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1 Cost and Demand Function Representations

Generator i’s total cost function:

TCi(pGi) = ai · pGi + bi · p2
Gi + FCosti (1)

Generator i’s total variable cost function:

TVCi(pGi) = ai · pGi + bi · p2
Gi (2)

Generator i’s marginal cost function (supply offer schedule):

MCi(pGi) = ai + 2 · bi · pGi (3)

LSE j’s demand bid pLj consists of two parts: a fixed demand bid pF
Lj and a price-sensitive

demand bid pS
Lj , i.e.,

pLj = pF
Lj + pS

Lj (4)

LSE j’s price-sensitive demand bid function expressing maximum willingness to pay as
a function of the demanded quantity pS

Lj :

Dj(p
S
Lj) = cj − 2 · dj · pS

Lj (5)

The gross surplus of LSE j corresponding to its price-sensitive demand bid:1

GSSj(p
S
Lj) = cj · pS

Lj − dj · pS
Lj

2
(6)

Total net surplus corresponding to price-sensitive demand bids:2

TNSS(pG,pS
L) = GSS(pS

L) − TVC(pG) (7)

1The gross surplus of LSE j corresponding to its fixed demand bid is always infinite (vertical demand
curve). For this reason, the DC-OPF objective function used by the ISO to determine efficient commitment
and dispatch of generation will only take into account LSE gross surplus corresponding to price-sensitive
demand bids.

2Note that TNSS coincides with the usual measure for total net surplus in the absence of fixed demand
bids.
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where

pG = (pG1, pG2, · · · , pGI ) (8)

pS
L =

(
pS

L1, p
S
L2, · · · , pS

LJ

)
(9)

GSS(pS
L) =

J∑

j=1

GSSj(p
S
Lj) (10)

TVC(pG) =

I∑

i=1

TVCi(pGi) (11)

(12)

Total net cost function corresponding to price-sensitive demand bids:

TNCS(pG,pS
L) = − TNSS(pG,pS

L) (13)

2 DC-OPF Problem in Structural Form

A commonly used representation for an hourly DC-OPF problem with price-sensitive load
bids is to minimize total net costs corresponding to the price-sensitive demand (TNCS)
subject to various transmission constraints. As explained at length in Sun and Tesfation
(2007), it is useful to modify the objective function for this standard DC-OPF problem to
include a soft penalty function for large voltage angle deviations.

The resulting modified DC-OPF problem formulation is as follows, where all endogenous
and exogenous variables are defined as in Tables (1) and (2):

Minimize

TNCS(pG,pS
L) + π

[ ∑

km∈BR

[δk − δm]2

]
(14)

with respect to real power generation levels, real power price-sensitive loads,
and voltage angles

pGi, i = 1, ..., I; pS
Lj, j = 1, ..., J ; δk, k = 1, ...,K

subject to:

Real power balance constraint for each node k = 1, ...,K:

∑

i∈Ik

pGi −
∑

j∈Jk

pLj −
∑

kmormk ∈ BR

Pkm = 0 (15)

where
pLj = pF

Lj + pS
Lj (16)

Pkm = Bkm [δk − δm] (17)
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Alternatively,
∑

i∈Ik

pGi −
∑

j∈Jk

pS
Lj −

∑

km ormk ∈ BR

Pkm =
∑

j∈Jk

pF
Lj (18)

Real power thermal constraint for each branch km ∈ BR:

|Pkm| ≤ P U
km (19)

Real power operating capacity constraints for each Generator i = 1, .., I:

CapL
i ≤ pGi ≤ CapU

i (20)

Real power price-sensitive load constraints for each LSE j = 1, ..,J:

SLoadL
j ≤ pS

Lj ≤ SLoadU
j (21)

Voltage angle setting at reference node 1:

δ1 = 0 (22)

3 DC-OPF Problem in Matrix Form

3.1 General Matrix Formulation

Let δ1 be set to zero everywhere in the DC-OPF problem presented in the previous section 2,
in accordance with constraint (22). The general matrix depiction for the resulting reduced-
form DC-OPF problem can then be expressed as follows:

Minimize

f(x) =
1

2
xTGx + aTx (23)

with respect to

x =
[

pG1 . . . pGI pS
L1 . . . pS

LJ δ2 . . . δK

]T
(I+J+K−1)×1

subject to

CT
eqx = beq (24)

CT
iqx ≥ biq (25)

Given this general matrix formulation, the problem is now to find the specific matrix and
vector representations a and G for the objective function, Ceq and beq for the equality
constraints, and Ciq and biq for the inequality constraints.
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3.2 Objective Function Representation

First, the vector aT in the objective function is given by

aT =
[

a1 · · · aI −c1 · · · −cJ 0 · · · 0
]
1×(I+J+K−1)

Next, the positive definite matrix G in the objective function is given by

G = blockDiag
[

U Wrr

]
=

[
U 0
0 Wrr

]

(I+J+K−1)×(I+J+K−1)

(26)

where

U = diag
[

2b1 · · · 2bI 2d1 · · · 2dJ

]
(I+J)×(I+J)

(27)

Wrr = 2π




∑
k 6=2 Ek2 −E23 · · · −E2K

−E32

∑
k 6=3 Ek3 · · · −E3K

...
...

