening changes in its eventual
configuration. Thus the computational cost of predicting the effect of a
change in a type 3 system rises with the length of the horizon and with
the accuracy of prediction required. An agent attempting to carry out the
program of rational action in a type 3 environment faces these costs. For
even fairly simple representations of real social and economic interactions,
the costs of implementing a fully rational strategy become unreasonably
large. In such a situation the agent has to accept limited computation as
a bound on her rationality. She may, like the agents in some of the papers
below, deploy limited computational capacity to improve her strategy by
adopting one of a number of boundedly rational strategies, but she cannot
reasonably be supposed to carry out the full computations presupposed by
the hypothesis of full rationality.

Type 4 cellular automata pose even more fundamental paradoxes for
the conception of rational action. Type 4 cellular automata are conjec-
tured to be capable of general computation, that is, of simulating a Turing
machine. Systems of this level of complexity pose difficult problems for a
decisionmaker. A given small change in initial conditions (e.g., represent-
ing a change in the behavior of the rational agent) may lead to a series
of ramifying consequences which simplify over time into the emergence of
a particular state (perhaps a state very much desired or disliked by the
agent). But there is no way for the agent to find out whether or not this
is true except to simulate the whole system in all its complexity. In under-
taking this computation, the agent will run into frustrating barriers to her
carrying out the program of rational choice. There is no way for her to tell
whether the simulation in question will arrive at the desired answer in a
finite time, or indeed any answer in finite time. She may let her computer
run for a long time; at any moment she has no way of knowing whether
it is just a few steps away from resolving the question or is caught in an
enormous loop from which she can never garner any useful information.

One of the main themes of the essays in this volume is how easy it is for
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type 4 environments to appear in relatively simple and standard models of
human social and economic interaction.

1.6 Modeling complex social and economic
interactions

1.6.1 Self-referencing individual agents

In “The metalogic of economic predictions, calculations and propositions”
(Chapter 2), Albin addresses the paradoxes of computability in the context
of rational economic decision making at the most abstract and general level.

The central point is that economic agents are at least as complex as
Turing machines, and the economy (or any subsystem of the economy,
such as a firm or an industry or a market) is a system made up of agents
with this complexity level. An agent (or indeed, an economist) trying
to predict the behavior of such a system in relevant dimensions faces a
problem exactly equivalent to the problem of calculating the value of an
uncomputable function. The difficulty arises because there is no shortcut
available to simulate the behavior of the complex agents who make up
the system. The consequences of a change in initial conditions (say, the
behavior of an agent herself) can be worked out only by predicting the
complex reactions of the other agents in the system, and there is no way
to do this except by a complete simulation of these other complex systems.
In this chapter Albin establishes the necessary logical mapping from a
general social system to the theory of computable functions, and shows
that the undecidability propositions of computation theory translated into
the economic sphere imply the impossibility in general of computing the
economic outcome of a change in initial conditions.

One might hope that this difficulty is essentially a problem of approx-
imation, and that the agent might, with finite computational resources,
reach an acceptable approximation to the true consequences of the change
in initial conditions in finite time. But Albin shows that the same logic
that applies to the computation of the consequences of an action them-
selves applies to the problem of determining how good an approximation
any particular feasible computational method will produce.

For example, economists have often based policy prescriptions on their
evaluation of the social welfare implications of changes in taxes or subsidies.
But in the general case, the computation of the allocation that will result
from a given change is undecidable; the economist could carry out her
analysis only by simulating the economic system in detail, a task she could
not accomplish with finite resources.
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For another example, the manager of a firm considering the conse-
quences of a pricing decision, would in principle have to simulate the full
reactions of all the other agents in the economy to a contemplated price
increase, taking into account the reactions of her customers to the change,
and the rippling effects of their changed actions on other related sectors of
the economy.

It is important to appreciate the fundamental nature of this result, as
well as some of its limitations and qualifications. What is at issue here
is not the quantitative efficiency of computers or information collection
systems. The problems of undecidability in computational theory arise
not from the specific limitations of particular machines, but from the self-
referential character of certain computations, a logical difficulty that raw
computing power cannot overcome. Nor should we regard this result as a
kind of special case: it is in fact the general situation of interacting social
actors. The key characteristic of these social systems is that they are made
up of linked actors each of which has a complexity level at least as great
as that of a Turing machine.

The apparent nihilism of this result also needs to be put into perspec-
tive. Albin’s analysis does not claim that it is always impossible to forecast
the consequences of an action in finite time, only that it is impossible in
general and impossible to find out except by trying. It may be that the
ramifying consequences of a price increase by a particular firm are limited
and can be simulated in finite time by a sufficiently sophisticated com-
puter. But the manager of the firm cannot be sure whether this particular
instance of a price increase will lead to consequences in the computable
category. She has no way of finding out except to start to compute the
consequences; if her program stops after a minute or a year, she will know
the answer, but if the program is still running after a minute or a year, she
has no way of knowing whether it will continue to run forever, or for ten
thousand years, or is just one cycle away from stopping with the answer
she wants. The computational complexity inherent in a social or economic
system does not prevent agents from carrying out the rational decision pro-
gram in some (perhaps in a large number) of contexts, but it does prevent
us from accepting the logical adequacy of the rational program as a general
account of what might happen.

