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Abstract

This paper proposes using computational learning theory (CLT) as a framework for analyzing the
information processing behavior of firms; we argue that firms can be viewed as learning algorithms.
The costs and benefits of processing information are linked to the structure of the firm and its
relationshipwith the environment.Wemodel thefirmas a typeof artificial neural network (ANN).By
a simulation experiment, we show which types of networks maximize the net return to computation
given different environments. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is an exploration into the modeling of firm structure and learning given
different environmental conditions. Our research objective is to study the question what is
the relationship between the structure of the firm and the level of complexity and instability
of the environment?

We argue that the nature of firm information processing and learning can be modeled
with the tools of computational learning theory (CLT) as developed by computer scientists
to study learning and problem solving by machines. CLT clarifies the economic features of
information processing and learning, i.e. a process that requires resources that are costly to
acquire and implement.

We provide a simple, general simulation model of the firm as a collection of information
processing units–a type of artificial neural network (ANN). The optimal number of process-
ing units is a function of the degree of complexity and instability of the environment. We
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specify the costs and benefits to computation, and show how the optimal firm size changes
as the environment changes. Larger organizations have more computational power but with
increasing costs. In particular, if the environment is very complex, larger firms have more
difficulty adapting to frequent changes, and thus perform worse than smaller, more flexible
ones. On the other hand, when the environment is stable, larger and more computationally
powerful firms have an advantage vis a vis smaller ones.

The outline of the paper is as follows. Section 2 sketches the main concepts and findings
of computational learning theory and provides a specific example of a learning machine, the
ANN. In Section 3, we model the firm as a network of processing units which must learn
economic environments that differ along the dimensions of stability and complexity. We
establish, by means of this model, a relationship between environmental features and orga-
nizational structure. In Section 4, we discuss some real-world examples of firm adaptation
given different environments. Finally, Section 5relates our paper to the existing literature
and concludes.

2. Computational learning theory and the firm

In this section, we discuss the computational learning problem and its relevance to the
firm.1 Take a space X (such as the Euclidean space, RN ), sometimes called the instance
space, and a subset, C ⊆ X, called the concept class. The set of elements to be learned is
referred to as the target concept, c ∈ C. In Section 3; for example, the target concept is a set
of strings of 10 binary digits. Another example of a target concept is a particular demand
function that a monopolist must learn.

The learning environment is composed of a set of examples {x1, . . . , xt } ∈ X, drawn
according to some fixed (and possibly unknown) probability distribution, and an associated
set of indicator functions indicating whether each element of the example set is a member
of the concept set. That is, for each xi , IC(xi) = 1, if xi ∈ c, and IC(xi) = 0, if xi /∈ c.
The indicator function is said to be given by an “oracle” or “teacher.” In other words, the
oracle associates with the example xi an indicator function IC(xi). After drawing t samples,
we have a labeled multisample, [(x1, IC(x1)) · · · (xt , IC(xt ))] ∈ [X × {0, 1}]t .

A learneruses the labeledmultisample in order to attempt to learn the concept by choosing
from a set of hypotheses (or functions) H the “best” one, in the sense that it is closest to
the target. “The learner is an algorithm (or a partial recursive function) from data sets to
hypothesis classes”(Niyogi, 1998, p. 5). Such an algorithm is a map A : [X×{0, 1}]t → C.
In our case, the learner is the firm. In particular, we view the firm as a neural network and
the hypothesis as the firm’s state of knowledge given the data its has processed (Section
2.1). We view the size of the hypothesis space as analogous to the size of the firm, or
more specifically, as the amount of resources the firm devotes to learning the economic
environment, i.e. the target concept.

The learner/firm tries to learn the concept by modifying its hypothesis after each example
it processes. This updating process is the characteristic feature of learning. The specific

1 We draw heavily on Kearns and Vazarani (1994), Vapnik (1995), Niyogi (1998), and Vidyasagar (1997) to
which the reader is referred for an extensive treatment of these concepts.
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hypothesis chosen after t examples is denoted by ht = A[(x1, IC(x1)) · · · (xt , IC(xt ))]. The
difference between ht and the underlying concept c, is the generalization error, defined as
the distance d(ht , c), where d is a specific metric.

