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Overview
 Agent based simulation in 

the Social Sciences
 The Recursive Porous 

Agent Toolkit (Repast)
 What is the JReLM?
 General Architecture
 Pre-implemented 

Structures
 Supporting Classes
 Graphical User 

Interface

 Roth-Erev Learning
 Implementation of Roth-

Erev algorithms
 The Raita Economy: An 

Illustrative Application
 Testing and Validation
 Ongoing and future work



  

Agent-based Simulation in the Social 
Sciences*
  Social systems:

 Patterns of the whole emerge from interaction 
of the many

  Agent-based Simulation
 Computational Agents: Autonomy, self-directed 

action
 Useful metaphor for studying social systems

  Emergent patterns in simulation can give 
insight into real world systems

* Beginner’s Guide http://www.econ.iastate.edu/tesfatsi/abmread.htm



  

Adaptive behavior in Social Science 
Simulation
 Agent-based simulation a bottom-up 

approach
 Behavior of individuals affect macro-scale 

patterns
 Adaptive behavior more appropriate for 

metaphors of social systems
 AI, Machine Learning, Cognitive-based 

methods



  

Agent-Based Computational 
Economics*
 Study of economic systems using 

simulation models of interacting agents
 Approach gaining importance in the 

economics community
 North-Holland/Elsevier Handbook of 

Computational Economics Series: Volume 
2 Agent-Based Computational Economics
  Edited by L. Tesfatsion and K. Judd

* Collection of ACE resources http://www.econ.iastate.edu/tesfatsi/ace.htm



  

Simulation use and programming

 Client
 Programs in the 

language of the toolkit
 Designs and 

implements the 
program components

 Builds experimental 
workbench 

 User (or End User)
 Runs the simulation, 

usually through the 
Graphical User 
Interface (GUI)

 Designs the 
experimental setup

 Performs 
experimentation and 
analysis of results



  

The Recursive Porous Agent Toolkit 
(Repast)

 “a specification for 
agent-based modeling 
services or functions“ *

 Motivated by Swarm
 Sallach (U of Chicago), 

Collier, Howe, and North 
(Argonne National Lab)

 Repast Organization for 
Architecture and 
Development (ROAD)

 Current version 3.1
 Three flavors: RepastJ, 

Repast.NET, RepastPy

* Repast homepage http://repast.sourceforge.net/



  

Popularity of Repast

 Evaluation of free java-libraries for social-
scientific agent based simulation, Tobias and 
Hoffman, 2004 *
  Comparison of freely available agent-based simulation 

platforms
 Five categories of detailed criteria, geared towards 

Social Science study
 Repast the best 

 Currently the primary tool used by the ACE 
group in the Department of Economics

* Available at http://ideas.repec.org/a/jas/jasssj/2003-45-2.html



  

Structure of a Repast simulation

 Model: defines and runs the simulation
 Space: The environment or world which agents 

inhabit
 Dynamic GUI:

 Displays and charts
 Custom parameter settings

 Agents: Open, client defined
 Allows for flexibility
 Can be burdensome if more complex behavior is 

required



  

Adaptive behavior in Repast

 Genetic Algorithm 
demo model

 OpenForecast demo 
model

 Java Object Oriented 
Neural Engine 
(JOONE)
 Wrapper and demo

 Must custom implement other methods
 Hard for the novice
 Time consuming for the expert



  

What is JReLM?