Economists have been aware of this paradox to a certain extent since
the early beginnings of the discipline. It is instructive to see how economics
has attempted to cope with the challenge of complexity. The critical ma-
neuver is to replace the computationally intractable problem of forecast-
ing the behavior of many other complex decisionmakers and their inter-
actions with the computationally simpler problem of calculating a posited
equilibrium of the economic system. Thus the classical British political
economists, Smith, Malthus, and Ricardo, employed the concept of natural
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prices, around which day-to-day market prices of commodities fluctuate
(or gravitate.) The implication is that the natural prices are equilibria sub-
ject to logical analysis and prediction despite the fact that the fluctuating
market prices may be the result of detailed interactions too complex to
predict or explain. Contemporary neoclassical economic theory rests on a
similar epistemological postulate, which claims that the equilibrium of the
economy is computable, even if the disequilibrium paths of the economy
are not. From this epistemological viewpoint the rational economic actor
need not consider the detailed reactions of other actors in all their potential
complexity, since the equilibrium market prices convey enough summary
information to allow her to make a rational plan. This program has had a
certain amount of success, but clearly rests on a leap of faith that somehow
the complexity level of the economy as a whole is lower than that of the
agents who constitute it.

The study of cellular automata can throw some light on this epistemo-
logical puzzle. Complexity in cellular automata arises through the ram-
ifications of linked local interactions. Equilibrium market prices, on the
other hand, summarize information about the global state of the economic
system, since they depend in principle on the states (say excess demand
functions) of all the participants in the market. The traditional economist
effectively assumes that this global information dominates local interac-
tions in influencing the behavior of the agents in the system, and thus
suppresses the complexity latent in the local interactions. There is surely
some truth in this point of view, but it raises other serious and interesting
questions that have hardly been addressed in any rigor by economic the-
ory. The most central of these questions is where the resources come from
to diffuse the information contained in market prices. The weakest aspect
of economic equilibrium theory is its implicit assumption that information
diffusion in the market is costless and instantaneous.

1.6.2 Organizations

The interplay of information and the complexity level of individual agents
in an economy is the theme of “The complexity of social groups and so-
cial systems described by graph structures” (Chapter 7), which reveals the
interplay of whimsical humor and mathematics in Albin’s thought. Here
Albin lays the conceptual foundations for the measurement of the com-
plexity level of an organization, modeled as a directed graph. The nodes of
the graph represent information processing units in an organization (e.g.,
a production unit or an accounting office) and the graph connections the
communication links between them, which may be one- or two-way.

Albin proposes an extension of the concept of algorithmic complexity
to measure the complexity of such directed graphs. He asks us to consider



56 CHAPTER 1. INTRODUCTION

the organization as a rumor mill, devoted entirely to the spreading of bits
(or tidbits) of information. Each node of the organizational graph has a
certain number of input and output channels along which this information
must flow. The requirement that each node keep track of the rumor’s path
(“I heard it from Z who heard it from Y . . . ”) for the largest possible
rumor the graph can generate establishes a measure of the algorithmic
complexity of each node. The sum of these algorithmic complexities over
the whole organization (or graph) is a useful measure of the complexity of
the organization.

Albin is able to link this measure of complexity with observable organi-
zational phenomena, including the effectiveness and the functionality of the
organization. This line of thinking raises sharply the question of whether
real organizations can reasonably be supposed to reach the complexity level
assumed in rational choice theory. If in most situations resources limit the
complexity levels that can be sustained by organizations, they will also
limit the type of prediction and projection the organization can undertake
in making decisions. Under these circumstances the systems modeler may
get further by identifying the particular algorithms of bounded complexity
the organizations are actually using than by positing full rationality.

1.6.3 Industries and economies

Since cellular automata are a mathematically economical representation of
the full range of potential system complexity, it is tempting to use them to
model whole interactive economic systems, indeed, whole economies.

Albin’s “Microeconomic foundations of cyclical irregularities or ‘chaos’ ”
(Chapter 3) is a pioneering effort in this direction. Here Albin seeks to
map Richard Day’s model of chaotic economic growth paths onto a cellular
automaton. Day’s aim was to show that a plausible modification of Robert
Solow’s model of economic growth could lead to a dynamical system with
a chaotic attractor. In Solow’s model the state variable of the economy is
taken to be the capital stock per worker, which follows a dynamical law
representing the productivity of the economy and its saving/investment
behavior. Solow’s original examples were carefully constructed so as to
yield a system with a single equilibrium point attractor. Day showed that
the addition of a plausible assumption lowering investment or output at
high levels of capital per worker (which could be the reflection either of
wealth effects on saving or of external pollution effects on productivity)
gives rise to a dynamical system with a chaotic attractor.

Albin takes this line of thinking one step further. He disaggregates the
Solow/Day analysis by considering the economy as a large number of sepa-
rate firms, each with its own production function and investment decision.
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The aggregation of these firms constitutes the macroeconomy; the aggre-
gation of their investment plans corresponds to the economy-wide levels
of investment in the Solow/Day setup. Albin then regards each of these
microlevel firms as cells in a one-dimensional cellular automaton. In or-
der to simplify the simulations, he restricts the investment levels for each
firm to “high,” “normal,” and “low,” leading to a three-state cellular au-
tomaton. The geometry of the line can be seen as an ordering of firms by
industries, with supplier industries on the left and customer industries on
the right. A cellular automaton rule in this context represents a pattern
of local interaction in which each firm chooses its next period investment
policy conditional on the current investment policies of its suppliers and
customers. Aggregate fluctuations in investment arise from the individ-
ual fluctuations of the firms’ policies. There are clearly a large number
of possible rules, each corresponding to a different pattern of behavioral
interactions on the part of the firms.