Once it has selected the best hypothesis, the learner may use it to generalize, i.e. to
process data that do not belong to the example space. It will be made clear later that the
issue of generalization is at the heart of learning theory, and is one of the features that make
it different, for example, from simple regression analysis.

For a concept to be learnable we need two distinct conditions. The first is that the rep-
resentational capacity of the hypothesis class, H , has to have sufficient power to approxi-
mate the concept class. If this is not the case, it may be that irrespective of the number of
examples the best hypothesis belonging to H will still be far away from the concept. This is
called the approximation error, and it is defined as the distance between the best hypothesis
in H and the concept, and is denoted as d(h∞, c). This is the minimum error attainable by
the learner, and if it is large, it is due to the insufficiency of the hypothesis class. A concept
may be not learnable because the hypothesis space is not complex enough, i.e. has too few
parameters to estimate the concept.

The second source of problems comes from the finiteness of the sample available to
the learner. If the sample is small, the hypothesis selected within the hypothesis class
may be far from the best one, resulting in an another type of error. Such an estimation
error may be denoted as d(ht , h∞). Sample complexity, for any given hypothesis class,
measures the number of examples that the learner needs in order to obtain a low estimation
error.

Hypothesis complexity generates a trade-off: simpler hypothesis classes (low hypothesis
complexity) will imply larger approximation errors, but also lower sample complexity. On
the other hand, if we try to reduce the approximation error by increasing the hypothesis
complexity, we also increase the sample complexity, meaning that for the same number of
examples fed to the learner, the estimation error will be larger.

This trade-off is equivalent to the one familiar to the economists faced in regression
analysis. By increasing the number of regressors we can increase the R2 (decrease the
approximation error); but we also decrease the number of degrees of freedom, i.e the ability
to generalize (a higher StandardError andpoorer out-of-sample forecasting). In the literature
on learning this is referred to as overfitting: a learner using a complex hypothesis space may
become very good in fitting the sample, but nevertheless may not be able to generalize. In
other words, the learner would be learning the sample instead of the underlying concept. The
tension between these two different effects will imply that there is an “optimal” hypothesis
complexity, n∗, defined as the dimension that makes the bound to the generalization error
minimum. Fig. 1 shows this point.

For a very low size of H , the gain in approximation obtained by increasing n outweighs
the loss in estimation. After a certain point, instead, the gain in approximation is not enough
to compensate for the loss in “degrees of freedom”; as a result total errorwill stop decreasing.
This trade-off has a very natural translation in economics, as we discuss in the following
Section 2.2.

The choice of an adequate hypothesis class is one of the main challenges of CLT.
Computer scientists refer to it as to structural risk minimization. We define, for a given
hypothesis complexity n, the average performance of the algorithm after t samples
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Fig. 1. Errors and hypothesis complexity.

are drawn as

Jn(h) = 1

t

t∑
τ=1

d(hτ (c, x), c),

where d(·) is the distance measure.
Learning minimizes this value for a given hypothesis complexity, i.e. it finds, among

the different hypotheses of size n, the one that has the lowest average generalization error
J ∗

n (h) = minh∈HnJn(h).
With more complex hypothesis spaces (larger n), we reduce the estimation error, but we

lose the ability to generalize (we increase the approximation error). The trade-off problem
may be solved by looking for the best balance between approximation and estimation, i.e.
by locating

J ∗(h) = min
n

J ∗
n (h).

The corresponding hypothesis complexity (n∗) is the one that minimizes the generalization
error. In terms of Fig. 1, learning is the process, for a given value of n, of reducing the error to
its lowest bound, represented by the generalization error curve. Structural risk minimization
on the other hand, represents movements along the x-axis (i.e. comparison of algorithms of
different complexity) in order to find the value of n that minimizes the lower bound.

Structural risk minimization is essentially the process of having different algorithms
(hypothesis classes) learn the concept as well as possible, and then selecting the one with
the best performance.2

A simple example may help to clarify the concepts discussed earlier. Suppose the learner
is a monopolist firm; it faces a demand function p = f (q, Ω), where Ω is a vector of
variables affecting the demand, such as GDP, real interest rates, prices of complements and

2 Unlike computer scientists, we are also concerned with the economic costs of different hypotheses classes.
We discuss them in Section 2.3.
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substitutes, etc. The instance space X is the m-dimensional space (p, q, Ω1, . . . , Ωm−2).
The concept space is the set of all possible demand functions p = f (q, Ω).

