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ABSTRACT 

In the absence of contrary information, it would seem prudent for competitors to 
attribute to their opposition the same level of rationality they attribute to themselves. 
In the context of a simple but interesting Cs (command, control, and communication) 
model presented in Ref. 131, a method is proposed for incorporating symmetrical 
rationality without resorting to the general multistage game framework which has 
proved difficult to apply in practice. A technique is suggested for the approximate 
solution of the resulting C3 model which does not require integration operations, and 
which appears to be especially well suited for C3 problems with finite admissible 
control sets. 

1. INTRODUCTION 

The mathematical C3 (command, control, and communication) model 
developed in Ref. [3] incorporates many of the esssential elements inherent 
in tactical campaigns, i.e., strategic nonstationary interaction between two 
opposing forces, each subject to imperfect information. One important use 
envisioned for the model is the cost evaluation of alternate information 
infrastructures for one of the forces (blue), given a fixed known mode of 
opposition from the second force (red). 

A linear-quadratic version of the C3 model with unconstrained controls is 
solved in Ref. [l] by applying the Kagiwada-Kalaba solution technique for 

*This material is based upon work supported by the National Science Foundation under Grant 
No. ENG77-28432. The author is grateful to R. E. Kalaba for helpful comments. 
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integral equations [4] to the first-order minimization conditions, viewed as a 
system of Fredhohn integral equations. One interpretation suggested for the 
linear-quadratic C3 model is as a perturbation model, for which the controls 
derived under various comparative static changes in information infrastruc- 
ture are to be viewed as deviations from previously assigned values. 

In attempting to apply the results developed in Refs. [l] and [3] to general 
C3 problems, several potential difficulties arise. If controls are constrained, 
or if the C3 problem cannot be modeled in a linear-quadratic framework, the 
Kagiwada-Kalaba solution technique is no longer directly applicable. A 
second difficulty, of a more conceptual nature, is the asymmetrical modeling 
of the blue and red opposing forces in terms of their rational decision-making 
capabilities. Specifically, in Refs. [l] and [3] the red-force activity is modeled 
as a nonstationary unconditioned probability distribution, whereas the blue- 
force optimal-control law is derived as a nonstationary function of past state 
and control realizations. 

For short-term decision processes, asymmetrical rationality may be a 
justifiable approximation. However, for long-term decision processes, espe- 
cially those for which it is desired to evaluate alternative control objectives 
and information infrastructures, the presumption of asymmetrical rationality 
can result in significantly inaccurate scenario projections. For example, after 
observing sufficiently many state and control realizations, the red force could 
presumably form an accurate estimate of the blue control objective and 
information infrastructure and vary its own actions accordingly. Thus a shift 
in objective or infrastructure by the blue force could eventually lead, in 
reality, to a radically different red response than envisioned by blue in its 
original scenario projections. Even if the blue control objective and informa- 
tion infrastructure were fixed and known, the red force could gain an 
unanticipated informational advantage by taking into account, however 
crudely, the rational decision-making processes of the blue force as reflected 
in past state and control realizations. 

In the absence of contrary information, it thus seems a prudent rule of 
thumb for competitors to attribute to their opposition the same level of 
rationality they attribute to themselves. Ideally, the analytical planning 
framework should permit each opposing force to optimally exploit all the 
information to which it has access. 

In the following two sections a method is proposed for incorporating 
symmetrical rationality in general C3 models without resorting to the multi- 
stage differential game framework, which has proved difficult to apply in 
actual decision contexts. In addition, an approximate solution technique is 
suggested for the resulting C? model which does not require integration 
operations, and which appears to be especially well suited for C? problems 
with finite admissible control sets. Although the suggested solution technique 
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is not competitive with the Kagiwada-Kalaba solution technique for linear- 
quadratic C3 models with unconstrained controls, it does appear to be 
applicable to a wide range of C3 problems for which no practical solution 
techniques currently exist. 