 Platform for implementing and using 
reinforcement learning in Repast

 Ease the burden of design and implementation 
for the client

 Allow the user to manage learning settings 
through the Repast GUI

 Designed specifically for use in RepastJ
 Open Source, Release with Repast

Java Reinforcement
Learning Module



  

What JReLM offers

 Platform for algorithm implementation
 Framework of structures common to many 

types of reinforcement learning
 Includes algorithms currently in use in 

social science applications
 Graphical User Interface
 Integrated into Repast



  

General Architecture

 Motivated by Sutton’s and Barto’s description of 
Reinforcement Learning*

 Component-based
 Plug into client defined agents

 Flexible
 Arbitrary simulation contexts
 Arbitrary agents

 Extensible
 Object-oriented design 
 Documentation (Javadocs)

* Reinforcement Learning: An Introduction 
  http://www.cs.ualberta.ca/~sutton/book/the-book.html



  

Package Hierarchy



  

edu.iastate.jrelm.core



  

Action, ActionDomain, State, 
StateDomain
 Interfaces, not classes
 Important! Separates representation from 

implementation
 Flexibility: Applied to wide variety of 

simulation contexts
 Limitations: 

 Burden of domain implementation on the client. 
Hard to avoid without over-customization.

 Discrete, finite domains only



  

SimpleAction, SimpleState, 
SimpleActionDomain, SimpleStateDomain

 Basic implementation of the 
domain interfaces

 Wrappers around other 
objects, Collections

 Bridge between existing 
action choice/world states 
and JReLM

 Help ease burden in simpler 
simulations



  

edu.iastate.jrelm.rl



  

Base learning components
 ReinforcementLearner 

 Interface for all RL implementations (learners)
 Work with an ActionDomain, a Policy, and a sometimes a 

StateDomain 
 Policy

 Mapping from State-Action pairs to probability values
 Distributions for action choice likelihood

 Generate new action choices 
 Compatible with any ActionDomain and StateDomain

 StatelessPolicy
 RLParameters

 Encapsulate parameters for an algorithm
 Used in building custom GUI 



  

Interaction of JReLM components



  

Simple*

 SimplePolicy and SimpleStatelessPolicy 
 Basic implementations of Policy interfaces

 SimpleLearner and 
SimpleStatelessLearner 
 Tie together all pre-implemented learners
 Algorithm to use determined by the type of 

RLParameters given
 May be given Collections as domains
 Simplified use, but limited



  

Graphical User Interface

 Goals: 
 Allow the user to modify 

learning settings without 
programming

 Track and manage all 
learning methods used in a 
model

 Challenge:
 How to do this in arbitrary 

agents and models?



  

Graphical User Interface cont.



  

Graphical User Interface cont.



  

Pre-Implemented Reinforcement 
Learning Algorithms
 Assist novice programmer
 Convenience for experienced programmer
 Compatible with any action and state 

space that can be represented by an 
ActionDomain or StateDomain class



  

Roth-Erev Reinforcement Learning

 Originally developed by Alvin E. Roth and 
Ido Erev 
 Attempt to model how humans play in repeated 

games against multiple strategic players
 Later modified by Nicolaisen, Petrov and 

Tesfatsion
 Problem encountered with zero-valued rewards



  

Roth-Erev Algorithm Structure

 Maintains action choice propensities 
which are translated into action choice 
probabilities

Action Choice 1

Action Choice 2

Action Choice 3

Choice Propensity 1 Choice Probability 1

Choice Propensity 2

Choice Propensity 3

Choice Probability 2

Choice Probability 3



  

Algorithm Outline

1.  Initialize action propensities to an initial 
propensity value. Initialize the action choice 
probabilities to a uniform distribution.

2.  Generate choice probabilities for all actions 
using current propensities. 

3.  Choose an action according to the current 
choice probability distribution. 

4.  Update propensities for all actions using the 
reward for the last chosen action. 

5.  Repeat from step 2.



  

The update and experience functions
Parameters

• q0  Initial Propensity
•      Experimentation
•      Recency: 

€ 

φ

Variables
• j    Current action choice
• qj  Propensity for j
• k   Last action chosen
• rk  Reward for k
• t    Current timestep
• N   Number of actions  



  

Probability function

 Proportional distribution



  

Variation of Roth-Erev

 Nicolaisen, Petrov and Tesfatsion* modified the 
experience function in response to a problem 
with learning in the face of zero-value rewards.