Suppose that the firm assumes that the demand function is linear in q, and furthermore
that its slope is fixed and known, whereas the position depends on Ω . In other words, the
hypothesis class is the set of all functions such that p = α(Ω) − β(q).

In each period τ , the firm draws an example x ∈ X, and processes it. The output α̂τ is
used to calculate the profit maximizing price, p̂τ . The market plays the role of the oracle.
If the profit obtained charging p̂τ is high, this means that the guess was good; if it is low,
then the algorithm has to be modified, and another hypothesis has to be chosen. After
t periods the firm has a sample of guesses about α and of the corresponding profit levels,
and it makes its best estimate about the demand function. Note, however, in this example,
the oracle returns the market-clearing quantity, which the firm then uses to update the
value of α.

The hypothesis complexity may be insufficient, so that learning does not take place.
Suppose that the real demand curve, the concept c, was p = α(Ω) − β(q, Ω), with the
slope also dependent on Ω; then, a linear (in q) hypothesis class would never yield optimal
profits. On the other hand, if the demand function was linear and the hypothesis class
assumed a more complex relationship between q and Ω , then time and resources would be
wasted only for the firm to learn that Ω has no effect on β.

2.1. Artificial neural networks

In itsmost basic description anANNcan be thought of as a formof black box input–output
system.3 The network takes a set of inputs, applies a set of parameters (weights) and a
transformation (squashing) function, and then produces an output. In addition, ANNs are
learning machines: as they are presented with data, the weights are adjusted (trained) in
order to learn the underlying patterns that generate the data.

The data are ‘input’ into the first (input) layer and are then processed by one or more
intermediate (hidden) layers. The network then produces an output which is compared to
the actual output. The difference is the network error. The network then adjusts its weights
according to a learning algorithm that, if powerful enough, at each successive step reduces
the error.4

Each layer consists of nodes that are the site of activity, where the data are transformed
(this is not true for the input nodes). A graphical representation of the network is shown in
Fig. 2. Notice the parallel nature of the data processing, which is an important feature of
the network.

The input data is a vector x of length m. Each node of the hidden layer receives a weighted
sum of the data from the input layer. That is, the input into the ith node in the hidden

3 For a detailed treatment of neural networks in general see Croall and Mason (1992) and Freeman (1994). For
statistical applications see Kuan and White (1994). For a game theoretic application see Cho (1994).

4 The network we use here is referred to as a ‘backward propagation network’ (BPN), because during the
learning stage, the weight adjustment is first done in the final (output) layer and is then propagated backwards to
the first layer. BPNs are often used for pattern recognition and the learning of complex, non-linear functions. Most
applications only use one hidden layer.



350 J. Barr, F. Saraceno / J. of Economic Behavior & Org. 49 (2002) 345–361

Fig. 2. Backward propagation network (note: not all connections shown).

layer is

inh
i = wh

i x =
(
wh

1ix1 + · · · + wh
mixm

)
,

where wh
i is an 1 × m vector of weights. The set of inputs to the n nodes of the hidden

layer is inh = (wh
1x, . . . , wh

i x, . . . , wh
nx). Each input to a hidden node is transformed,

via a squashing function, into an hidden-layer output (outhi ). One of the most commonly

used squashing functions is the sigmoid function, outhi = g(inh
i ) = [1 + e(−inh

i )]−1, which
is a continuous approximation of the indicator function. Low values are squashed to zero
(“no”); high values are squashed to one (“yes”). The vector of outputs from the hidden
layer is

outh = g(inh
1), . . . , g(inh

i ), . . . , g(inh
n).

The input to the final layer is a weighted sum of all the outputs from the hidden layer:
ino = woouth, where wo = wo

1, . . . , wo
i , . . . , wo

n, is an 1 × n vector of weights.
Finally, the output of the network ŷ of the network is determined by transforming ino

with the sigmoid function ŷ = g(ino). In sum, we can express the network with one hidden
layer as

ŷ = g

[
n∑

i=1

wo
i g(wh

i x)

]
. (1)

2.1.1. The learning algorithm
The above process describes the input–output nature of the neural network. Here we show

how the network learns. We begin with a completely untrained network by selecting random
weight values. An example is selected from the example set (according to some probability
law) and is fed to the network, which processes it as described earlier to obtain an output,
ŷ. This output is compared to the ideal output y (given by the oracle), to determine the
corresponding error: ξ = (y − ŷ)2/2. This information is then propagated backwards as
the weights are adjusted according to the learning algorithm, which aims to minimize the
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squared error, ξ . The gradient of ξ with respect to the output-layer weights is

∂ξ

∂wo
i

= −(y − g(ino))g′(ino)outhi , i = 1, . . . , n.