Albin uses this model to make two fundamental and compelling points.
First, for a large class of rules, the resulting cellular automata are chaotic.
In these economies there are ceaseless fluctuations of investment and growth
both at the microeconomic level within industry groupings (neighborhoods),
and in the economy as a whole. These chaotic fluctuations pose a serious
challenge to modeling the behavior of any one firm as fully rational, that is,
based on a correct prediction of the behavior of the economy or its neigh-
bors. The problem is that a full projection of the evolution of the economy,
or any piece of it, will require computational resources that grow at the
same rate as the horizon of the projection. Under these circumstances the
implicit assumption in rational choice models that the computational costs
of projecting the consequences of behavior are negligible is unsustainable.

Second, as we have seen, one-dimensional, three-state cellular automata
can produce not just type 3 chaotic patterns, but also type 4 behavior,
which is conjectured to be at the same complexity level as a general-purpose
computer, or an unrestricted formal language. We have no reason to believe
that the interactions of the real economy exclude type 4 behavior (though
by the same token we have no reason to believe that the real economic
interactions lead to type 4 behavior, either). If the economy as a whole or
subsystems are governed by interactions that lead to type 4 behavior, the
barriers to rationality established by the paradoxes of self-reference come
into play as well.

Albin’s modeling of firm interaction as a cellular automaton breaks new
ground in cellular automaton theory as well. Once we interpret the cells
of the automaton as firms and the relation of neighbors as members of the
same industry or suppliers or customers, some of the physically motivated
assumptions of cellular automata theory need to be rethought. In physical
models, as we have seen, it is very natural to assume that neighbor effects
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are symmetrical, but if the geometry of the lattice represents asymmetric
economic relations (such as supplier and customer), this assumption is no
longer strongly compelling. Albin’s simulation of asymmetric rules thus
also extends the cellular automaton model in interesting ways.

The fluctuations that arise from the local interactions of investment
policy in this model raise the question of whether some weak global infor-
mation could stabilize the economy. In “Qualitative effects of monetary
policy in ‘rich’ dynamic systems” (Chapter 4), Albin extends the model of
local firm investment interaction to include a simple representation of mon-
etary policy. The idea is to append to the set of firms a single site which
is a neighbor of all of them. The state of this site represents a systemwide
monetary policy (+1 corresponding to an expansionary policy, 0 to a neu-
tral policy, and −1 to a contractionary policy). A procyclical monetary
policy takes the value +1 when a majority of the firms in the economy are
also in state +1, and therefore investing at a higher than average rate, and
−1 when a majority of firms are in the −1 state and therefore investing
less than average. A countercyclical monetary policy “leans against the
wind” by assuming the value −1 when a majority of the firms are in state
+1, and +1 when a majority are in state −1, thus offsetting the aggregate
tendency of the system.

Albin uses simulation to investigate the impact of these monetary poli-
cies on the evolution of the cellular automata representing the economy of
firms. His analysis is aimed not so much at measuring the effectiveness of
policy in actually stabilizing the aggregate behavior of the economy as in
observing the impact of the policy on the complexity level of the resulting
automaton. He finds that turning on the policy interaction can result, de-
pending on the rules governing the local interactions of the firms, in any
possible change in complexity levels: type 1 point attractor systems may
be transformed by the weak global interaction of the policy variable into
type 2 or 3 or 4 systems, and similarly for the other complexity levels.

In his investigations of the metalogic of economic forecasts, Albin al-
ready raised the possibility that the impact of policy on economic outcomes
and hence on social welfare might be unpredictable. The monetary policy
model complements this point by posing an abstract but not implausible
model of the economy in which policy intervention may itself move the
system from one level of computational complexity to another.

1.6.4 Markets

In “Decentralized, dispersed exchange without an auctioneer” (Chapter 5),
Albin and Foley begin to attack the problem of representing canonical eco-
nomic exchange as a cellular automaton. The basic economic setting is
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chosen to be as simple as possible: 100 agents arrayed in a circle trade en-
dowments of two goods. The agents have identical preferences, represented
by the utility function x1x2, so that the marginal rate of substitution, (or
willingness to pay) of good 2 for good 1 for an agent currently owning
{x1, x2} is just x2/x1. Trade is motivated by differences in initial endow-
ments of the agents. The total endowment of the two goods in the economy
is arranged to be equal (though the agents do not know this), so that the
Walrasian market equilibrium relative price will be unity. The agents’ en-
dowments are diversified subject to the constraint that their wealth at the
Walrasian equilibrium price is the same. Thus agents start with the same
total e1 +e2 of the two goods, but in different proportions. As a result, the
initial offer prices differ, so that agents typically have a motive to make a
mutually advantageous exchange.

The model puts stringent restrictions on the information available to
the agents and their economic strategies. Each agent can communicate and
trade only with her neighbors within a given radius, which is a parameter of
the model. When the model starts, she does not know the total endowment
of the two goods, or the Walrasian equilibrium price, so that she does not
know whether her endowment is typical of the whole economy or skewed in
one direction or another. As a result she does not initially know whether
she would be a net buyer or seller of good 1 in the Walrasian equilibrium.
Each agent must inform herself about her trading possibilities by actually
trying to trade with her neighbors. To do this she must pay a cost to
advertise her willingness to buy or sell good 1. This advertising puts her in
contact with those neighbors who advertise on the other side of the market
(buyers with sellers and vice-versa). Each such pair meets and reveals its
current willingness to pay. If the buyer’s willingness to pay is higher than
the sellers, they exchange a small amount of the goods at a price that
is the geometrical average of the two marginal rates of substitution, thus
accomplishing a mutually advantageous exchange. Each agent remembers
the most recent willingness to pay for each of her neighbors with whom she
has actually bargained, and uses this to construct a simple model of the
distribution of offer prices in her neighborhood, which she uses to decide
whether it is worth her while to incur the cost of further advertising.