. . .
...

−EK2 −EK3 · · ·
∑

k 6=K EkK




(K−1)×(K−1)

(28)

E =




0 I(1 ↔ 2) I(1 ↔ 3) · · · I(1 ↔ K)
I(2 ↔ 1) 0 I(2 ↔ 3) · · · I(2 ↔ K)
I(3 ↔ 1) I(3 ↔ 2) 0 · · · I(3 ↔ K)

...
...

...
. . .

...
I(K ↔ 1) I(K ↔ 2) I(K ↔ 3) · · · 0




K×K

(29)

I(k ↔ m) =

{
1 if either km or mk ∈ BR
0 otherwise

3.3 Equality Constraints Representation

Then, the equality constraint matrix CT
eq takes the form:

CT
eq =

[
II −JJ −B

′T
r

]
K×(I+J+K−1)

where

II =




I(1 ∈ I1) I(2 ∈ I1) · · · I(I ∈ I1)
I(1 ∈ I2) I(2 ∈ I2) · · · I(I ∈ I2)

...
...

. . .
...

I(1 ∈ IK) I(2 ∈ IK) · · · I(I ∈ IK)




K×I

(30)

I(i ∈ Ik) =

{
1 if i ∈ Ik

0 if i /∈ Ik
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JJ =




I(1 ∈ J1) I(2 ∈ J1) · · · I(J ∈ J1)
I(1 ∈ J2) I(2 ∈ J2) · · · I(J ∈ J2)

...
...

. . .
...

I(1 ∈ JK) I(2 ∈ JK) · · · I(J ∈ JK)




K×J

(31)

I(j ∈ Jk) =

{
1 if j ∈ Jk

0 if j /∈ Jk

B′
r =




−B21

∑
k 6=2 Bk2 −B23 · · · −B2K

−B31 −B32

∑
k 6=3 Bk3 · · · −B3K

...
...

...
. . .

...
−BK1 −BK2 −BK3 · · ·

∑
k 6=K BkK




(K−1)×K

(32)

Bkm =

{
1

xkm
> 0 if km or mk ∈ BR

0 otherwise

The associated equality constraint vector beq takes the form:

beq =
[ ∑

j∈J1
pF

Lj

∑
j∈J2

pF
Lj · · ·

∑
j∈JK

pF
Lj

]T
K×1

3.4 Inequality Constraints Representation

Finally, the inequality constraint matrix Ciq takes the form as follows.

CT
iq =




MatrixT
MatrixG
MatrixL


 =




ONI ONJ ZAr

ONI ONJ −ZAr

III OIJ OIK

−III OIJ OIK

OJI IJJ OJK

OJI −IJJ OJK




(2N+2I+2J)×(I+J+K−1)

where ONI is an N×I zero matrix, ONJ is an N×J zero matrix, OIJ is an I×J zero matrix,
OIK is an I × (K − 1) zero matrix, OJI is a J × I zero matrix, and OJK is a J × (K − 1)
zero matrix; III is an I × I identity matrix and IJJ is a J × J identity matrix; and matrices
Z and Ar are defined as follows.

Let BI denote the listing of the N physically distinct branches km ∈ BR constituting the
transmission grid, lexicographically sorted as in a dictionary from lower to higher numbered
nodes. Let BIn denote the nth branch listed in BI. Then the adjacency matrix A with
entries of 1 for the “from” node and −1 for the “to” node can be expressed as follows:

A =




J(1,BI1) J(2,BI1) · · · J(K,BI1)
J(1,BI2) J(2,BI2) · · · J(K,BI2)

...
...

. . .
...

J(1,BIN ) J(2,BIN ) · · · J(K,BIN )




N×K

(33)
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where J(·) is an indicator function defined as:

J(k,BIn) =





+1 if BIn takes the form km ∈ BR for some node m > k
−1 if BIn takes the form mk ∈ BR for some node m < k
0 otherwise

for all nodes k = 1, ...,K and for all branches n = 1, ..., N

Let the reduced adjacency matrix Ar be defined as A with its first column deleted. Thus, Ar

is expressed as

Ar =




J(2,BI1) · · · J(K,BI1)
J(2,BI2) · · · J(K,BI2)

...
. . .

