DC-OPF Formulation with Price-Sensitive Demand Bids

Junjie Sun and Leigh Tesfatsion
Last Revised: 19 March 2008

1 Cost and Demand Function Representations

Generator i 's total cost function:

$$
\begin{equation*}
\mathrm{TC}_{i}\left(p_{G i}\right)=a_{i} \cdot p_{G i}+b_{i} \cdot p_{G i}^{2}+\mathrm{FCost}_{i} \tag{1}
\end{equation*}
$$

Generator i 's total variable cost function:

$$
\begin{equation*}
\mathrm{TVC}_{i}\left(p_{G i}\right)=a_{i} \cdot p_{G i}+b_{i} \cdot p_{G i}^{2} \tag{2}
\end{equation*}
$$

Generator i 's marginal cost function (supply offer schedule):

$$
\begin{equation*}
\operatorname{MC}_{i}\left(p_{G i}\right)=a_{i}+2 \cdot b_{i} \cdot p_{G i} \tag{3}
\end{equation*}
$$

LSE j 's demand bid $p_{L j}$ consists of two parts: a fixed demand bid $p_{L j}^{F}$ and a price-sensitive demand bid $p_{L j}^{S}$, i.e.,

$$
\begin{equation*}
p_{L j}=p_{L j}^{F}+p_{L j}^{S} \tag{4}
\end{equation*}
$$

LSE j 's price-sensitive demand bid function expressing maximum willingness to pay as a function of the demanded quantity $p_{L j}^{S}$:

$$
\begin{equation*}
\mathrm{D}_{j}\left(p_{L j}^{S}\right)=c_{j}-2 \cdot d_{j} \cdot p_{L j}^{S} \tag{5}
\end{equation*}
$$

The gross surplus of LSE j corresponding to its price-sensitive demand bid: ${ }^{1}$

$$
\begin{equation*}
\operatorname{GSS}_{j}\left(p_{L j}^{S}\right)=c_{j} \cdot p_{L j}^{S}-d_{j} \cdot p_{L j}^{S}{ }^{2} \tag{6}
\end{equation*}
$$

Total net surplus corresponding to price-sensitive demand bids: ${ }^{2}$

$$
\begin{equation*}
\operatorname{TNSS}\left(\mathbf{p}_{G}, \mathbf{p}_{L}^{S}\right)=\operatorname{GSS}\left(\mathbf{p}_{L}^{S}\right)-\operatorname{TVC}\left(\mathbf{p}_{G}\right) \tag{7}
\end{equation*}
$$

[^0]where
\[

$$
\begin{align*}
\mathbf{p}_{G} & =\left(p_{G 1}, p_{G 2}, \cdots, p_{G I}\right) \tag{8}\\
\mathbf{p}_{L}^{S} & =\left(p_{L 1}^{S}, p_{L 2}^{S}, \cdots, p_{L J}^{S}\right) \tag{9}\\
\operatorname{GSS}\left(\mathbf{p}_{L}^{S}\right) & =\sum_{j=1}^{J} \operatorname{GSS}_{j}\left(p_{L j}^{S}\right) \tag{10}\\
\operatorname{TVC}\left(\mathbf{p}_{G}\right) & =\sum_{i=1}^{I} \operatorname{TVC}_{i}\left(p_{G i}\right) \tag{11}
\end{align*}
$$
\]

Total net cost function corresponding to price-sensitive demand bids:

$$
\begin{equation*}
\operatorname{TNCS}\left(\mathbf{p}_{G}, \mathbf{p}_{L}^{S}\right)=-\operatorname{TNSS}\left(\mathbf{p}_{G}, \mathbf{p}_{L}^{S}\right) \tag{13}
\end{equation*}
$$

2 DC-OPF Problem in Structural Form

A commonly used representation for an hourly DC-OPF problem with price-sensitive load bids is to minimize total net costs corresponding to the price-sensitive demand (TNCS) subject to various transmission constraints. As explained at length in Sun and Tesfation (2007), it is useful to modify the objective function for this standard DC-OPF problem to include a soft penalty function for large voltage angle deviations.

The resulting modified DC-OPF problem formulation is as follows, where all endogenous and exogenous variables are defined as in Tables (1) and (2):

Minimize

$$
\begin{equation*}
\operatorname{TNCS}\left(\mathbf{p}_{G}, \mathbf{p}_{L}^{S}\right)+\pi\left[\sum_{k m \in B R}\left[\delta_{k}-\delta_{m}\right]^{2}\right] \tag{14}
\end{equation*}
$$

with respect to real power generation levels, real power price-sensitive loads, and voltage angles

$$
p_{G i}, i=1, \ldots, I ; p_{L j}^{S}, j=1, \ldots, J ; \delta_{k}, k=1, \ldots, K
$$

subject to:
Real power balance constraint for each node $k=1, \ldots, K$:

$$
\begin{equation*}
\sum_{i \in I_{k}} p_{G i}-\sum_{j \in J_{k}} p_{L j}-\sum_{k m \text { or } m k \in B R} P_{k m}=0 \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
p_{L j} & =p_{L j}^{F}+p_{L j}^{S} \tag{16}\\
P_{k m} & =B_{k m}\left[\delta_{k}-\delta_{m}\right] \tag{17}
\end{align*}
$$