From an economic point of view this is a model of bounded rationality.
In principle, each exchange an agent makes will influence the whole future
course of exchanges in the whole market. From a game-theoretic point of
view, for example, we could try to work out the best strategy (in terms of
advertising and revelation of prices) for an agent, supposing that all the
other agents continued to follow the rules set out in their programs. It is
unlikely that the program we have proposed would be the best response to
itself, though it is not clear how one would even establish this proposition,
since the consequences of a given change in the behavior of one agent involve
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a complicated ramifying sequence of events which depend critically on facts,
such as the exact or even the average endowments of the other agents,
which the agent does not know. One Nash equilibrium of this economy
is easy to spot, but not very interesting, in which all the agents refuse to
advertise or trade at all. (If an agent knows that none of her neighbors will
advertise, there is no point in her incurring the costs of doing so.) Despite
the fact that the agents are not trying to be anything like fully rational,
their behavior is a reasonable way to pursue the end of trading to mutual
advantage. Simulations of the model reveal that it works rather well to
achieve an approximation to a Pareto-efficient allocation of the goods (in
which no further mutually advantageous trades exist) at a relatively low
advertising cost. The main difficulty is a halting problem: occasionally
two agents in a neighborhood who do not know each other’s willingness to
pay get caught in an endless loop, in which they both alternate between
advertising as buyers and sellers in the hope of advantageous trade with
each other.

A further striking feature of the simulations is that while the market,
as it is supposed to, efficiently redistributes the initial endowments around
the circle and evens out the relative proportions in which agents hold the
two goods, it also systematically introduces inequalities of wealth into the
economy. This is a manifestation of a point long acknowledged but lit-
tle investigated by economic theory: when agents trade at disequilibrium
prices they effectively redistribute wealth at the same time that they nar-
row the differences in willingness to pay. In this particular model it is not
hard to see that agents who start with endowment proportions far different
from 1:1, and therefore with very high or very low willingness to pay good
2 for good 1, will make most of their transactions at unfavorable prices,
effectively transferring their wealth to the lucky agents whose endowment
proportions are close to the average.

This model is a cellular automaton, but the states each cell (or agent)
can occupy are more general than those typically studied in the cellular
automaton literature. The full state of an agent at any round of trading
includes her current holdings of the two goods (effectively a continuous
state variable), and the record she keeps of the willingness to pay of those
neighbors she has met in attempts to trade. The neighborhood structure,
and locality of interactions, on the other hand, keep strictly to the cellular
automaton format.

The emergence of a close-to-Pareto-efficient allocation in this model is
an example of the self-organization of a complex system based solely on
local interactions undertaken with no information about the global state.
Because no agent can ever make a trade that leaves her worse off, the
opportunities for mutually advantageous exchange are gradually exploited
in the evolution of the system. The market effectively computes a Pareto-
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efficient allocation (though not the one that is generated by Walrasian
tâtonnement, in which each agent makes all her transactions at the same,
market-clearing, price) and a corresponding almost-uniform willingness to
pay. The simultaneous emergence of a definite wealth distribution as the
consequence of market transactions at nonequilibrium prices is a further
example of such self-organization.

1.6.5 The local interaction multiperson
Prisoners’ Dilemma

In “Approximations of cooperative equilibria in multiperson Prisoners’
Dilemma played by cellular automata” (Chapter 6), Albin proposes an el-
egant generalization of the two-person repeated Prisoners’ Dilemma game
that social scientists have come to take as the paradigmatic representation
of the paradoxes of rationality and social interaction. The society is repre-
sented as a cellular automaton in two dimensions with k = 2 states, and the
“Moore” neighborhood, consisting of the eight adjacent sites in the lattice.
Each cell represents an agent. The kernel of the model is a one-shot game
in which each agent chooses one of two strategies, cooperation or defection.
The payoff to each agent depends on her strategy and the total number of
cooperators in her neighborhood. The payoffs, as in the two-person Pris-
oners’ Dilemma, are structured so that defection dominates cooperation:
no matter what the neighbors do, the payoff is higher to a defector than
to a cooperator. But also, as in the two-person Prisoners’ Dilemma, the
payoff to a neighborhood where everyone cooperates is higher than to a
neighborhood where everyone defects. From a social point of view every-
one will be better off if everyone cooperates (the Pareto-efficient solution),
but everyone has an incentive to increase her individual payoff by defecting.

Many interpretations could be given to this model. The quality of life
in city neighborhoods, for example, depends to a considerable degree on
the willingness of residents to incur real costs to maintain their property.
There are considerable joint benefits to be had from uniformly high levels of
property maintenance, and considerable joint costs imposed if everyone lets
their property go unmaintained. Local industrial pollution poses a similar
scenario, in which all the producers may enjoy lower costs if they all control
their pollution, but any individual producer is tempted to pollute.

Although this model is a minimal and simple extension of the Prisoners’
Dilemma, and, given the level of abstraction, plausibly represents a wide
range of important social interactions, its structure poses a severe challenge
to standard noncooperative game theory. The relevant strategy set would
allow each agent to condition her strategy in any one play of the game on
the whole past history of her and the other participants’ actions. But she
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is linked indirectly to all of the agents in the game by the neighborhood
structure. Is it plausible to assume that the agent can even observe the
actions of agents far away from her geographically? If she cannot, must she
undertake to infer their behavior from the behavior of her neighbors? Even
if we assume the agent can observe the whole history of the global game, the
problem of calculating best responses is formidable. Of course, some game
theoretic results are fairly immediate. Uniform defection, for example, is
a Nash equilibrium, but not a plausible or interesting one. A “trigger”
strategy that cooperates until some agent anywhere in the game defects,
and then shifts to uniform defection might sustain uniform cooperation
and be a best response, but most people would not view it as particularly
practical in the contexts where some level of defection is almost certain,
but it still pays collectively to maintain high average levels of cooperation.