2. A SIMPLE C3 MODEL WITH SYMMETRICAL RATIONALITY 

As in Ref. [3], Sec. II, consider an amphibious N-day campaign in which a 
blue naval force lands ground troops and then provides close air support. At 
the beginning of each day n, the blue air and ground commanders must 
decide on the air and ground force strengths to be used that day.’ The 
objective of the blue commanders is to reach a ground position so at 
minimum total cost within the specified time limit N. Simultaneously, red 
naval commanders daily deploy air support and ground troops in an attempt 
to prevent the inland penetration. 

Suppose the blue air and ground commanders have no intelligence 
concerning red air and ground activity for each coming day. In the discus- 
sion of this case in Ref. [3], p. 8, th e n&period red air and ground activity is 
assumed to be a random vector a,,-( p,,,9,,) with density function w( 0) 
known to both blue commanders. The n&period blue air and ground 
activity v, = ((yn, &) is then optimally derived as a function of the current 
time n and the current front-line position s,. The red force is thus modeled 
as less rational than the blue force in the sense that, in contrast to blue, red 
makes no use of the information (n, s,,) to which it has access on day n. 

Symmetrical rationality would require that blue commanders attribute to 
red commanders the same level of rationality they attribute to themselves. If 
blue derives an optimal-control law functionally dependent on time and 
position, then, in the absence of contrary information, red activity should 
also be viewed by blue as the result of an optimal-control law functionally 
dependent on time and position. Other known factors, e.g., current weather, 
might be presumed to affect red activity; but then the question arises: why is 
blue activity not also derived as a function of these additional factors? If 
certain known factors affect red activity, then a priori they must also be 
important for blue. 

On the other hand, it is entirely possible that additional factors unknown 
to blue are affecting red activity-e.g., red objectives, or red modeling of 
blue activity. For this reason, blue cannot in general derive the red optimal- 
control law. However, blue could presumably account for these unlurown 
factors by modeling n&period red activity as a random drawing from a 

‘The time-to-go variable K used in Ref. [3] has been replaced by the time-past variable 
n=N-K. 
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probability distribution 

conditioned on the current time n and the current front-line position s,,. If 
blue knew the red control law exactly, then (1) would be a degenerate 
distribution. 

The blue specification (1) for red activity is consistent with symmetrical 
rationality for red, in the following sense. If red likewise models blue activity 
as a random drawing from a probability distribution conditioned on time and 
position, then its optimal-control law is still a function only of time and 
position. No new variables are introduced. 

The modeling of red activity by means of a conditional probability 
distribution (1) resolves in principle the problem of second guessing. How 
might (1) be assessed in practice? One possibility would be by means of 
successive min-min approximation. Consider first the case in which blue 
knows red’s objective. For the initial iteration, blue models red activity via 
an unconditioned prior distribution, and derives the resulting blue optimal- 
control law. Substituting this blue control law into the red optimization 
problem, blue then derives an optimal-control law for red. For the second 
iteration, blue uses the red optimal-control law resulting from the first 
iteration to rederive a blue optimal-control law, which in turn is then used to 
rederive an optimal-control law for red; and similarly for successive itera- 
tions. Assuming this process converges, the limiting blue and red control laws 
represent a .Nash equilibrium in control-law space. If blue does not know 
red’s objective, but has a discrete prior distribution for this objective, then 
separate consideration of possible red objectives at each iteration results in a 
probability distribution over possible red control laws, i.e., a conditional 
distribution having the form (1). 

The modifications needed in order to symmetrically model red activity by 
the conditional distribution (1) in place of an unconditioned density, as in 
Refs. [l] and [3], will now be outlined in the context of a C3 model which 
generalizes the C3 model presented in Ref. [3]. 

Suppose the progression of the blue ground troops is determined in 
accordance with the system of equations 

s1= s (initial landing position), Pa) 

%+l=fn(~nr%JnL l<n<iV, (2b) 

where the n th-period state (front-line position) s,, is an element of a set 
S c R 4, the n th-period blue control v,, is constrained to lie in an admissible 
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control set V(n, 8,) C V c R ', the n th-period blue observation w,, on red 
activity is an element of a set G c R”, and fn : 52 X V X S-S is a continuous2 
state function. Letting CT denote the u-algebra generated by the open sets of 
!2, assume the blue force believes that red activity w, is governed by a 
transition probability3 p” (. 1 s,) : 5+ R conditioned on the current time n and 
the current state s,. In addition, assume that the loss associated by the blue 
force with each possible observation, control, and state configuration 
(w,,, v,, s,,) for period n is measured by a continuous cost function C, : St X V 
x S+R. 