Given that ∂(ino)/∂(wo
i ) = outhi , and for the sigmoid function, g′(ino) = ŷ(1 − ŷ).

Similarly, we can find the gradient of the error surface with respect to the hidden layer
weights:

∂ξ

∂wh
ji

= −g′(inh
i )xj [(y − g(ino))g′(ino)wo

i ], j = 1, . . . , m; i = 1, . . . , n.

We see where the concept of backward propagation enters formally: we calculate the error
of the output layer first, then bring the error back to the hidden layer to calculate the surface
gradients there.

Once we have calculated the gradients, we adjust each weight value a small amount in
the opposite (negative) direction of the gradient. We introduce a proportionality constant
η, the learning-rate parameter, to smooth the updating process. Thus, if we define δo =
(y − ŷ)g′(ino), we have the weight adjustment for the output layer as wo

i (t + 1) = wo
i (t)+

ηδoouthi , for i = 1, . . . , n. Similarly, for the hidden layer, wh
ji(t + 1) = wh

ji(t) + ηδh
i xj ,

where δh
i = g′(inh

i )δ
owo

i .
When the updating of weights is done, we present the next input pattern and repeat the

weight-update process. The process normally continues until a pre-specified small error is
achieved, and the network is said to have learned the data.

2.2. The firm, CLT and artificial neural networks

We believe it is useful to view the firm as a learning algorithm which produces a hy-
pothesis based on the information from the environment. The organization consists of
agents who follow a series of rules and procedures organized in both a parallel and se-
rial manner. Firms learn and improve their performance by repeating their actions and
recognizing patterns (i.e. learning by doing). As the firm processes information (iterates),
it learns its particular environment and becomes proficient at recognizing new and related
information.

Furthermore, the firm, like learning algorithms in general, faces a trade-off linked to
the complexity of its organization. Small firms (hypothesis classes) are likely to be rather
imprecise in understanding the environment they face; but on the other hand they act rel-
atively quickly and are able to design decent strategies with small amounts of experience.
Larger and more complex firms, on the other hand, produce more sophisticated analyses,
but they need time and experience to do so. Translating in the language of CLT, small firms
have a simple hypothesis class, and hence quickly find the best hypothesis; more complex
organizations take more iterations but, once reached, the best hypothesis within their class
is more likely to be close to the real concept. Finding the optimal structure of the firm
(given its economic costs) may then be seen as a form of structural risk minimization.
Unlike computer science, however, in economics the search for an optimal structure occurs
given a competitive landscape, which imposes time and money constraints on the firm,
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and consequently forces it to abandon the objective of theoretical learnability. In this paper
we compare, for a given environment, different firm structures (hypothesis complexity), in
order to identify the most profitable one (i.e. the one minimizing empirical risk, given the
economic costs).

2.3. The cost of learning

We consider two different costs of information processing. The first is the ‘time’ it takes
for the organization to learn; the second is the cost per information processing unit.

2.3.1. Time to learn
A general feature influencing firm behavior (especially when dealing with innovation)

is that it faces time constraints. In this paper we define ‘time’ as the number of steps an
algorithm needs to perform a task (Wilf, 1986). (Radner (1993) refers to it as the ‘delay’).
It is obtained by summing the number of steps performed at each layer.

In the case of a neural network with one hidden layer, we determine the total delay as
follows. The input into each node in the hidden layer is the dot product of the m inputs and
their weights. This makes m operations, which has a cost of c1m, if each multiplication takes
c1 units of time.Then,weadd together the numbers, (m−1)operations for a cost of c2(m−1).
Each node then produces an output by applying the sigmoid function to the weighted sum,
with a cost of c3. From the hidden layer to the output we have a similar number of steps, but
with n nodes. Thus, the total of forward steps is c1(m + n) + c2(m + n − 2) + 2c3. The
number of backward steps in calculated in a similar manner, so that we obtain total delay
as a linear function of m and n: c = α0 + α1(m + n).