Albin approaches these difficulties by restricting attention to a subset
of possible strategies, those conditioned simply on the last action of the
immediate neighbors. He adopts, in other words, a bounded rationality
perspective on the grounds that computational complexity problems that
arise in this limited setting cannot be presumed to get any better when the
strategy space is expanded and the model thereby made even more com-
plicated. This limitation also has the appealing feature of creating a strict
equivalence between strategies and the rules governing the evolution of a
two-dimensional cellular automaton with the Moore neighborhood. The
current state of each cell is the decision of the agent to cooperate or defect,
and the next state, given the strategy of the agent, will depend only on her
current strategy and the current strategies of her neighbors. Thus holding
the strategies of agents constant, the game evolves as a cellular automaton,
about which we have considerable knowledge from earlier research.

In the context of this model Albin raises a subtle but extremely inter-
esting question. If there were a Nash equilibrium in this subset of strategies
different from universal defection, in other words, a Nash equilibrium that
could sustain social cooperation, what would the complexity type of the
resulting cellular automaton have to be? Consider a society in which all the
agents have adopted a uniform strategy that leads to a cellular automaton
evolution of types 1, 2, or 3. Suppose that a particular agent now considers
changing her strategy. To work out the exact consequences of such a change
assuming that the other agents continue with their existing strategies is in
general computationally infeasible. Albin supposes that the agent, in the
spirit, if not the letter, of Nash equilibrium reasoning, assumes that the
complexity type of the society will not change when she changes her strat-
egy. If she confronts a predictable type 1 or type 2 cellular automaton, she
will do better shifting to uniform defection. Even if she confronts a type
3 situation, in which the behavior of her neighbors appears to be chaotic,
it is plausible to suppose that she will view her environment as stochastic,
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and realize that uniform defection is also her dominating policy against
any randomized strategy of her neighbors. Thus it is implausible to imag-
ine that even boundedly rational agents would maintain a strategy that
could sustain cooperation if this strategy resulted in a social environment
of complexity level lower than type 4.

An agent who lives in a society corresponding to type 4 complexity, how-
ever, might not choose to shift to uniform defection. She might perceive
her neighbors as at least potentially reacting thoughtfully and predictably
to defection, and punishing it selectively in such a way that uniform defec-
tion would lead to a lower average payoff. Despite the difficulty of proving
the stability of a type 4 strategy, Albin conjectures that strategies which
implement the game of “Life” may have this property. “Life” is known
to support type 4 complexity, and is known to be capable of emulating a
generalized Turing machine. In support of his conjecture, Albin presents
simulations showing the ability of “Life” to generate systematic and selec-
tive punishment of uniform defectors.

Whether or not “Life” turns out to be a stable equilibrium strategy for
the local interaction multiperson Prisoners’ Dilemma, Albin’s investigation
underlines the philosophical theme that runs through his work. We live
in a social environment created by human beings, who are, considered as
systems, highly complex. Albin does not believe that there is any way
to reduce this essential complexity to produce a simple theory of social
interaction that is also robust. Despite occasional apparent successes of
economic theory in using the assumption of competition to simplify the
rational choice problem of individual agents, Albin argues that there re-
mains an irreducible kernel of latent complexity in even the most stylized
and abstract models of society, such as the local interaction multiperson
Prisoners’ Dilemma. This is probably not news to human beings who are
living their way through social interactions, but it poses some fundamental
challenges to social and economic theory.

In this perspective, the questions Albin poses about the complexity
of social institutions, despite the difficulty or perhaps the impossibility of
answering them with currently available conceptual tools, involve funda-
mental issues of method and metatheory. They suggest that the kind of
knowledge we can hope to have about complex social systems is different
in kind from the kind of knowledge we have gained about physical systems.
The program of reducing complex physical interactions to computable mod-
els, which has had such striking success in the physical sciences, has much
narrower conceptual limits in the context of social interactions, precisely
because the constituent subsystems of societies, human beings, are them-
selves emergent, complex adaptive systems.

These implications of Albin’s work need not lead us to nihilism about
the possibility of some important and powerful kinds of knowledge of social
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interactions. The ability to recognize, name, and classify the complexity
levels of particular social interactions, as Albin argues, is valuable in itself.
Furthermore, a rigorous ability to recognize the limits of what is knowable,
which is what the complexity analysis of social systems offers, is the starting
point for scientific advance.

1.7 Complexity, rationality, and social
interaction

Peter Albin’s investigations establish a strong presumption that the bounds
to rationality constituted by computation costs in chaotic environments
and the barriers to rationality raised by the self-referential paradoxes of
complex environments are inherent in our conception of social systems as
interactions of rational individuals. The systematic analysis of complexity
reveals an internal conceptual contradiction in the program that seeks to
reduce social phenomena to the interactions of self-interested individuals.
This challenge to the dogmas of rationality takes a new and unexpected
form. The rational choice/social interaction paradigm has often been crit-
icized on various grounds: that human beings are in fact not motivated
by individual self-interest; that individual personality is a social construct
which cannot be posited independent of the social context in which it de-
velops; that social interaction leads to the emergence of specifically social
interests and forms that cannot be reduced to individual actions. These
external critiques question the premises, relevance, and explanatory power
of the rational choice paradigm.