Alternatively,

$$
\begin{equation*}
\sum_{i \in I_{k}} p_{G i}-\sum_{j \in J_{k}} p_{L j}^{S}-\sum_{k m \text { or } m k \in B R} P_{k m}=\sum_{j \in J_{k}} p_{L j}^{F} \tag{18}
\end{equation*}
$$

Real power thermal constraint for each branch $\mathrm{km} \in \mathrm{BR}$:

$$
\begin{equation*}
\left|P_{k m}\right| \leq P_{k m}^{U} \tag{19}
\end{equation*}
$$

Real power operating capacity constraints for each Generator $\mathbf{i}=1, \ldots, \mathrm{I}$:

$$
\begin{equation*}
C a p_{i}^{L} \leq p_{G i} \leq C a p_{i}^{U} \tag{20}
\end{equation*}
$$

Real power price-sensitive load constraints for each LSE $\mathbf{j}=1, . ., \mathbf{J}$:

$$
\begin{equation*}
S L o a d_{j}^{L} \leq p_{L j}^{S} \leq S L o a d_{j}^{U} \tag{21}
\end{equation*}
$$

Voltage angle setting at reference node 1:

$$
\begin{equation*}
\delta_{1}=0 \tag{22}
\end{equation*}
$$

3 DC-OPF Problem in Matrix Form

3.1 General Matrix Formulation

Let δ_{1} be set to zero everywhere in the DC-OPF problem presented in the previous section 2 , in accordance with constraint (22). The general matrix depiction for the resulting reducedform DC-OPF problem can then be expressed as follows:
Minimize

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\frac{1}{2} \mathrm{x}^{\mathrm{T}} \mathrm{Gx}+\mathrm{a}^{\mathrm{T}} \mathrm{x} \tag{23}
\end{equation*}
$$

with respect to

$$
\mathbf{x}=\left[\begin{array}{lllllllll}
p_{G 1} & \ldots & p_{G I} & p_{L 1}^{S} & \ldots & p_{L J}^{S} & \delta_{2} & \ldots & \delta_{K}
\end{array}\right]_{(I+J+K-1) \times 1}^{\mathbf{T}}
$$

subject to

$$
\begin{align*}
& \mathrm{C}_{\mathrm{eq}}^{\mathrm{T}} \mathrm{x}=\mathrm{b}_{\mathrm{eq}} \tag{24}\\
& \mathrm{C}_{\mathrm{iq}}^{\mathrm{T}} \mathrm{x} \geq \mathrm{b}_{\mathrm{iq}} \tag{25}
\end{align*}
$$

Given this general matrix formulation, the problem is now to find the specific matrix and vector representations \mathbf{a} and \mathbf{G} for the objective function, $\mathbf{C}_{\mathbf{e q}}$ and $\mathbf{b}_{\mathbf{e q}}$ for the equality constraints, and $\mathbf{C}_{\mathbf{i q}}$ and $\mathbf{b}_{\mathbf{i q}}$ for the inequality constraints.

3.2 Objective Function Representation

First, the vector $\mathbf{a}^{\mathbf{T}}$ in the objective function is given by

$$
\mathbf{a}^{\mathbf{T}}=\left[\begin{array}{lllllllll}
a_{1} & \cdots & a_{I} & -c_{1} & \cdots & -c_{J} & 0 & \cdots & 0
\end{array}\right]_{1 \times(I+J+K-1)}
$$

Next, the positive definite matrix \mathbf{G} in the objective function is given by

$$
\mathbf{G}=\operatorname{blockDiag}\left[\begin{array}{ll}
\mathbf{U} & \mathbf{W}_{\mathbf{r r}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \mathbf{0} \tag{26}\\
\mathbf{0} & \mathbf{W}_{\mathbf{r r}}
\end{array}\right]_{(I+J+K-1) \times(I+J+K-1)}
$$