An admissible feedback control law for the problem at hand is any vector 

v=(v1(‘),.4~(*)) (3) 

of measurable functions v, : S-+ V satisfying v,(s) E V( n, s) for each s E S. The 
symbol C will be used to denote the set of all admissible feedback control 
laws v. The objective assumed for the blue force is the minimization of 
expected total cost 

N 

E z C,,(q,,v,(s,,),s,,) v,S 
n=l I 1 

via selection of a feedback control law v E C .4 

sit is assumed throughout the paper that S, V, and Q have the relative topology with respect to 
Euclidean g-space, r-space, and m-space, respectively, and that products of S, V, and Cl have the 
corresponding product topology. Each of the spaces S, V, and fZ will also be regarded as a 
measurable space, with u-algebra generated by its open sets. 
3More precisely, it is assumed that p,,(-Is): 9-R is a probability measure for each sE S, and 
pn(Al .) : S+R is a measurable function for each A E 5. 
eI’he expectation operator E [. Iv, s] is more precisely defined as follows. Let !J?’ denote the set of 
all observation sequences LP= (wr, . . , wN) satisfying o, E Q, 1 <n <N, and let ‘?TM denote the 
product u-algebra generated by all cylinder sets of the form 

where A,, ES, 1 <n < N. Finally, for each VE f? and s E S, let pN( .(v,s) denote the tique 

probability measure on (Q?, TN) satisfying 

for each cylinder set II N, _ ,A,, E q, where s,, + , = f&,. o,(s,,),s,,), 1 <n <N- 1. (See Ref. [2], 
Theorem A5, p. 148.) Expectation with respect to (@“, FN,pN(. Iv,s)) is then denoted by 

El~lV.Sl. 
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For brevity, any C3 problem meeting the above specifications will be said 
to have the basic finmat.5 

Let En [. 1 s] denote expectation with respect to the n&period transition 
probability (a, %,p,,( 1 Is)); and, for each n E { 1,. . . ,N} and s ES, let H,,(s) 
denote the minimum attainable expected total cost beginning in period n 
with initial state s, and using feedback control. Then [2, Theorem 14.4, p. 
101; pp. 104-105; Theorem 17.6, p. 1111 

Yv(s) = i;f%[ C,(w,u,s)ls], 0 E V(N,s); (5a) 

SES, nE{l,..., N- 1 }; and a feedback control law v”Pt E I!? minimizes total 
expected cost (4) if and only if it satisfies the dynamic-programming optimal- 
ity equations 

1 < n <N- 1, for almost every6 observation sequence (wi,. . . , wN). 
In Ref. [l] an exact solution procedure is suggested for the optimality 

equations corresponding to a linear-quadratic C3 problem with uncon- 
strained blue controls, based on the Kagiwada-Kalaba representation of the 
first-order conditions for minimization as a system of Fredholm integral 
equations. An alternate approach is suggested here for the approximate 
solution of the optimality equations (6) which does not require integration 
operations, and which appears to be especially well suited for basic format 
C” problems with finite admissible control sets V( n, s,).’ 

5An asiomatization for a one-period version of the basic format model with discrete control-de- 
pendent probability distributions is provided in Ref. [6], where it is also shown that the basic 
format model with control-dependent distributions generalizes the Savage expected-utility 
model, the Marschak-Radner team model, and the standard Bayesian statistical decision model. 
The basic format model has proved to be useful in the development of a new approach to 
adaptive control, direct criterion-function updating. See Ref. [7J 
aMore precisely, using the definitions presented in footnote 4, the optimal&y equations must 
hold for p “‘-amoSt every observation sequence gN E ON. 
‘Considering the crude approximations which generally must be incorporated into the basic 
structuring of state equations for socioeconomic problems, the specification of control sets with 
infinitely many elements appears to be a computation-increasing luxury which planners can ill 
afford. As usual, one exception would be linearquadratic control problems, for which solutions 
can be obtained in closed form. 
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Period 1. For each n~{l,...,N} and s E S, generates a random sample 
{W-r(W),..., o _ M( n, s)} from the probability distribution (a, 5, p,,( * 1 s)), 
and compute the cost-to-go estimates 