The issues raised by the consideration of computational costs and com-
plexity, on the other hand, are fundamentally internal to the rational choice
paradigm. The complexity analysis accepts the premises of rationality, and
pushes them rigorously to their limits. This process first of all revealed what
might appear to be a gap or oversight in the rational choice theory. In as-
suming that agents could map their actions onto consequences, rationality
implicitly abstracts from computation costs. This abstraction, like many
others, would do no harm if it were appropriate, in the sense that ignoring
computation costs made little practical difference to the predictions and
explanations of the theory. In many familiar human situations, after all,
computation costs seem negligible. We are automatically provided with
a powerful general-purpose pattern recognition and computation device in
the form of our brains, which typically have plenty of spare capacity to
deal with day-to-day decision making, like finding the nut-bearing trees or
the boar hiding in the forest, with enough left over to write epic poetry,
speculate on the nature of the universe, and devise elaborate insults for
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each other. It is easy to see how theorists slipped into the universal pre-
sumption that the human brain could solve the problems predicting the
consequences of actions. Rational choice theory inherits from theology a
preoccupation with issues of will, morality, and efficacy: what is the right
decision in a given context.

One response to the criticisms of rationality based on complexity and
computation costs might be to see them as requiring simply an extension
of the field of rational choice. The rational decisionmaker must decide not
just what action to take, but how much scarce computational resources to
devote to working out the consequences of actions, presumably balancing
the costs and benefits of future computation at the margin. As we have
argued, this easy fix is untenable, because it leads to an infinite regress: the
problem of estimating the costs and benefits of computation at the margin
is itself just as complex as the original problem, and just as intractable.

A second response would be to argue that there are at least some con-
texts where the complexity levels of the environment are low, so that in-
dividual agents can plausibly be assumed to bear the costs of complete
computation. For example, some economists believe that competitive eco-
nomic systems are well represented by Walrasian equilibrium systems that
have a relatively simple dynamic behavior, for example, unique point at-
tractors. One of the major thrusts of Albin’s work is to show how quickly
even very simple models of local interaction in fact develop highly complex
dynamic behavior.

1.7.1 How complex are social systems?

This line of thinking raises an important research issue, which is to find
methods to measure the actual complexity of real social systems. Albin’s
proposed complexity measures for social organizations are a first step in
this direction.

As Albin argues, human social systems are composed of agents, human
beings, each of whom has a complexity level at least as high as a general
purpose computer, a Turing machine. As a result it is impossible to rule
out a priori, similarly complex behavior on the part of the social system
as a whole. Social theory and economic theory in particular, however,
have developed without explicitly addressing the level of complexity of the
social system. Some of the most apparently successful social theories, such
as economic equilibrium theory, picture the social environment as having
limited complexity.

Two possibilities suggest themselves to reconcile these points of view.
First, something may mitigate the potential complexity of social interac-
tion, leading to a social system that has lower complexity than its com-
ponent subsystems. In economic equilibrium theory we see an embryonic
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argument along these lines, resting on the effects of competition and weak
global interactions to suppress potential complexity in the behavior of the
economy as a whole. We need to understand these claims better, and to
analyze them carefully with the tools of complexity theory. Albin’s model
of monetary policy, in which the central bank is represented as a neighbor
of all the firms in the economy, shows one way to approach this issue. The
results of his simulations are ambiguous, since he finds that the addition of
the weak global interaction represented by the central bank can, depend-
ing on the complexity level of the economy without intervention, lead to
any possible shift of complexity level, from type 4 to types 2 and 1, to be
sure, but also in the other direction. Thus it seems unlikely that there is
a general principle that any kind of weak global interaction will simplify
complex interactions.

One difficulty in pursuing these investigations in economic theory is the
absence in received economic equilibrium theory of a generally accepted
account of how market prices emerge from the decentralized interactions
of competitive economic agents. Economic theory has relied on parables
like Walras’s auctioneer, a centralized agent who is imagined to “cry out”
trial price systems in order to discover the equilibrium, to cover over this
lacuna.

A second possibility is that we as human beings have difficulty in per-
ceiving the complexity level of real social and economic interactions. The
world of social interactions might seem less complex than it is, or indeed
than we ourselves are. Albin’s reflections on the metalogic of economic
prediction suggests why this might be so. The only way to grasp a system
of type 4 complexity is to simulate it on another system of equal com-
plexity. If the interactions of a large number of complex subsystems like
human beings leads to a system of even higher complexity than ourselves,
our own complexity level may not be high enough to represent the interact-
ing system as a whole. Just as two-dimensional creatures would experience
a third dimension only as an abstract conception, we may be capable of
direct contact with the complexity of our own social existence only through
abstractions like complexity theory itself.

In this kind of situation, where a subsystem of given complexity, a
human being, confronts a system of higher complexity, the society, how
will things work out? The individual agent will have to find some way of
representing the social system with a less complex surrogate. There may,
in fact, be many such surrogates, many forms of imperfect representation
of the complex social system.

Social theory based on the rational choice paradigm seeks to explain
agents’ representations of their social world as more or less accurate reflec-
tions of its true nature. Agents in this perspective believe the society to
work in a certain way because it actually does work that way. The rational
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economic actor believes that market prices reach an equilibrium because
they actually do, that democratic political regimes somehow make policy
choices by aggregating the preferences of the citizens, and so forth. But
if complexity intervenes to prevent agents in principle from representing
the system to themselves faithfully, there is another level of social expla-
nation that must be developed. We need an explicit theory of the ways in
which agents achieve simplified representations of complex social interac-
tions. This is the program of which studies of bounded rationality form a
part; Albin’s work contributes to its first tentative stages of development.