where

$$
\begin{gather*}
\left.\mathrm{U}=\operatorname{diag}\left[\begin{array}{lllll}
2 b_{1} & \cdots & 2 b_{I} & 2 d_{1} & \cdots
\end{array}\right) 2 d_{J}\right]_{(I+J) \times(I+J)} \tag{27}\\
\mathbf{W}_{\mathrm{rr}}=2 \pi\left[\begin{array}{ccccc}
\sum_{k \neq 2} \mathbb{E}_{k 2} & -\mathbb{E}_{23} & \cdots & -\mathbb{E}_{2 K} \\
-\mathbb{E}_{32} & \sum_{k \neq 3} \mathbb{E}_{k 3} & \cdots & -\mathbb{E}_{3 K} \\
\vdots & \vdots & \ddots & \vdots \\
-\mathbb{E}_{K 2} & -\mathbb{E}_{K 3} & \cdots & \sum_{k \neq K} \mathbb{E}_{k K}
\end{array}\right]_{(K-1) \times(K-1)} \tag{28}\\
\mathbb{E}=\left[\begin{array}{ccccc}
0 & \mathbb{I}(1 \leftrightarrow 2) & \mathbb{I}(1 \leftrightarrow 3) & \cdots & \mathbb{I}(1 \leftrightarrow K) \\
\mathbb{I}(2 \leftrightarrow 1) & 0 & \mathbb{I}(2 \leftrightarrow 3) & \cdots & \mathbb{I}(2 \leftrightarrow K) \\
\mathbb{I}(3 \leftrightarrow 1) & \mathbb{I}(3 \leftrightarrow 2) & 0 & \cdots & \mathbb{I}(3 \leftrightarrow K) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\mathbb{I}(K \leftrightarrow 1) & \mathbb{I}(K \leftrightarrow 2) & \mathbb{I}(K \leftrightarrow 3) & \cdots & 0
\end{array}\right]_{K \times K} \tag{29}\\
\mathbb{I}(k \leftrightarrow m)=\left\{\begin{array}{cc}
1 & \text { if either } k m \text { or } m k \in B R \\
0 & \text { otherwise }
\end{array}\right.
\end{gather*}
$$

3.3 Equality Constraints Representation

Then, the equality constraint matrix $\mathbf{C}_{\mathbf{e q}}^{\mathbf{T}}$ takes the form:

$$
\mathbf{C}_{\mathbf{e q}}^{\mathbf{T}}=\left[\begin{array}{lll}
\mathbf{I I} & -\mathbf{J J} & -\mathbf{B}_{\mathbf{r}}^{\prime} \mathbf{T}
\end{array}\right]_{K \times(I+J+K-1)}
$$

where

$$
\begin{gather*}
\mathbf{I I}=\left[\begin{array}{cccc}
\mathbb{I}\left(1 \in I_{1}\right) & \mathbb{I}\left(2 \in I_{1}\right) & \cdots & \mathbb{I}\left(I \in I_{1}\right) \\
\mathbb{I}\left(1 \in I_{2}\right) & \mathbb{I}\left(2 \in I_{2}\right) & \cdots & \mathbb{I}\left(I \in I_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{I}\left(1 \in I_{K}\right) & \mathbb{I}\left(2 \in I_{K}\right) & \cdots & \mathbb{I}\left(I \in I_{K}\right)
\end{array}\right]_{K \times I} \tag{30}\\
\mathbb{I}\left(i \in I_{k}\right)=\left\{\begin{array}{cl}
1 & \text { if } i \in I_{k} \\
0 & \text { if } i \notin I_{k}
\end{array}\right.
\end{gather*}
$$

$$
\begin{gather*}
\mathbf{J J}=\left[\begin{array}{cccc}
\mathbb{I}\left(1 \in J_{1}\right) & \mathbb{I}\left(2 \in J_{1}\right) & \cdots & \mathbb{I}\left(J \in J_{1}\right) \\
\mathbb{I}\left(1 \in J_{2}\right) & \mathbb{I}\left(2 \in J_{2}\right) & \cdots & \mathbb{I}\left(J \in J_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{I}\left(1 \in J_{K}\right) & \mathbb{I}\left(2 \in J_{K}\right) & \cdots & \mathbb{I}\left(J \in J_{K}\right)
\end{array}\right]_{K \times J} \tag{31}\\
\mathbb{I}\left(j \in J_{k}\right)=\left\{\begin{array}{cccc}
1 & \text { if } j \in J_{k} \\
0 & \text { if } j \notin J_{k}
\end{array}\right. \\
\mathbf{B}_{\mathbf{r}}^{\prime}=\left[\begin{array}{ccccc}
-B_{21} & \sum_{k \neq 2} B_{k 2} & -B_{23} & \cdots & -B_{2 K} \\
-B_{31} & -B_{32} & \sum_{k \neq 3} B_{k 3} & \cdots & -B_{3 K} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-B_{K 1} & -B_{K 2} & -B_{K 3} & \cdots & \sum_{k \neq K} B_{k K}
\end{array}\right]_{(K-1) \times K} \tag{32}\\
B_{k m}=\left\{\begin{array}{cc}
\frac{1}{x_{k m}}>0 & \text { if } k m \text { or } m k \in B R \\
0 & \text { otherwise }
\end{array}\right.
\end{gather*}
$$