2.3.2. Cost per node
We also assume that the firm must pay a fee (wage) per information processing unit. This

gives a cost of w = α2n.
Cost per iteration is then c + w = α0 + α1m + (α1 + α2)n, and if the network makes t

iterations, total cost is given by

C = t (c + w)

3. Complexity, stability and optimal structure: a simulation experiment

This section introduces a simple model of the firm as an ANN. The example of this
section has the aim of illustrating the applicability of ANNs to the study of organizational
learning; as such, it is aimed at emphasizing the general relationship between the firm’s
information processing and its environment and should not be seen as modeling a specific
component of firm behavior.5 Nevertheless, we provide two examples in Section 4 of how
complexity and stability affect firm performance and structure.

5 Our model builds on and extends Radner where learning, however, is not an issue; his network can be seen
as a particular case of a feedforward network, with weights and squashing functions fixed beforehand and with
constant ‘environment.’
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Our main goal is show how the optimal organizational size is inextricably linked to the
environmental characteristics.Weparametrize these characteristics along twodimensions—
complexity and stability—whichgenerate four possible types of environments: stable/simple
(s, S), stable/complex (s, C), unstable/simple (u, S), and unstable/complex (u, C). For each
of these configurations, we study the relationship between the firm/network size, and its
performance; in other words, we investigate the trade-off discussed in Section 2, and how
it changes with different environmental scenarios.

3.1. Description of the experiment

The firm is modeled as a backward propagation network (BPN) with a single hidden
layer.6 The number of input nodes is m = 10, while the number of hidden nodes n is
variable, and is the measure of firm dimension, or equivalently of hypothesis complexity.
Structural risk minimization hence, in this framework, is simply the search for the optimal
number of nodes in the hidden layer. The task to be learned is a simple pattern recognition:
given the binary inputs {0, 1}10, the desired output is the equivalent number in base 10
(normalized to lie in the interval [0, 1]).

This abstract task may be interpreted in several different ways as modeling real-life
behavior of firms; for instance, it could represent a marketing department trying to establish
a link (a pattern) between a series of consumer characteristics (1: present; 0: absent) and
a certain degree of consumer acceptance of the product (the corresponding base 10 value).
Or, it might be seen as a production input–output pattern: certain inputs are linked by a
particular rule to an output value, so that the task might be seen as a form of production
function learning (in the spirit of Jovanovic and Nyarko (1996)).

The process works as follows. The network draws a vector of binary digits from the
example set according to a given probability law (discussed later). The feed-forward pro-
cess summarized by Eq. (1) produces an estimated output ŷ. The oracle (or marketplace)
then gives the error (the distance between the estimated output and the equivalent in
base 10 of the input vector): ξ = d(yτ , ŷτ ) = 1/2(yτ − ŷτ )

2. The network uses this
error to adjust the weights according to the gradient descent algorithm discussed in
Section 2.1.

Through successive iterations (draws and estimations) the network updates the weights
(whose initial values are randomly chosen) to produce an output close to the correct one.
We limit the number of iterations to t = 250 as a way to simulate the limited time period
that firms have to learn. In each period/iteration τ , we define the profit of the firm of
dimension n(πn

τ ) as the inverse of the squared error (the lower the error, the better the job
is done and thus the higher the “revenues”) minus the cost of the network, as defined in
Section 2.3:

πn
τ = β

ξτ

− [α0 + α1m + (α1 + α2)n],

where β, α0, α1, α2 are the parameters. (We can think of the firm as receiving a pay-off β

each period that is affected by the inverse of the error 1/ξτ , so that the revenue is given by

6 Note that by assuming only one hidden layer, we do not directly address the issue of hierarchy.
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(1/ξτ )β.) Notice that delay only depends on the dimension of the network (and the number
of inputs), while if the task is learnable, ξτ decreases with the iterations. Larger firms have
greater delay and wage costs. They will perform better than smaller ones only if their errors
(dependent on the interaction between environmental characteristics and network structure)
decrease by more and/or at a faster rate.

Total profit is calculated as the sum over the t = 250 periods (iterations) of the single
period profits:

Πn =
t∑

τ=1

πn
τ =

t∑
τ=1

β

ξτ

− [α0 + α1m + (α1 + α2)n]t

Because of the stochastic outcome of the initial weight vector, we repeat the whole learning
process 300 times, and take the average of the total profit.