1.7.2 How smart do agents need to be?

To carry out the rational choice program, agents have to be smart enough
to figure out the consequences of their actions in the relevant context. As
Albin’s work shows, in a wide variety of plausible social and economic con-
texts this requirement is far too demanding to be plausible. The complexity
of the social environment reflects the complexity level of the agents who
interact in it, creating an unresolvable self-referential paradox.

There is, however, reason to think that the rational choice program de-
mands far too much of agents. The rational choice program commits an
agent to expending arbitrarily large computational resources to achieve a
better outcome, no matter how small the potential gain may be. Ordi-
nary experience suggests that human beings, at least, sensibly reject this
counsel of perfection. In many situations algorithms with relatively low
computation cost achieve quite good, if not optimal results. An example
is the trading algorithm in “Decentralized, dispersed exchange without an
auctioneer” (Chapter 5), which requires quite limited computational re-
sources, does not commit agents to pursuing elaborate chains of inferential
reasoning, but achieves approximately efficient allocation at a moderate
resource cost.

Furthermore, in many human social contexts optimization of an objec-
tive function may be less important than avoidance of disaster. There may
be computationally simple strategies that lead to high rates of survival even
in complex environments. In human contexts where imitation and learn-
ing play a major role in diffusing strategies, such low-cost, high-survival
probability behavior may have a considerable evolutionary advantage.

Strict rationality, on the other hand, may be evolutionarily disadvanta-
geous in some contexts. Certainly rational strategies that commit an agent
to incurring extremely high computation costs impose a resource overhead
burden that may offset the small gains in performance they secure. One
way out of the paradoxes of self-reference created by the presupposition of
rational behavior is to generalize Simon’s concept of bounded rationality to
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consider behavioral strategies primarily in terms of their survival and evo-
lutionary effectiveness in relation to their computational cost, rather than
in terms of their ability to approximate abstract standards of optimality.

The methodological criticism most often leveled at the program of
bounded rationality is that of inherent indeterminism. The set of bound-
edly rational behaviors is huge, and there seems to be no systematic way
to explore it, or to discover those parts of it most relevant to the explana-
tion and prediction of particular social interactions. Rational behavior, on
the other hand, appears to be generically unique, since there must be one
best way to solve any given problem. Albin’s work strongly challenges this
methodological presumption by suggesting that in many relevant contexts
the set of strictly rational behaviors is either empty or effectively beyond
our knowledge because of the paradoxes of self-reference.

1.7.2.1 We are what we compute

In positive terms, the contemplation of the paradoxes of self-reference and
unbounded computation cost suggests a reconceptualization of human be-
ings as algorithms rather than preferences. Axel Leijonhufvud (1993) pro-
poses to substitute algorithmic man [sic] as the protagonist of twenty-first
century social theory in place of the eighteenth century’s homo economicus.

What is characteristic of human beings as actors, in this perspective,
is the computational resources and methods they deploy in decision mak-
ing, rather than their pursuit of particular goals by rational means. The
regularities to be discovered by social science, then, are reflections of these
computational capacities rather than reflections of the rational action of
the individuals. The First Welfare Theorem of economic theory, for ex-
ample, shows that Walras’s concept of market equilibrium logically entails
Pareto’s concept of efficient allocation (a situation in which it is impossible
to improve any agent’s state without harming some other agent). This is
a paradigmatic example of a global social property derived from the pre-
sumed rationality of individual agents. From a computational point of view
the analogous insights are those of Albin’s local interaction multiperson
Prisoners’ Dilemma, in which the complexity level of the resulting social
interaction reflects the algorithmic constitution of the individual agents.

1.8 Toward a robust theory of action
and society

From a computational cost point of view, the rational choice paradigm’s
most serious weakness appears to be the lack of robustness of its predic-
tions. Small changes in the environment or in the informational situation of
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the rational actor tend to lead to large changes in rational actions, or rad-
ical alterations of basic patterns of behavior. In some situations even the
formulation of a rational strategy becomes impossibly difficult in response
to what appear to be relatively small changes in the posited environment.

Take, for example, the fundamental economic problem of an economic
agent confronting a market. Traditional economic theory assumes that a
competitive market appears to the agent as a set of established market
prices at which she can exchange arbitrarily large amounts of commodities.
The market prices establish a well-defined budget set of alternative com-
binations of commodities the agent can afford, and rational choice theory
recommends that she choose that combination of commodities she most
prefers among those in her budget set. Consider now the slightly altered
representation of the market in Chapter 5, “Decentralized, dispersed ex-
change without an auctioneer.” Agents still have well-defined preferences
over commodity bundles, and still face the problem of organizing social
exchanges when there are strong motives to trade due to differences in
endowments. The agents, however, lack the convenience of a central infor-
mation source, like Walras’s auctioneer, to communicate uniform market
prices to the market as a whole. The individual agents have to elicit this
information by advertising and probing the willingness to trade in their
local neighborhood.

One might suppose that this relatively small change in informational
assumptions should not lead to drastic changes in the theory of rational
agent behavior in the market. A robust theory would adapt smoothly to
the reduction of centralized information and the rise in costs of discover-
ing real trading opportunities. But it turns out to be very difficult even
to conceptualize the fully rational behavior of an agent in the decentral-
ized, dispersed market setting. Her final consumption plan is the result of
a large number of individual trades strung out over time, each one made
with slightly different information. Her own actions in advertising and an-
nouncing willingness to pay have potentially global consequences which it
is impossible for her to calculate accurately. As a result it is very difficult to
map her well-defined preferences for the commodities into a ranking of her
available trading strategies. What appears to be a clear-cut, unambiguous
application of the rational choice principle to the problem of market de-
mand in the Walrasian setting dissolves into a maze of competing modeling
strategies when we eliminate the central information.