The associated equality constraint vector $\mathbf{b}_{\text {eq }}$ takes the form:

$$
\mathbf{b}_{\mathbf{e q}}=\left[\begin{array}{llll}
\sum_{j \in J_{1}} p_{L j}^{F} & \sum_{j \in J_{2}} p_{L j}^{F} & \cdots & \sum_{j \in J_{K}} p_{L j}^{F}
\end{array}\right]_{K \times 1}^{\mathbf{T}}
$$

3.4 Inequality Constraints Representation

Finally, the inequality constraint matrix $\mathbf{C}_{\mathbf{i q}}$ takes the form as follows.

$$
\mathrm{C}_{\mathbf{i q}}^{\mathrm{T}}=\left[\begin{array}{l}
\text { MatrixT } \\
\hline \text { MatrixG } \\
\hline \text { MatrixL }
\end{array}\right]=\left[\begin{array}{rrr}
\mathrm{O}_{\mathrm{NI}} & \mathrm{O}_{\mathrm{NJ}} & \mathrm{ZA}_{\mathbf{r}} \\
\mathrm{O}_{\mathrm{NI}} & \mathrm{O}_{\mathrm{NJ}} & -\mathrm{ZA}_{\mathbf{r}} \\
\hline \mathrm{I}_{\mathrm{II}} & \mathrm{O}_{\mathrm{IJ}} & \mathrm{O}_{\mathrm{IK}} \\
-\mathrm{I}_{\mathrm{II}} & \mathrm{O}_{\mathrm{IJ}} & \mathrm{O}_{\mathrm{IK}} \\
\hline \mathrm{O}_{\mathrm{JI}} & \mathrm{I}_{\mathrm{JJ}} & \mathrm{O}_{\mathrm{JK}} \\
\mathrm{O}_{\mathrm{JI}} & -\mathrm{I}_{\mathrm{JJ}} & \mathrm{O}_{\mathrm{JK}}
\end{array}\right]_{(2 N+2 I+2 J) \times(I+J+K-1)}
$$

where $\mathbf{O}_{\mathbf{N I}}$ is an $N \times I$ zero matrix, $\mathbf{O}_{\mathbf{N J}}$ is an $N \times J$ zero matrix, $\mathbf{O}_{\mathbf{I J}}$ is an $I \times J$ zero matrix, $\mathbf{O}_{\mathbf{I K}}$ is an $I \times(K-1)$ zero matrix, $\mathbf{O}_{\mathbf{J I}}$ is a $J \times I$ zero matrix, and $\mathbf{O}_{\mathbf{J K}}$ is a $J \times(K-1)$ zero matrix; $\mathbf{I}_{\mathbf{I I}}$ is an $I \times I$ identity matrix and $\mathbf{I}_{\mathbf{J J}}$ is a $J \times J$ identity matrix; and matrices \mathbf{Z} and $\mathbb{A}_{\mathbf{r}}$ are defined as follows.

Let BI denote the listing of the N physically distinct branches $k m \in B R$ constituting the transmission grid, lexicographically sorted as in a dictionary from lower to higher numbered nodes. Let $\mathbf{B I}_{n}$ denote the nth branch listed in BI. Then the adjacency matrix \mathbb{A} with entries of 1 for the "from" node and -1 for the "to" node can be expressed as follows:

$$
\mathbb{A}=\left[\begin{array}{cccc}
\mathbb{J}\left(1, \mathbf{B I}_{1}\right) & \mathbb{J}\left(2, \mathbf{B I}_{1}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{1}\right) \tag{33}\\
\mathbb{J}\left(1, \mathbf{B I}_{2}\right) & \mathbb{J}\left(2, \mathbf{B I}_{2}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\mathbb{J}\left(1, \mathbf{B I}_{N}\right) & \mathbb{J}\left(2, \mathbf{B I}_{N}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{N}\right)
\end{array}\right]_{N \times K}
$$

where $\mathbb{J}(\cdot)$ is an indicator function defined as:

$$
\mathbb{J}\left(k, \mathbf{B I}_{n}\right)=\left\{\begin{aligned}
+1 & \text { if } \mathbf{B I}_{n} \text { takes the form } k m \in B R \text { for some node } m>k \\
-1 & \text { if } \mathbf{B I}_{n} \text { takes the form } m k \in B R \text { for some node } m<k \\
0 & \text { otherwise }
\end{aligned}\right.
$$

for all nodes $k=1, \ldots, K$ and for all branches $n=1, \ldots, N$
Let the reduced adjacency matrix $\mathbb{A}_{\mathbf{r}}$ be defined as \mathbb{A} with its first column deleted. Thus, $\mathbb{A}_{\mathbf{r}}$ is expressed as

$$
\mathbb{A}_{\mathbf{r}}=\left[\begin{array}{ccc}
\mathbb{J}\left(2, \mathbf{B I}_{1}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{1}\right) \tag{34}\\
\mathbb{J}\left(2, \mathbf{B I}_{2}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{2}\right) \\
\vdots & \ddots & \vdots \\
\mathbb{J}\left(2, \mathbf{B I}_{N}\right) & \cdots & \mathbb{J}\left(K, \mathbf{B I}_{N}\right)
\end{array}\right]_{N \times(K-1)}
$$