3.1.1. Complexity
We measure the environmental complexity by the smoothness of the probability distribu-

tion used to produce examples. The simplest environment is the one in which one example
arrives each period with certainty, while the most complex is one in which all the examples
are equally probable. In other words, by altering the probability distribution, we can make
the example class (and hence the concept space) more or less complex. A natural measure
of the smoothness of the distribution is its entropy. Suppose the example set contains ν

elements (in our simulations we have ν = 10), then entropy will be

E = −
∑ν

i=1 pi ln (pi)

ln (ν)
,

where pi ∈ [0, 1],
∑

pi = 1. Entropy is increasing in complexity, and ranges between
0, for a degenerate distribution, and 1 when the distribution is uniform (pi = 1/ν, and
the numerator is equal to ln (ν)).7 In Section 4, we discuss a real-world example of how
complexity can affect firm performance and structure.

3.1.2. Stability
We assume that at each period there is a probability ρ that the environment changes, in

the sense that one element of the example set drops out, and is substituted by a different
one, even if the new elements still belonging to the concept set (if follows the same rule
as the one that it replaces, i.e. associate a vector of binary numbers of 10 digits to the
equivalent number in base 10). By altering the value of ρ we can change the speed at which
the environment changes, i.e. its stability. A very stable environment will be characterized
by low values of ρ, while a fast changing one will have a very high ρ. In Section 4, we
argue that changes in the stability of the environment were a factor in the evolution of firm
performance and competition in the computer industry.

7 We adopt the convention that 0 ln (0) = 0. Entropy is usually defined as the numerator of E, so that it varies
in the interval [0, ln (ν)]. Thus, we have normalized it. Entropy is a crucial component of Information Theory
(Mansuripur, 1987). See Arrow (1985) and Marshak (1954) for applications in economics.
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Fig. 3. Network size and (log) profit for different levels of environmental complexity.

3.2. The simulations

This section will investigate by means of simulations the relationship between firm size
and environmental characteristics.8 We will first study the environments of different com-
plexity (keeping stability constant), and then focus on the stability dimension.

3.2.1. The (s, S) and (s, C) environments
Beginning with the most stable environment (ρ = 0), we investigated the performance of

networks of different sizes for increasing levels of complexity. Starting with environments
that are very simple to learn (i.e.most of the distribution is concentrated on two elements),we
gradually increased the complexity by smoothing the probability distribution. We examined
three different levels of complexity: low, medium, high.9 For each of them, we calculated
the total profit for firms of different size (n goes from 2 to 20). The results, reported in
Fig. 3, confirm our conjectures.

First, the three curves never intersect, meaning that profits are decreasing in environmen-
tal complexity. In other words, learning simpler environments is easier (and hence more
profitable) regardless of firm dimension. Second, the trade-off between larger costs and
better performance is evident from the hump shaped profit curves: small firms have poorer
‘revenues,’ but have lower costs, while large firms have high costs that offset the gain in
performance. This does not hold if the environment is extremely simple; in that case, the
small firm does better and has lower costs.

8 The simulations were run in Mathematica 3.0. The code is available upon request. The parameters we used for
the simulations are β = 5, α0 = 0, α1 = 1, α2 = 1, η = 11.

9 The low complexity environment has all the probabilities concentrated on two values (one value would be
trivial): p1 = p2 = 0.5, pi = 0, i = 3, . . . , 10. Entropy in this case is E = 0.277. The medium complexity
environment has probabilities concentrated on the first five elements, with zeros in the other five (pj = 0.2,
pi = 0, j = 1, . . . , 5; i = 6, . . . , 10). The entropy value is E = 0.77. Finally, the case of maximum complexity
has a uniform distribution, with pi = 0.1, and E = 1. Notice that the complexity of the environment boils down
to the number of elements the network has to learn to distinguish: 2, 5, 10, respectively.
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Fig. 4. Optimal dimension and maximum profit for increasing environmental complexity.

To investigate the relationship between environmental and organizational complexity,
we increased the entropy values by making the probability distribution more and more
uniform.10 The results are shown in Fig. 4.

First, the figure confirms the results we had earlier for only three entropy levels: the
maximum attainable profit (the continuous line) is decreasing in environmental complexity.
The relationship between environmental and organizational complexity (the bar chart),
nevertheless, is not monotone. There is no apparent relationship between entropy levels and
the number of nodes for which profit is maximum.