...
J(2,BIN ) · · · J(K,BIN )




N×(K−1)

(34)

The matrix Z is defined as the diagonal matrix whose diagonal entries give the Bkm

values for all distinct connected branches km ∈ BR ordered as in BI. That is,

Z = diag
[

Z1 Z2 · · · ZN

]
N×N

(35)

where Zn = Bkm if BIn (the nth element of BI) corresponds to branch km ∈ BR.

Let PU
BIn

= PU
km if BIn corresponds to branch km ∈ BR. The associated inequality

constraint vector biq can then be expressed as follows:

biq =
[
−PU −PU CapL −CapU SLoadL −SLoadU

]T
(2N+2I+2J)×1

where

PU =
[

P U
BI1

P U
BI2

· · · P U
BIN

]T
N×1

CapL =
[

CapL
1 CapL

2 · · · CapL
I

]T
I×1

CapU =
[

CapU
1 CapU

2 · · · CapU
I

]T
I×1

SLoadL =
[

SLoadL
1 SLoadL

2 · · · SLoadL
J

]T
J×1

SLoadU =
[

SLoadU
1 SLoadU

2 · · · SLoadU
J

]T
J×1

4 Illustrative 5-Node Example

Now consider a five-node case for which the transmission grid is not completely connected;
see Figure 1. Let five Generators and three LSEs be distributed across the grid as follows:
Generators 1 and 2 are located at node 1; LSE 1 is located at node 2; Generator 3 and LSE
2 are located at node 3; Generator 4 and LSE 3 are located at node 4; and Generator 5 is
located node 5.
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Figure 1: 5-Node Transmission Grid

4.1 5-Node Structural Form

This information implies the following structural configuration for the transmission grid:

I = 5; J = 3; K = 5; N = 6

I1 = {G1,G2}, I2 = {∅}, I3 = {G3}, I4 = {G4}, I5 = {G5};

J1 = {∅}, J2 = {LSE1}, J3 = {LSE2}, J4 = {LSE3}, J5 = {∅};

BR = {(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)}

The structural DC-OPF problem then takes the following form:

Minimize

∑5
i=1[ai · pGi + bi · p2

Gi] −
∑3

j=1[cj · pS
Lj − di · pS

Lj
2
]

+ π

[
[δ1 − δ2]

2 + [δ1 − δ4]
2 + [δ1 − δ5]

2 + [δ2 − δ3]
2 + [δ3 − δ4]

2 + [δ4 − δ5]
2

]
(36)

with respect to real power generation levels, real power price-sensitive loads,
and voltage angles

pGi, i = 1, ..., 5; pS
Lj , j = 1, ..., 3; δk, k = 1, ..., 5
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subject to:

Real power balance constraint for each node k = 1, ...,5:

∑

i∈Ik

pGi −
∑

j∈Jk

pS
Lj −

∑

km ormk ∈ BR

Pkm =
∑

j∈Jk

pF
Lj (37)

where
Pkm = Bkm [δk − δm] (38)

Real power thermal constraint for each branch km ∈ BR:

|Pkm| ≤ P U
km (39)

Real power operating capacity constraints for each Generator i = 1, ..,5:

CapL
i ≤ pGi ≤ CapU

i (40)

Real power price-sensitive load constraints for each LSE j = 1, ..,3:

SLoadL
j ≤ pS

Lj ≤ SLoadU
j (41)

Voltage angle setting at reference node 1:

δ1 = 0 (42)

4.2 5-Node Objective Function Representation

First, the solution vector x takes the form

x =
[

pG1 pG2 pG3 pG4 pG5 pS
L1 pS

L2 pS
L3 δ2 δ3 δ4 δ5

]T
12×1

The vector aT in the objective function is given by

aT =
[

a1 a2 a3 a4 a5 −c1 −c2 −c3 0 0 0 0
]
1×12

Next, the positive definite matrix G in the objective function is given by

G = blockDiag
[

U Wrr

]
=

[
U 0
0 Wrr

]

12×12

(43)

where

U = diag
[

2b1 2b2 2b3 2b4 2b5 2d1 2d2 2d3

]
8×8

(44)
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Wrr = 2π




2 −1 0 0
1 2 −1 0
0 −1 3 −1
0 0 −1 2




4×4

(45)

4.3 5-Node Equality Constraints Representation

Then, the equality constraint matrix CT
eq takes the form:

CT
eq =

[
II −JJ −B

′T
r

]
5×(12)

where

II =




1 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




5×5

(46)

JJ =




0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




5×3

(47)

B′
r =




−B21 B21 + B23 −B23 0 0
0 −B32 B32 + B34 −B34 0

−B41 0 −B43 B41 + B43 + B45 −B45

−B51 0 0 −B54 B51 + B54




4×5

(48)

The associated equality constraint vector beq takes the form:

beq =
[

0 pF
L1 pF

L2 pF
L3 0

]T
5×1

4.4 5-Node Inequality Constraints Representation

Finally, the inequality constraint matrix Ciq takes the form as follows.