The matrix \mathbf{Z} is defined as the diagonal matrix whose diagonal entries give the $B_{k m}$ values for all distinct connected branches $k m \in B R$ ordered as in $B I$. That is,

$$
\mathbf{Z}=\operatorname{diag}\left[\begin{array}{llll}
Z_{1} & Z_{2} & \cdots & Z_{N} \tag{35}
\end{array}\right]_{N \times N}
$$

where $Z_{n}=B_{k m}$ if $B I_{n}$ (the $n t h$ element of $B I$) corresponds to branch $k m \in B R$.
Let $\mathrm{P}_{B I_{n}}^{U}=\mathrm{P}_{k m}^{U}$ if BI_{n} corresponds to branch $k m \in \mathrm{BR}$. The associated inequality constraint vector $\mathbf{b}_{\mathbf{i q}}$ can then be expressed as follows:

$$
\mathbf{b}_{\mathbf{i q}}=\left[\begin{array}{lllll}
-\mathbf{P}^{\mathbf{U}} & -\mathbf{P}^{\mathbf{U}} \operatorname{Cap}^{\mathbf{L}}-\text { Cap }^{\mathbf{U}} & \text { SLoad }^{\mathbf{L}} & - \text { SLoad }^{\mathbf{U}}
\end{array}\right]_{(2 N+2 I+2 J) \times 1}^{\mathbf{T}}
$$

where

$$
\begin{gathered}
\mathbf{P}^{\mathbf{U}}=\left[\begin{array}{llll}
P_{\mathbf{B I}_{1}}^{U} & P_{\mathbf{B I}_{2}}^{U} & \cdots & P_{\mathbf{B I}_{N}}^{U}
\end{array}\right]_{N \times 1}^{\mathbf{T}} \\
\mathbf{C a p}^{\mathbf{L}}=\left[\begin{array}{llll}
\text { Capp}_{1}^{L} & C a p_{2}^{L} & \cdots & C a p_{I}^{L}
\end{array}\right]_{I \times 1}^{\mathbf{T}} \\
\mathbf{C a p}^{\mathbf{U}}=\left[\begin{array}{llll}
\text { Cap }_{1}^{U} & C a p_{2}^{U} & \cdots & C a p_{I}^{U}
\end{array}\right]_{I \times 1}^{\mathbf{T}} \\
\mathbf{S L o a d}^{\mathbf{L}}=\left[\begin{array}{llll}
S_{\text {Load }}^{1} & S L o a d_{2}^{L} & \cdots & \text { SLoad }{ }_{J}^{L}
\end{array}\right]_{J \times 1}^{\mathbf{T}} \\
\mathbf{S L o a d}^{\mathbf{U}}=\left[\begin{array}{llll}
\text { SLoad }_{1}^{U} & S L o a d_{2}^{U} & \cdots & \text { SLoad }_{J}^{U}
\end{array}\right]_{J \times 1}^{\mathbf{T}}
\end{gathered}
$$

4 Illustrative 5-Node Example

Now consider a five-node case for which the transmission grid is not completely connected; see Figure 1. Let five Generators and three LSEs be distributed across the grid as follows: Generators 1 and 2 are located at node 1; LSE 1 is located at node 2; Generator 3 and LSE 2 are located at node 3; Generator 4 and LSE 3 are located at node 4; and Generator 5 is located node 5.

Figure 1: 5-Node Transmission Grid

4.1 5-Node Structural Form

This information implies the following structural configuration for the transmission grid:

$$
\begin{gathered}
I=5 ; J=3 ; K=5 ; N=6 \\
I_{1}=\{\mathrm{G} 1, \mathrm{G} 2\}, I_{2}=\{\emptyset\}, I_{3}=\{\mathrm{G} 3\}, I_{4}=\{\mathrm{G} 4\}, I_{5}=\{\mathrm{G} 5\} ; \\
J_{1}=\{\emptyset\}, J_{2}=\{\mathrm{LSE} 1\}, J_{3}=\{\mathrm{LSE} 2\}, J_{4}=\{\mathrm{LSE} 3\}, J_{5}=\{\emptyset\} ; \\
B R=\{(1,2),(1,4),(1,5),(2,3),(3,4),(4,5)\}
\end{gathered}
$$