In summary, the first set of simulations gives us some interesting insights. We can
see that complex environments are unambiguously associated with lower profits, for any
organizational dimension. Furthermore, the trade-off we described earlier between
performance and flexibility is visible and robust for complex environments. Finally,
there is no clear relationship between environmental complexity and firm dimension/
complexity.

3.2.2. The (u, S) and (u, C) environments
The second set of simulations investigated the network behavior in environments char-

acterized by various levels of stability. We took different values of ρ (the probability of
changes in the example set), and studied how different networks perform. The experiment
was run for a very complex environment (E = 1), and for a very simple one (E = 0.27).
The case of a complex environment is depicted in Figs. 5 and 6.

Fig. 5 shows two things. First, with the exception of the first one, curves corresponding
to increasing levels of ρ lie below each other. This means that more unstable environments
yield lower profits irrespective of the network size. Second, we find here, as we had in Fig. 3,
that for each level of environmental stability, profits are hump shaped. In other words, as

10 Each time the number of elements of the example set with 0 probability was reduced by 1, and all the elements
with positive probability had equal chance of being drawn.
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Fig. 5. Environmental complexity and network profit in a high complexity environment (E = 1).

we had earlier for complexity, along the stability dimension the trade-off of Section 2 is
relevant, and an optimal size may be determined.

Fig. 6 shows the relationship between environmental stability and the profit maximizing
network size (with the corresponding profit). The first fact to notice is that, as in the case of
complexity, the maximum attainable profit is lower in more unstable environments: learning
is more difficult, and errors decrease less. The second interesting feature of the simulation
is that here we can see a pattern in network/firm optimal size: the more unstable the envi-
ronment, the smaller the optimal size of the network. The continuous change of the samples
presented to the network is in fact more disrupting when the network has to update many
weights. Similarly, a large company has to revise a complex system of relations in response
to changes of the environment; and when this change occurs too frequently performance is

Fig. 6. Optimal size and maximum attainable profit for different levels of environmental instability (complex
environment).
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Fig. 7. Optimal size and maximum attainable profit for different levels of environmental instability (simple
environment).

affected. We will argue later that a similar argument may be among the factors explaining
the evolution of the personal computer industry.

Next, we ran the same experiment in a very simple environment. The behavior of the profit
curve is very similar to the one of Fig. 5, and hence it is not reported. Notice that the hump
shape of the profit function is an extremely robust feature, present in all the simulations
we made. On the other hand, Fig. 7 shows that in a very simple environment, the inverse
relationship between environmental instability and network/firm size, that we had in Fig. 6
disappears.11 This can be explained by the fact that low entropy means that most of the
probability is concentrated on few elements of the sample; this implies that most of the
time, when an element is dropped and substituted by a new one this has no influence, given
that the element itself had 0 probability of being drawn.

To conclude, the simulations performed in this section show some extremely robust
results.

• The network/firm faces a trade-off, between performance and costs of the structure.
This trade-off is apparent in the hump shaped profit curve, and has a direct parallel in
economics, in the trade-off between coordination costs and computational power.

• Increasing complexity of the environment implies decreasing performance and hence
profits.

• Increasing instability of the environment implies decreasing performance and hence prof-
its.

• We also found a very interesting result that only appears in complex environments: the
optimal size of the firm/network decreases as the instability of the environment increases.
Large networks are not able to cope with a rapidly changing environment.

In the next section, we discuss some examples of industrial evolution and adaptation.

11 Notice further that profits are much larger in size in Fig. 7 than in Fig. 6. This confirms the finding of Section
3.2.1, that increasing complexity implies worse performances.
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4. Discussion

Here we discuss two examples that are meant simply to illustrate how complexity and
stability can affect firm performance.

4.1. Stability and the personal computer market

By the late 1970s IBMwas theworld’s largest computerfirm and the number one producer
of mainframes. IBM’s success was due to both its strategic product introductions and its
successful approach to customer service. The life-cycle for themainframewas several years;
and IBM had grown to be a large bureaucratic institution designed to sell and rent relatively
few machines each year. The mainframe market was a relatively stable one.