The welfare economist or policy maker confronting this kind of decen-
tralized market must consider possible interventions in the informational
infrastructure defining the market interactions in addition to the classical
economic tools of taxes and price control. The introduction of institu-
tions that alter the flow of information in the market, and the provision of
new technologies to implement this flow, can have powerful impacts on the
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equity and efficiency of the final outcome.
A similar methodological problem arises in the repeated Prisoners’ Di-

lemma. The two person one-shot Prisoners’ Dilemma seems to pose no
serious difficulty to the rational choice paradigm, since there is a unique
Nash equilibrium in which both players choose dominant strategies. Even
the elementary generalization of this model to the case of repeated plays
poses serious problems for the rational choice approach, though it is possible
to make some headway in defining Nash equilibria. When we take the
further step, which appears modest and natural in commonsense terms,
to Albin’s local interaction multiperson Prisoners’ Dilemma played on the
lattice, however, the fundamental tasks suggested by rational choice theory,
such as calculating the best response of an agent when the strategies of her
neighbors are given, become computationally infeasible.

Historically rational choice theory developed in tandem with a partic-
ular method of analyzing economic behavior on markets. The tendency to
represent markets as given systems of price that establish computationally
trivial budget sets strongly reinforced the tendency to argue that human
beings will act so as to maximize their utility given their constraints. In the
abstract market setting the rational choice prescription is both feasible and
plausible, and the combination of the two abstractions reinforce each other
powerfully. In the other social sciences, including politics, sociology, and
anthropology, rational choice methods have played a much less dominant
role because the paradigmatic institutional settings—for example, elections
and diplomatic negotiations, the establishment of social networks, and the
evolution of human cultures—are inherently more complex. The rational
choice paradigm can be imported into the other social sciences only at the
cost of drastically simplifying the abstract representation of their character-
istic institutional problems. Albin’s application of complexity methods to
economic scenarios has the important consequence of revealing the fragile
interdependence of method and institutional abstraction on which tradi-
tional economic theory is based.

We are far from the point where we can propose anything like a com-
plete computationally robust alternative to the rational choice program
for economics or other social sciences. But Albin’s reflections on the in-
terplay of individual action and aggregate outcomes in complex economic
interactions offers us some vital clues to the nature of such alternatives.

A more robust conception of human action in complex social contexts
must explicitly address the computational resources available to and de-
ployed by the agents. Recent advances in abstract modeling of language
and computation provide the tools for at least a qualitative categorization
of models in terms of their complexity levels. We ought to be able to make
some progress in understanding social interactions where the complexity
level of individual strategies is limited, say to the equivalent of regular lan-
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guages or pocket calculators. These investigations will naturally lead to a
systematic exploration of models with higher assumed complexity levels.

A robust alternative to the rational choice program must also be more
explicitly context-dependent. The rational choice paradigm itself, of course,
is already context-dependent, in that the conception of self-interest that
operates changes from context to context: a single human is imagined to
maximize quite different functions in the roles of corporate executive and
mother, for example. But the rational choice program posits the pattern
of explanation of action in terms of maximization subject to constraints
to be universal. It seems likely, however, that in reality humans deploy
very different modes of action in different contexts, and that these modes
of behavior differ in their computational complexity. There is good reason
to believe that the stock market, for example, is in effect a system of type
4 complexity, capable of universal computation (though it is not at all
obvious what function it might be working out). But many participants in
the market appear to model it at lower levels of complexity: as a periodic
type 2 system in some cases, or as a chaotic type 3 system subject to
statistical regularities in others.

We can also see the centrality of concepts of imitation, learning, adap-
tation, innovation and evolution to robust approaches to explaining hu-
man action. The rational choice program is rooted in seventeenth- and
eighteenth-century conceptions of natural law, property rights, and indi-
vidual autonomy. The notion of individual sovereignty is deeply bound up
in its structure with the postulate that preferences are given, exogenous
parameters in social theory. During the last half of the nineteenth cen-
tury, and the first half of the twentieth century, while other life and human
sciences were revolutionized to incorporate evolutionary ideas, economics
turned increasingly to an axiomatization of rationality that is indifferent
if not hostile to evolutionary ideas. But one promising path to discovering
a knowable orderliness in human behavior that is context-dependent and
computationally bounded is to ask whether and when the social environ-
ment favors some behaviors over others and why. Evolutionary models, in
which the distribution of strategies in a population change in response to
their success, and in which mutation and innovation lead to new behaviors,
are a logical way to attack these issues.

Peter Albin’s foray into the intersection of economics and complexity
theory reveals puzzling and perhaps even insurmountable problems for the
rational choice paradigm. But the rational choice paradigm is not the only
theoretical path to a scientific understanding of human behavior. Albin’s
work also provides crucial hints to the construction of fertile alternative
explanatory methods.

The role and significance of complexity theory in the physical and bi-
ological sciences are at the moment highly controversial subjects. Critics
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question whether the methods and insights founded on simple and highly
abstract models like cellular automata can be applied successfully to real-
world systems and problems. The same questions and doubts arise legiti-
mately in considering the application of complexity methods to social and
economic interactions. There is a long step between exhibiting the possi-
bility of interesting regularities or categorization of behaviors in abstract
models and the explanation or prediction of real phenomena. But the es-
says of Peter Albin in this book serve economic and social theory discourse
unambiguously at another level as well. In clarifying the role of implicit
computational complexity assumptions in received social theory, this work
poses fundamental and inescapable methodological questions to theories
based on rational choice axioms.