* Nicolaisen, J., Petrov, V., and Tesfatsion, L. Market Power and Efficiency in a 
Computational Electricity Market with Discriminatory Double-auction Pricing. IEEE 
Transactions on Evolutionary Computing 5, 5 (October 2001), 504–523.



  

Gibbs-Boltzmann distribution

 Handle negative propensities
 T  temperature parameter

 Static, no temperature schedule



  

edu.iastate.jrelm.rotherev



  

Implementation of the Roth-Erev family 

 RELearner (Roth-Erev Learner)
 Base implementation of the original algorithm
 REParameters
 REPolicy 

 VRELearner (Variant Roth-Erev Learner)
 ARE (Advanced Roth-Erev Learner)

 Core structure with advanced, customizable 
features



  

edu.iastate.jrelm.demo.bandit



  

The Raita Economy: An illustrative 
application

 Repast simulation 
developed by Somani and 
Tesfatsion

 Examine market concentration in relation to 
market power in a dynamic, single product 
(raita) economy 



  

Market Concentration and Market 
Power
 Market concentration: the degree to which 

the majority of market activity is performed 
by a minority of the participants. 

 Market power: the degree to which a 
participant may profitably influence prices 
away from competitive levels. 



  

Market Concentration and Market 
Power cont.
 Measures of market concentration are 

often used as indicators of market power.
 This model examines how well three 

common measures predict the rise of 
market power in a simple dynamic 
production economy



  

RaitaEconomy class structure



  

ConsumerAgent

 Simple, reactive agent
 Gains utility by consuming raita
 Seeks raita at the lowest available price
 Dies if subsistence needs are not met



  

FirmAgent

 Strategic, learning agent
 Gain profit by producing and selling raita
 May adjust production and price level 

every trading period
 supply offers: Production quantity and unit price

 Can also invest profits in expanding 
production capacity

 Exits market if it goes bankrupt



  

JReLM in the RaitaEconomy



  

JReLM in the Raita Economy cont.

 Raita Economy still under construction
 First research model to use JReLM
 Balance of complexity

 Market content more complex than the, multi-agent
 Still simpler than other context (e.g. The AMES project)

 Valuable experience
 What needs arise in an actual research context
 How usable is JReLM?



  

Testing and Validation

 Unit testing of JReLM using JUnit*
 Suite of tests have been built along the way
 Still expanding

 Validation of Roth-Erev family
 Are they behaving as expected?
 Bandit Demo: Simple, single agent context
 Raita Economy: More complex, multi-agent 

context

* JUnit is a Java unit testing package available at http://www.junit.org/index.htm 



  

Ongoing and future work

 Expansion of RL methods library
 Investigation into additional methods

 Appropriate for multi-agent contexts
 Appropriate for Social Simulation

 Improvement of the GUI
 Integration into the Repast control panel
 Improve management of groups of agents



  

Agent-Based Modeling of Electricity 
Systems (AMES) 
 Federal Energy Regulatory Commission 

Wholesale Power Market Platform
 AMES: Repast model designed to test the 

economic reliability of the WPMP
 JReLM: adaptive pricing and quantity 

offers for generators
 Bulk Energy Transportation Networks*

 NSF funded
 Study integrated energy networks

* Lead by primary investigator J. McCalley and co-PIs S. Ryan, S. Sapp, and L. 
Tesfatsion



  

The NISAC Agent-Based Laboratory 
for Economics
 National Infrastructure and Analysis Center 

(NISAC)
 Joint effort between Los Alamos and Sandia 

National Labs 
 Funded by the Department of Homeland Security
 Examine critical national infrastructure

 N-ABLE (at Sandia):
 Agent-based simulation modeling platform

 JReLM architecture and interaction, starting 
point for expanded adaptive behavior in N-ABLE



  

JReLM Distribution with Repast

 Repast an Open Source project 
 Discussion with Repast developers

  Inclusion of JReLm into the RepastJ package
 Requires a demonstration
 Goal

 complete testing and validation of JReLM in 
time for Repast’s next release



  

 

Questions