E inf Ci(u,s), 
WE V(N,s) 

I 
5 [ C,l(w-i(n,s),u9s) +@+I ofn(“-i(n~s)~o~s)] 

H,(s)3 inf i=l 

0 E V(n,s) M 
I 

3 

(74 

SES, nE{l,..., N - l} . Select t$‘( sr) E V( 1, sr) which satisfies Hf( sr) = 
C,(‘(u~(s,),s,). Record an observation wr for period 1 and the new state 
sa =~,(w,,~L):(sr),sJ for period 2. 

Period n (2 <n < N). Select u,l$s,) E V(n, s,,) which satisfies II: = 
C~(u~(s,),s,). Record an observation w, for period n and the new state 
s ,,+l=fn(q,,u~(s,,),sJ for period n+l. 

For each n E { 1, . . . , N}, s E S, and u E V(n,s), the cost-to-go approxima- 
tion C,“(u,s) defined by (7) is an averaging of M independent and identically 
distributed random variables. Thus, by a strong-law argument, 

Given suitable additional regularity conditions (e.g., finiteness of the admissi- 
ble control sets), it follows that 

23,0(s) 2 H,(s) a.s. (9) 

sMore realistically, one would presumably generate random samples for a suitably selected finite 
grid. Although Monte Carlo integration methods using random sample generation are not as 
efficient as classical methods for well-behaved real functions on the real line, they often 
compare favorably with classical methods for multivariate integration or for integration involv- 
ing integrand functions with discontinuities or kinks. See Ref. [8], Chapter 6. 
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One would therefore expect the outlined approximation procedure to per- 
form satisfactorily for sufficiently large M. 

3. EXTENSION: THE DEGRADED-COMMUNICATIONS CASE 

Consider now the case in which the blue naval air commander receives 
exact intelligence concerning red ground strength for each coming day, but 
he is unable to communicate this intelligence to the blue ground com- 
mander. In the discussion of a similar9 case in Ref. [3], p. 3, nth-period red 
air and ground activity is assumed to be a random vector w,, = ( p,, 4”) with 
known density function w(a). However, to be optimal, nth period blue air 
activity cu, must now be derived as a function (u(q”,s,) of the current time n, 
the current front line position s,,, and the current red ground strength qn. 

In the absence of contrary information, it would seem prudent for blue 
commanders to assume that red intelligence is as effective as their own. This 
presumption of symmetrical rationality would require red activity tin” 
( p,, qn) to be modeled as a random drawing from a probability distribution 

Pk I PnJn) (10) 

conditioned on the current time n, the current position s,, and the current 
blue ground activity &,. (Cf. the discussion in Sec. 2.) 

Ignoring for the moment the asymmetry in blue naval intelligence, the 
modifications needed to replace the state-conditioned distribution (1) in the 
basic-format C3 model by the control and state-conditioned distribution (10) 
are conceptually straightforward. The blue objective is still the minimization 
of expected total cost (4); but now the expectation operator E [ * Iv,s] is 
generated, as in footnote 4, by the transitional densities p,( * 1 ~,(s,),s,,) in 
place of the densities p,,(+ Is,,). Letting E,[. 1 p,s] denote expectation with 
respect to pn( * I P, s), and G,(s) denote the minimum attainable expected 
total cost beginning in period n with initial state s, and using feedback 
control, one again obtains [2, lot. cit.] that 

G!(s) = (u,p)$& J%v[CN(~,aTP9S)I PJli (114 

G”(S) = inf 
(a,P)E V(n,s) 

E,,[ +,a$~)+ G,,, $&~,P,s)lP,s], (IIb) 