The structural DC-OPF problem then takes the following form:
Minimize

$$
\begin{gather*}
\sum_{i=1}^{5}\left[a_{i} \cdot p_{G i}+b_{i} \cdot p_{G i}^{2}\right]-\sum_{j=1}^{3}\left[c_{j} \cdot p_{L j}^{S}-d_{i} \cdot p_{L j}^{S}{ }^{2}\right] \\
+\pi\left[\left[\delta_{1}-\delta_{2}\right]^{2}+\left[\delta_{1}-\delta_{4}\right]^{2}+\left[\delta_{1}-\delta_{5}\right]^{2}+\left[\delta_{2}-\delta_{3}\right]^{2}+\left[\delta_{3}-\delta_{4}\right]^{2}+\left[\delta_{4}-\delta_{5}\right]^{2}\right] \tag{36}
\end{gather*}
$$

with respect to real power generation levels, real power price-sensitive loads, and voltage angles

$$
p_{G i}, i=1, \ldots, 5 ; p_{L j}^{S}, j=1, \ldots, 3 ; \delta_{k}, k=1, \ldots, 5
$$

subject to:
Real power balance constraint for each node $k=1, \ldots, 5$:

$$
\begin{equation*}
\sum_{i \in I_{k}} p_{G i}-\sum_{j \in J_{k}} p_{L j}^{S}-\sum_{k m \text { or } m k \in B R} P_{k m}=\sum_{j \in J_{k}} p_{L j}^{F} \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{k m}=B_{k m}\left[\delta_{k}-\delta_{m}\right] \tag{38}
\end{equation*}
$$

Real power thermal constraint for each branch $\mathrm{km} \in \mathrm{BR}$:

$$
\begin{equation*}
\left|P_{k m}\right| \leq P_{k m}^{U} \tag{39}
\end{equation*}
$$

Real power operating capacity constraints for each Generator $\mathbf{i}=1, . ., 5$:

$$
\begin{equation*}
C a p_{i}^{L} \leq p_{G i} \leq C a p_{i}^{U} \tag{40}
\end{equation*}
$$

Real power price-sensitive load constraints for each LSE $\mathbf{j}=1, . ., 3$:

$$
\begin{equation*}
S \text { Load }_{j}^{L} \leq p_{L j}^{S} \leq S \text { Load }_{j}^{U} \tag{41}
\end{equation*}
$$

Voltage angle setting at reference node 1 :

$$
\begin{equation*}
\delta_{1}=0 \tag{42}
\end{equation*}
$$

$4.2 \quad 5$-Node Objective Function Representation

First, the solution vector \mathbf{x} takes the form

$$
\mathbf{x}=\left[\begin{array}{llllllllllll}
p_{G 1} & p_{G 2} & p_{G 3} & p_{G 4} & p_{G 5} & p_{L 1}^{S} & p_{L 2}^{S} & p_{L 3}^{S} & \delta_{2} & \delta_{3} & \delta_{4} & \delta_{5}
\end{array}\right]_{12 \times 1}^{\mathbf{T}}
$$

The vector $\mathbf{a}^{\mathbf{T}}$ in the objective function is given by

$$
\mathbf{a}^{\mathbf{T}}=\left[\begin{array}{llllllllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & -c_{1} & -c_{2} & -c_{3} & 0 & 0 & 0 & 0
\end{array}\right]_{1 \times 12}
$$

Next, the positive definite matrix \mathbf{G} in the objective function is given by

$$
\mathbf{G}=\operatorname{blockDiag}\left[\begin{array}{ll}
\mathbf{U} & \mathbf{W}_{\mathbf{r r}}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{U} & \mathbf{0} \tag{43}\\
\mathbf{0} & \mathbf{W}_{\mathbf{r r}}
\end{array}\right]_{12 \times 12}
$$

where

$$
\mathbf{U}=\operatorname{diag}\left[\begin{array}{llllllll}
2 b_{1} & 2 b_{2} & 2 b_{3} & 2 b_{4} & 2 b_{5} & 2 d_{1} & 2 d_{2} & 2 d_{3} \tag{44}
\end{array}\right]_{8 \times 8}
$$

$$
\mathbf{W}_{\mathrm{rr}}=2 \pi\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \tag{45}\\
1 & 2 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]_{4 \times 4}
$$

