

A Java Reinforcement Learning
Module for the Recursive Porous

Agent Simulation Toolkit

Facilitating study and experimentation with
reinforcement learning in multi-agent,

social science simulations

Presented by Charles Gieseler

Overview
 Agent based simulation in

the Social Sciences
 The Recursive Porous

Agent Toolkit (Repast)
 What is the JReLM?
 General Architecture
 Pre-implemented

Structures
 Supporting Classes
 Graphical User

Interface

 Roth-Erev Learning
 Implementation of Roth-

Erev algorithms
 The Raita Economy: An

Illustrative Application
 Testing and Validation
 Ongoing and future work

Agent-based Simulation in the Social
Sciences*
 Social systems:

 Patterns of the whole emerge from interaction
of the many

 Agent-based Simulation
 Computational Agents: Autonomy, self-directed

action
 Useful metaphor for studying social systems

 Emergent patterns in simulation can give
insight into real world systems

* Beginner’s Guide http://www.econ.iastate.edu/tesfatsi/abmread.htm

Adaptive behavior in Social Science
Simulation
 Agent-based simulation a bottom-up

approach
 Behavior of individuals affect macro-scale

patterns
 Adaptive behavior more appropriate for

metaphors of social systems
 AI, Machine Learning, Cognitive-based

methods

Agent-Based Computational
Economics*
 Study of economic systems using

simulation models of interacting agents
 Approach gaining importance in the

economics community
 North-Holland/Elsevier Handbook of

Computational Economics Series: Volume
2 Agent-Based Computational Economics
 Edited by L. Tesfatsion and K. Judd

* Collection of ACE resources http://www.econ.iastate.edu/tesfatsi/ace.htm

Simulation use and programming

 Client
 Programs in the

language of the toolkit
 Designs and

implements the
program components

 Builds experimental
workbench

 User (or End User)
 Runs the simulation,

usually through the
Graphical User
Interface (GUI)

 Designs the
experimental setup

 Performs
experimentation and
analysis of results

The Recursive Porous Agent Toolkit
(Repast)

 “a specification for
agent-based modeling
services or functions“ *

 Motivated by Swarm
 Sallach (U of Chicago),

Collier, Howe, and North
(Argonne National Lab)

 Repast Organization for
Architecture and
Development (ROAD)

 Current version 3.1
 Three flavors: RepastJ,

Repast.NET, RepastPy

* Repast homepage http://repast.sourceforge.net/

Popularity of Repast

 Evaluation of free java-libraries for social-
scientific agent based simulation, Tobias and
Hoffman, 2004 *
 Comparison of freely available agent-based simulation

platforms
 Five categories of detailed criteria, geared towards

Social Science study
 Repast the best

 Currently the primary tool used by the ACE
group in the Department of Economics

* Available at http://ideas.repec.org/a/jas/jasssj/2003-45-2.html

Structure of a Repast simulation

 Model: defines and runs the simulation
 Space: The environment or world which agents

inhabit
 Dynamic GUI:

 Displays and charts
 Custom parameter settings

 Agents: Open, client defined
 Allows for flexibility
 Can be burdensome if more complex behavior is

required

Adaptive behavior in Repast

 Genetic Algorithm
demo model

 OpenForecast demo
model

 Java Object Oriented
Neural Engine
(JOONE)
 Wrapper and demo

 Must custom implement other methods
 Hard for the novice
 Time consuming for the expert

What is JReLM?

 Platform for implementing and using
reinforcement learning in Repast

 Ease the burden of design and implementation
for the client

 Allow the user to manage learning settings
through the Repast GUI

 Designed specifically for use in RepastJ
 Open Source, Release with Repast

Java Reinforcement
Learning Module

What JReLM offers

 Platform for algorithm implementation
 Framework of structures common to many

types of reinforcement learning
 Includes algorithms currently in use in

social science applications
 Graphical User Interface
 Integrated into Repast

General Architecture

 Motivated by Sutton’s and Barto’s description of
Reinforcement Learning*

 Component-based
 Plug into client defined agents

 Flexible
 Arbitrary simulation contexts
 Arbitrary agents

 Extensible
 Object-oriented design
 Documentation (Javadocs)

* Reinforcement Learning: An Introduction
 http://www.cs.ualberta.ca/~sutton/book/the-book.html

Package Hierarchy

edu.iastate.jrelm.core

Action, ActionDomain, State,
StateDomain
 Interfaces, not classes
 Important! Separates representation from

implementation
 Flexibility: Applied to wide variety of

simulation contexts
 Limitations:

 Burden of domain implementation on the client.
Hard to avoid without over-customization.

 Discrete, finite domains only

SimpleAction, SimpleState,
SimpleActionDomain, SimpleStateDomain

 Basic implementation of the
domain interfaces

 Wrappers around other
objects, Collections

 Bridge between existing
action choice/world states
and JReLM

 Help ease burden in simpler
simulations

edu.iastate.jrelm.rl

Base learning components
 ReinforcementLearner

 Interface for all RL implementations (learners)
 Work with an ActionDomain, a Policy, and a sometimes a

StateDomain
 Policy

 Mapping from State-Action pairs to probability values
 Distributions for action choice likelihood

 Generate new action choices
 Compatible with any ActionDomain and StateDomain

 StatelessPolicy
 RLParameters

 Encapsulate parameters for an algorithm
 Used in building custom GUI

Interaction of JReLM components

Simple*

 SimplePolicy and SimpleStatelessPolicy
 Basic implementations of Policy interfaces

 SimpleLearner and
SimpleStatelessLearner
 Tie together all pre-implemented learners
 Algorithm to use determined by the type of

RLParameters given
 May be given Collections as domains
 Simplified use, but limited

Graphical User Interface

 Goals:
 Allow the user to modify

learning settings without
programming

 Track and manage all
learning methods used in a
model

 Challenge:
 How to do this in arbitrary

agents and models?