CT
iq =




MatrixT
MatrixG
MatrixL


 =




ONI ONJ ZAr

ONI ONJ −ZAr

III OIJ OIK

−III OIJ OIK

OJI IJJ OJK

OJI −IJJ OJK




28×12

where
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BI = [(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)]
T
6×1 (49)

Z = diag
[

B12 B14 B15 B23 B34 B45

]
6×6

(50)

Ar =




−1 0 0 0
0 0 −1 0
0 0 0 −1
1 −1 0 0
0 1 −1 0
0 0 1 −1




6×4

(51)

Hence the complete matrix CT
iq can be found as

CT
iq =




0 0 0 0 0 0 0 0 −B12 0 0 0
0 0 0 0 0 0 0 0 0 0 −B14 0
0 0 0 0 0 0 0 0 0 0 0 −B15

0 0 0 0 0 0 0 0 B23 −B23 0 0
0 0 0 0 0 0 0 0 0 B34 −B34 0
0 0 0 0 0 0 0 0 0 0 B45 −B45

0 0 0 0 0 0 0 0 B12 0 0 0
0 0 0 0 0 0 0 0 0 0 B14 0
0 0 0 0 0 0 0 0 0 0 0 B15

0 0 0 0 0 0 0 0 −B23 B23 0 0
0 0 0 0 0 0 0 0 0 −B34 B34 0
0 0 0 0 0 0 0 0 0 0 −B45 B45

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0




28×12
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The associated inequality constraint vector biq can be expressed as follows:

biq =
[
−PU −PU CapL −CapU SLoadL −SLoadU

]T
28×1

where
PU =

[
P U

12 P U
14 P U

15 P U
23 P U

34 P U
45

]T
6×1

CapL =
[

CapL
1 CapL

2 CapL
3 CapL

4 CapL
5

]T
5×1

CapU =
[

CapU
1 CapU

2 CapU
3 CapU

4 CapU
5

]T
5×1

SLoadL =
[

SLoadL
1 SLoadL

2 SLoadL
3

]T
3×1

SLoadU =
[

SLoadU
1 SLoadU

2 SLoadU
3

]T
3×1
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Table 1: DC OPF Admissible Exogenous Variables

Variable Description Admissibility Restrictions

K Total number of transmission grid nodes K > 0

N Total number of physically distinct network branches N > 0

I Total number of Generators I > 0

J Total number of LSEs J > 0

Ik Set of Generators located at node k Card(∪K
k=1Ik) = I

Jk Set of LSEs located at node k Card(∪K
k=1Jk) = J

So Base apparent power (in three-phase MVAs) So ≥ 1

Vo Base voltage (in line-to-line kVs) Vo > 0

Vk Voltage magnitude (in kVs) at node k Vk = Vo, k = 1, . . . ,K

km Branch connecting nodes k and m (if one exists) k 6= m

BR Set of all physically distinct branches km, k < m BR 6= ∅
xkm Reactance (ohms) for branch km xkm = xmk > 0, km ∈ BR

Bkm [1/xkm] for branch km Bkm = Bmk > 0, km ∈ BR

P U
km Thermal limit (MWs) for real power flow on km P U

km > 0, km ∈ BR

δ1 Reference node 1 voltage angle (in radians) δ1 = 0

ai, bi Cost coefficients for Generator i bi > 0, i = 1, . . . , I

CapL
i Lower real power operating capacity for Generator i CapL

i ≥ 0, i = 1, . . . , I

CapU
i Upper real power operating capacity for Generator i CapU

i > 0, i = 1, . . . , I

FCosti Fixed costs (hourly prorated) for Generator i FCosti ≥ 0, i = 1, . . . I

cj, dj Demand coefficients for LSE j cj, dj > 0, j = 1, . . . , J

SLoadL
j Lower real power price-sensitive load limit for LSE j SLoadL

j ≥ 0, j = 1, . . . , J

SLoadU
j Upper real power price-sensitive load limit for LSE j SLoadU

j ≤ cj/[2dj ], j = 1, . . . , J

pF
Lj Price-insensitive fixed real power load for LSE j pF

Lj ≥ 0, j = 1, . . . , J

Table 2: DC OPF Endogenous Variables

Variable Description

pGi Real power generation (MWs) supplied by Generator i = 1, . . . , I

pS
Lj Price-sensitive real power load (MWs) demanded by LSE j = 1, . . . , J

δk Voltage angle (in radians) at node k = 2, . . . ,K

Pkm Real power (MWs) flowing in branch km ∈ BR
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