4.3 5-Node Equality Constraints Representation

Then, the equality constraint matrix $\mathbf{C}_{\mathbf{e q}}^{\mathbf{T}}$ takes the form:

$$
\mathbf{C}_{\mathbf{e q}}^{\mathbf{T}}=\left[\begin{array}{lll}
\mathbf{I I} & -\mathbf{J J J} & -\mathbf{B}_{\mathbf{r}}^{\mathbf{T}}
\end{array}\right]_{5 \times(12)}
$$

where

$$
\begin{gather*}
\mathbf{I I}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]_{5 \times 5} \tag{46}\\
\mathbf{J J}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]_{5 \times 3} \tag{47}\\
\mathbf{B}_{\mathbf{r}}^{\prime}=\left[\begin{array}{ccccc}
-B_{21} & B_{21}+B_{23} & -B_{23} & 0 & 0 \\
0 & -B_{32} & B_{32}+B_{34} & -B_{34} & 0 \\
-B_{41} & 0 & -B_{43} & B_{41}+B_{43}+B_{45} & -B_{45} \\
-B_{51} & 0 & 0 & -B_{54} & B_{51}+B_{54}
\end{array}\right]_{4 \times 5} \tag{48}
\end{gather*}
$$

The associated equality constraint vector $\mathbf{b}_{\text {eq }}$ takes the form:

$$
\mathbf{b}_{\mathbf{e q}}=\left[\begin{array}{lllll}
0 & p_{L 1}^{F} & p_{L 2}^{F} & p_{L 3}^{F} & 0
\end{array}\right]_{5 \times 1}^{\mathbf{T}}
$$

4.4 5-Node Inequality Constraints Representation

Finally, the inequality constraint matrix $\mathbf{C}_{\mathbf{i q}}$ takes the form as follows.

$$
\mathrm{C}_{\mathrm{iq}}^{\mathrm{T}}=\left[\begin{array}{c}
\text { MatrixT } \\
\hline \text { MatrixG } \\
\hline \text { MatrixL }
\end{array}\right]=\left[\begin{array}{rrr}
\mathrm{O}_{\mathrm{NI}} & \mathrm{O}_{\mathrm{NJ}} & \mathrm{Z}_{\mathbb{A}_{\mathbf{r}}} \\
\mathrm{O}_{\mathrm{NI}} & \mathrm{O}_{\mathrm{NJ}} & -\mathrm{ZA}_{\mathrm{r}} \\
\hline \mathrm{I}_{\mathrm{II}} & \mathrm{O}_{\mathrm{IJ}} & \mathrm{O}_{\mathrm{IK}} \\
-\mathrm{I}_{\mathrm{II}} & \mathrm{O}_{\mathrm{IJ}} & \mathrm{O}_{\mathrm{IK}} \\
\hline \mathrm{O}_{\mathrm{JI}} & \mathrm{I}_{\mathrm{JJ}} & \mathrm{O}_{\mathrm{JK}} \\
\mathrm{O}_{\mathrm{JI}} & -\mathrm{I}_{\mathrm{JJ}} & \mathrm{O}_{\mathrm{JK}}
\end{array}\right]_{28 \times 12}
$$

where

$$
\begin{gather*}
\mathbf{B I}=[(1,2),(1,4),(1,5),(2,3),(3,4),(4,5)]_{6 \times 1}^{T} \tag{49}\\
\mathbf{Z}=\operatorname{diag}\left[\begin{array}{llllll}
B_{12} & B_{14} & B_{15} & B_{23} & B_{34} & B_{45}
\end{array}\right]_{6 \times 6} \tag{50}\\
\mathbb{A}_{\mathbf{r}}=\left[\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{array}\right]_{6 \times 4} \tag{51}
\end{gather*}
$$

Hence the complete matrix $\mathbf{C}_{\mathbf{i q}}^{\mathbf{T}}$ can be found as

$$
\mathbf{C}_{\mathbf{i q}}^{\mathbf{T}}=\left[\begin{array}{rrrrr|rcc|cccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{14} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{15} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{23} & -B_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{34} & -B_{34} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{45} & -B_{45} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{14} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & B_{15} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{23} & B_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{34} & B_{34} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -B_{45} & B_{45} \\
\hline \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right]_{28 \times 12}
$$

The associated inequality constraint vector $\mathbf{b}_{\mathbf{i q}}$ can be expressed as follows:

$$
\mathbf{b}_{\mathrm{iq}}=\left[\begin{array}{lllll}
-\mathbf{P}^{\mathrm{U}} & -\mathbf{P}^{\mathrm{U}} & \text { Cap }^{\mathbf{L}}-\text { Cap }^{\mathrm{U}} & \text { SLoad }^{\mathrm{L}} & - \text { SLoad }^{\mathrm{U}}
\end{array}\right]_{28 \times 1}^{\mathbf{T}}
$$