With the introduction of the personal computer (PC) the product cycle rapidly increased.
New machines were being introduced every 18 months—the length of time that Intel needed
to produce a new generation of microprocessor. Even though IBM had, in many ways,
spawned the PC market as we know it, it was ill prepared to compete in a world of rapid
change and high instability. So much so that by the early 1990s the company was losing
money and needed to undertake a tremendous and expensive restructuring in order to remain
competitive.

In the sense outlined in Section 3.2.2, we see the mainframe market as a stable technolog-
ical environment (a low ρ). IBM had had the time to adapt to the relatively slow technology
cycles. The introduction of the microprocessor was an exogenous shock, a sudden increase
in the stability parameter ρ. The environment suddenly became very unstable, with rapidly
changing technological standards, consumer needs, market conditions and product cycles.
IBM found itself with an inefficient structure that was too slow to adapt; it was unable to
fight its smaller and more dynamic competitors, which quickly outperformed it.

4.2. Complexity and the conglomerate

In Section 3, wemeasure the complexity of the information processing task by the entropy
of the dataset. In other words, the complexity measures the “quantity” of information that
the firm is likely to process.

In the late 1960s, firms increased dramatically the rate of mergers and acquisitions. Such
unprecedented diversification led to the separation of top management at the corporate
office from the middle managers who were responsible for running the daily operations.
This separation occurred for two reasons. One was that the top management had little
knowledge or experience with the technological processes and markets of the divisions
or subsidiaries they acquired. The second was simply that the large number of acquired
businesses created an extraordinary overload in decision making at the corporate office. As
a result, throughout the 1970s the number of divestitures increased dramatically. Over time,
companies divested businesses unrelated to their core focus, and narrowed their product
lines (Chandler, 1990).

The simulation in Section 3.2.1 shows that increasing entropy is associated with decreas-
ing profit from information processing.We can relate this to the experience of conglomerates
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in the 1960s and 1970s. Firms believed that expansion in unrelated product areas would
not tax the information processing capabilities of the firm. However, expansion into these
areas produced a large jump in the amount of information managers had to process and as
a result they found that conglomerates were suffering lower profits. When firms divested
they decreased the amount of information and focused on information and production in
areas for which they had expertise, and, as a result, made the information load easier and
increased their subsequent profits.

5. Conclusion

In this paper we have argued for the importance of viewing the firm not as a production
function, but rather as an information processing and learning algorithm. In this way, we can
use results from computational learning theory to help model the firm and its relationship
to the environment. Our model is an attempt to begin to bridge two streams of literature.
On one hand, the management literature looks at the relationship between firm structure,
performance, and environmental characteristics. Management scholars have shown that the
necessary amount of information processing by the firm is positively related to the degree of
uncertainty in its environment. In order to avoid information processing overload, the firm
creates managerial positions and divides workers into different specialized subunits, such
as production, sales/marketing, and research. The optimal number of workers per manager
depends on both the complexity and the uncertainty of the information flows (Burns and
Stalker, 1994; Galbraith, 1973). The more the firm differentiates into sub-units to focus on
a specific areas, the more costly it is to integrate these various sub-units. The firm thus tries
to find an optimal balance between differentiation and integration (Lawrence and Lorsch,
1986).

On the economics side, our simulationmodel is in the same spirit as the recent agent-based
models of the organization. These models borrow heavily from computer science models
of data processing. Radner (1993), for example, proposes a model of the firm as a sim-
ple parallel processing algorithm, and shows that the network which maximize the speed
of processing is hierarchical. Bolton and Dewatripont (1994) model the communication
and coordination costs associated with decentralization. DeCanio and Watkins (1998) con-
struct a simple contagion model of information transmission among agents. Decanio et al.
(2000) model the firm as a graph; the optimal network is one that finds the best speed of
information transmission given its cost. Finally, there is also a growing body of work on
computational organization theory, which uses computer simulations to model the structure
of organizations (Carley and Prietula, 1994). We seek to add to this literature by studying
two additional components: firm learning and pattern recognition; and the relationship
between firm structure and environment.

We believe our methodology leads to a large number of possible research opportunities.
For example, Barr et al. (2001) explore more fully how computational learning theory
can model the learning of the production function. Barr (2001) models decision mak-
ing and organizational structure by blending rugged landscapes and artificial neural net-
works. Future research will also consider competition among networks of different sizes and
capabilities.
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