‘In Ref. [3] it is hypothesized that blue air and ground commanders know the red air and 
ground strength, respectively, for each coming day. Symmetrical rationality is therefore ruled 
out (I priori; i.e., it would be logically impossible for the blue and red air commanders to each 
know the air strength of the other for the coming day, and to base their own air strength upon 
this intelligence. 
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SES, nE{l,..., N- l}; and a feedback control law v”Pt 3 (@“, /?“P’) E I?. 
minimizes expected total cost (4) if and only if it satisfies the dynamic-pro- 
gramming optimality equations 

1 <n <IV-- 1, for almost every observation sequence (w,, . . . , q,,). 
However, the optimality equations (12) make no -explicit use of the 

additional intelligence available to the blue air commander concerning red 
ground activity for each coming day. Using this additional information, the 
Nth period minimization problems relevant for the blue air and ground 
commanders, respectively, are 

where EN[. ( qN, /?. s] denotes expectation with respect to the distribution 
pN(.( /?,s) restricted to the subspace {w=( p,q)lq=qN}. A solution to (13) 
has the form of a pair of functions, LyN(qN,sN) and &(sN). The nth period 
minimization problems facing the two blue commanders are then 

m$k[ ~,(~,,q,,~,P~s,)lqn7P.s,]~ (4) E V(W”), (144 

mjnE,,[ 6,(p,,,q,,~~,P~s,)l P,s,]~ (%P) E q&S”), (14b) 

where 

05) 

and G,*,, is the r&-period cost-to-go generated recursively by use of the 
solution functions cyk(qk,sk) and &(sk), kE {n+ 1,. . .,N}. 

An exact solution technique is suggested in Ref. [l] for a linear-quadratic 
C” problem with unconstrained blue controls and degraded communications, 



60 LEIGH TESFATSION 

based on the Kagiwada-Kalaba representation of the first-order conditions 
for minimization as a system of Fredhohn integral equations. An approximate 
solution technique for (14) is suggested below, based on Monte Carlo 
integration. 

Briefly, it is first suggested that G,*+i in (15) be replaced by the cost-to-go 
function G,, + i generated by (ll), and /3 and (Y in (14a) and (14b), respec- 
tively, be replaced by the feedback controls p(s,,) and LY(S,) generated as 
solutions to (12). These approximations reduce to the following simple maxim 
for each commander: In each period n, act as if your own intelligence 
concerning current red activity is the only intelligence available now and for 
the future. This maxim is analogous to the principle governing open-loop 
feedback control techniques commonly used in adaptive-control theory: In 
each period n, ignore the fact that future observations will be made. (See 
Ref. [5].) 

Secondly, it is suggested that estimates for the cost-to-go functions {G,} 
in (11) be generated as follows: For each nE{l,...,N}, YES, and (a,/3)E 
V(n,s,) generate’ a random sample {~_-,(n,p,s) ,..., ~__~(n,P,s)} from the 
probability distribution (a, ‘3, p”(. 1 p, s)), and compute the estimates 

G;(s)- inf 1 ; 0 E V(N,s) 
5 C,(~_i(n,P,+~s) + Gn”,l”fn(~-i(n~P,s),u,~) 

Gi'(s)z inf i=l 

0 E V(n,s) M 

(lf3b) 

sES, nE{l,..., N- l}. Given the first set of approximations, the estimates 
(16) can be justified by strong-law arguments similar to those presented in 
Sec. 2 for the estimates Hz(s). 

Finally, it is suggested that the expectation operator E,,[ .I q, p, s] in (14) be 
replaced by a finite average using a random sample generated from the 
appropriate distribution. 

4. CONCLUSION 

A C3 model has been presented which generalizes the C? model devel- 
oped in Ref. [l]. Within the context of the general model, a method has been 
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proposed for incorporating symmetrical rationality by use of appropriately 

conditioned probability distributions. 

Not surprisingly, the incorporation of symmetrical rationality results in 

significantly more complex C3 models. The Kagiwacla-Kalaba solution tech- 

nique [4] can still be applied if the model is linear-quadratic and controls are 

unconstrained. For more general C3 problems, an alternate approximate 

solution technique is suggested which does not require integration opera- 

tions, and which appears especially well suited for Ca models with finite 

admissible control sets. 
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