Graphical User Interface cont.

Graphical User Interface cont.

Pre-Implemented Reinforcement
Learning Algorithms
 Assist novice programmer
 Convenience for experienced programmer
 Compatible with any action and state

space that can be represented by an
ActionDomain or StateDomain class

Roth-Erev Reinforcement Learning

 Originally developed by Alvin E. Roth and
Ido Erev
 Attempt to model how humans play in repeated

games against multiple strategic players
 Later modified by Nicolaisen, Petrov and

Tesfatsion
 Problem encountered with zero-valued rewards

Roth-Erev Algorithm Structure

 Maintains action choice propensities
which are translated into action choice
probabilities

Action Choice 1

Action Choice 2

Action Choice 3

Choice Propensity 1 Choice Probability 1

Choice Propensity 2

Choice Propensity 3

Choice Probability 2

Choice Probability 3

Algorithm Outline

1. Initialize action propensities to an initial
propensity value. Initialize the action choice
probabilities to a uniform distribution.

2. Generate choice probabilities for all actions
using current propensities.

3. Choose an action according to the current
choice probability distribution.

4. Update propensities for all actions using the
reward for the last chosen action.

5. Repeat from step 2.

The update and experience functions
Parameters

• q0 Initial Propensity
• Experimentation
• Recency:

€

φ

Variables
• j Current action choice
• qj Propensity for j
• k Last action chosen
• rk Reward for k
• t Current timestep
• N Number of actions

Probability function

 Proportional distribution

Variation of Roth-Erev

 Nicolaisen, Petrov and Tesfatsion* modified the
experience function in response to a problem
with learning in the face of zero-value rewards.

* Nicolaisen, J., Petrov, V., and Tesfatsion, L. Market Power and Efficiency in a
Computational Electricity Market with Discriminatory Double-auction Pricing. IEEE
Transactions on Evolutionary Computing 5, 5 (October 2001), 504–523.

Gibbs-Boltzmann distribution

 Handle negative propensities
 T temperature parameter

 Static, no temperature schedule

edu.iastate.jrelm.rotherev

Implementation of the Roth-Erev family

 RELearner (Roth-Erev Learner)
 Base implementation of the original algorithm
 REParameters
 REPolicy

 VRELearner (Variant Roth-Erev Learner)
 ARE (Advanced Roth-Erev Learner)

 Core structure with advanced, customizable
features

edu.iastate.jrelm.demo.bandit

The Raita Economy: An illustrative
application

 Repast simulation
developed by Somani and
Tesfatsion

 Examine market concentration in relation to
market power in a dynamic, single product
(raita) economy

Market Concentration and Market
Power
 Market concentration: the degree to which

the majority of market activity is performed
by a minority of the participants.

 Market power: the degree to which a
participant may profitably influence prices
away from competitive levels.

Market Concentration and Market
Power cont.
 Measures of market concentration are

often used as indicators of market power.
 This model examines how well three

common measures predict the rise of
market power in a simple dynamic
production economy

RaitaEconomy class structure

ConsumerAgent

 Simple, reactive agent
 Gains utility by consuming raita
 Seeks raita at the lowest available price
 Dies if subsistence needs are not met

FirmAgent

 Strategic, learning agent
 Gain profit by producing and selling raita
 May adjust production and price level

every trading period
 supply offers: Production quantity and unit price

 Can also invest profits in expanding
production capacity

 Exits market if it goes bankrupt

JReLM in the RaitaEconomy

JReLM in the Raita Economy cont.

 Raita Economy still under construction
 First research model to use JReLM
 Balance of complexity

 Market content more complex than the, multi-agent
 Still simpler than other context (e.g. The AMES project)

 Valuable experience
 What needs arise in an actual research context
 How usable is JReLM?

Testing and Validation

 Unit testing of JReLM using JUnit*
 Suite of tests have been built along the way
 Still expanding

 Validation of Roth-Erev family
 Are they behaving as expected?
 Bandit Demo: Simple, single agent context
 Raita Economy: More complex, multi-agent

context

* JUnit is a Java unit testing package available at http://www.junit.org/index.htm

Ongoing and future work

 Expansion of RL methods library
 Investigation into additional methods

 Appropriate for multi-agent contexts
 Appropriate for Social Simulation

 Improvement of the GUI
 Integration into the Repast control panel
 Improve management of groups of agents

Agent-Based Modeling of Electricity
Systems (AMES)
 Federal Energy Regulatory Commission

Wholesale Power Market Platform
 AMES: Repast model designed to test the

economic reliability of the WPMP
 JReLM: adaptive pricing and quantity

offers for generators
 Bulk Energy Transportation Networks*

 NSF funded
 Study integrated energy networks

* Lead by primary investigator J. McCalley and co-PIs S. Ryan, S. Sapp, and L.
Tesfatsion

The NISAC Agent-Based Laboratory
for Economics
 National Infrastructure and Analysis Center

(NISAC)
 Joint effort between Los Alamos and Sandia

National Labs
 Funded by the Department of Homeland Security
 Examine critical national infrastructure

 N-ABLE (at Sandia):
 Agent-based simulation modeling platform

 JReLM architecture and interaction, starting
point for expanded adaptive behavior in N-ABLE

JReLM Distribution with Repast

 Repast an Open Source project
 Discussion with Repast developers

 Inclusion of JReLm into the RepastJ package
 Requires a demonstration
 Goal

 complete testing and validation of JReLM in
time for Repast’s next release

Questions