where

$$
\begin{gathered}
\mathbf{P}^{\mathrm{U}}=\left[\begin{array}{llllll}
P_{12}^{U} & P_{14}^{U} & P_{15}^{U} & P_{23}^{U} & P_{34}^{U} & P_{45}^{U}
\end{array}\right]_{6 \times 1}^{\mathbf{T}} \\
\mathbf{C a p}^{\mathbf{L}}=\left[\begin{array}{lllll}
C_{a p_{1}^{L}} & C a p_{2}^{L} & C a p_{3}^{L} & C a p_{4}^{L} & C a p_{5}^{L}
\end{array}\right]_{5 \times 1}^{\mathbf{T}} \\
\mathbf{C a p}^{\mathbf{U}}=\left[\begin{array}{lllll}
\text { Cap }_{1}^{U} & C a p_{2}^{U} & C a p_{3}^{U} & C a p_{4}^{U} & C a p_{5}^{U}
\end{array}\right]_{5 \times 1}^{\mathbf{T}} \\
\mathbf{S L o a d}^{\mathbf{L}}=\left[\begin{array}{lllll}
S L o a d_{1}^{L} & S L o a d_{2}^{L} & S L o a d_{3}^{L}
\end{array}\right]_{3 \times 1}^{\mathbf{T}} \\
\mathbf{S L o a d}^{\mathbf{U}}=\left[\begin{array}{lllll}
S L o a d_{1}^{U} & S L o a d_{2}^{U} & S L o a d_{3}^{U}
\end{array}\right]_{3 \times 1}^{\mathbf{T}}
\end{gathered}
$$

Table 1: DC OPF Admissible Exogenous Variables

Variable	Description	Admissibility Restrictions
K	Total number of transmission grid nodes	$K>0$
N	Total number of physically distinct network branches	$N>0$
I	Total number of Generators	$I>0$
J	Total number of LSEs	$J>0$
I_{k}	Set of Generators located at node k	$\operatorname{Card}\left(\cup_{k=1}^{K} I_{k}\right)=I$
J_{k}	Set of LSEs located at node k	$\operatorname{Card}^{\prime}\left(\cup_{k=1}^{K} J_{k}\right)=J$
S_{o}	Base apparent power (in three-phase MVAs)	$S_{o} \geq 1$
V_{o}	Base voltage (in line-to-line kVs)	$V_{o}>0$
V_{k}	Voltage magnitude (in kVs) at node k	$V_{k}=V_{o}, k=1, \ldots, K$
$k m$	Branch connecting nodes k and m (if one exists)	$k \neq m$
$B R$	Set of all physically distinct branches $k m, k<m$	$B R \neq \emptyset$
$x_{k m}$	Reactance (ohms) for branch $k m$	$x_{k m}=x_{m k}>0, k m \in B R$
$B_{k m}$	[1/xkm for branch $k m$	$B_{k m}=B_{m k}>0, k m \in B R$
$P_{k m}^{U}$	Thermal limit (MWs) for real power flow on $k m$	$P_{k m}^{U}>0, k m \in B R$
δ_{1}	Reference node 1 voltage angle (in radians)	$\delta_{1}=0$
a_{i}, b_{i}	Cost coefficients for Generator i	$b_{i}>0, i=1, \ldots, I$
$C a p_{i}^{L}$	Lower real power operating capacity for Generator i	$C a p_{i}^{L} \geq 0, i=1, \ldots, I$
$C a p_{i}^{U}$	Upper real power operating capacity for Generator i	$C a p_{i}^{U}>0, i=1, \ldots, I$
FCost_{i}	Fixed costs (hourly prorated) for Generator i	$\mathrm{FCost} \mathrm{C}_{i} \geq 0, i=1, \ldots I$
c_{j}, d_{j}	Demand coefficients for LSE j	$c_{j}, d_{j}>0, j=1, \ldots, J$
$S L o a d_{j}^{L}$	Lower real power price-sensitive load limit for LSE j	$S L o a d_{j}^{L} \geq 0, j=1, \ldots, J$
$S L o a d_{j}^{U}$	Upper real power price-sensitive load limit for LSE j	$S L o a d_{j}^{U} \leq c_{j} /\left[2 d_{j}\right], j=1, \ldots, J$
$p_{L j}^{F}$	Price-insensitive fixed real power load for LSE j	$p_{L j}^{F} \geq 0, j=1, \ldots, J$

Table 2: DC OPF Endogenous Variables

Variable	Description
$p_{G i}$	Real power generation (MWs) supplied by Generator $i=1, \ldots, I$
$p_{L j}^{S}$	Price-sensitive real power load (MWs) demanded by LSE $j=1, \ldots, J$
δ_{k}	Voltage angle (in radians) at node $k=2, \ldots, K$
$P_{k m}$	Real power (MWs) flowing in branch $k m \in \mathrm{BR}$

[^0]: ${ }^{1}$ The gross surplus of LSE j corresponding to its fixed demand bid is always infinite (vertical demand curve). For this reason, the DC-OPF objective function used by the ISO to determine efficient commitment and dispatch of generation will only take into account LSE gross surplus corresponding to price-sensitive demand bids.
 ${ }^{2}$ Note that TNSS coincides with the usual measure for total net surplus in the absence of fixed demand bids.

