DC-OPF Formulation with Price-Sensitive Demand Bids

Junjie Sun and Leigh Tesfatsion

Last Revised: 19 March 2008

1 Cost and Demand Function Representations

Generator i's total cost function:

$$TC_i(p_{Gi}) = a_i \cdot p_{Gi} + b_i \cdot p_{Gi}^2 + FCost_i$$
 (1)

Generator i's total variable cost function:

$$TVC_i(p_{Gi}) = a_i \cdot p_{Gi} + b_i \cdot p_{Gi}^2$$
 (2)

Generator i's marginal cost function (supply offer schedule):

$$MC_i(p_{Gi}) = a_i + 2 \cdot b_i \cdot p_{Gi} \tag{3}$$

LSE j's demand bid p_{Lj} consists of two parts: a fixed demand bid p_{Lj}^F and a price-sensitive demand bid p_{Lj}^S , i.e.,

$$p_{Lj} = p_{Lj}^F + p_{Lj}^S \tag{4}$$

LSE j's price-sensitive demand bid function expressing maximum willingness to pay as a function of the demanded quantity p_{Lj}^S :

$$D_j(p_{Lj}^S) = c_j - 2 \cdot d_j \cdot p_{Lj}^S \tag{5}$$

The gross surplus of LSE j corresponding to its price-sensitive demand bid:¹

$$GSS_{j}(p_{Lj}^{S}) = c_{j} \cdot p_{Lj}^{S} - d_{j} \cdot p_{Lj}^{S^{2}}$$
(6)

Total net surplus corresponding to price-sensitive demand bids:²

$$TNSS(\mathbf{p}_G, \mathbf{p}_L^S) = GSS(\mathbf{p}_L^S) - TVC(\mathbf{p}_G)$$
(7)

 $^{^{1}}$ The gross surplus of LSE j corresponding to its fixed demand bid is always infinite (vertical demand curve). For this reason, the DC-OPF objective function used by the ISO to determine efficient commitment and dispatch of generation will only take into account LSE gross surplus corresponding to price-sensitive demand bids.

²Note that TNSS coincides with the usual measure for total net surplus in the absence of fixed demand bids.

where

$$\mathbf{p}_{G} = (p_{G1}, p_{G2}, \cdots, p_{GI}) \tag{8}$$

$$\mathbf{p}_L^S = \left(p_{L1}^S, p_{L2}^S, \cdots, p_{LJ}^S\right) \tag{9}$$

$$GSS(\mathbf{p}_L^S) = \sum_{j=1}^J GSS_j(p_{L_j}^S)$$
(10)

$$TVC(\mathbf{p}_G) = \sum_{i=1}^{I} TVC_i(p_{Gi})$$
(11)

(12)

Total net cost function corresponding to price-sensitive demand bids:

$$TNCS(\mathbf{p}_G, \mathbf{p}_L^S) = -TNSS(\mathbf{p}_G, \mathbf{p}_L^S)$$
 (13)

2 DC-OPF Problem in Structural Form

A commonly used representation for an hourly DC-OPF problem with price-sensitive load bids is to minimize total net costs corresponding to the price-sensitive demand (TNCS) subject to various transmission constraints. As explained at length in Sun and Tesfation (2007), it is useful to modify the objective function for this standard DC-OPF problem to include a soft penalty function for large voltage angle deviations.

The resulting modified DC-OPF problem formulation is as follows, where all endogenous and exogenous variables are defined as in Tables (1) and (2):

Minimize

$$TNCS(\mathbf{p}_G, \mathbf{p}_L^S) + \pi \left[\sum_{km \in BR} [\delta_k - \delta_m]^2 \right]$$
 (14)

with respect to real power generation levels, real power price-sensitive loads, and voltage angles

$$p_{Gi}, i = 1, ..., I; p_{Li}^S, j = 1, ..., J; \delta_k, k = 1, ..., K$$

subject to:

Real power balance constraint for each node k = 1, ..., K:

$$\sum_{i \in I_k} p_{Gi} - \sum_{j \in J_k} p_{Lj} - \sum_{km \text{ or } mk \in BR} P_{km} = 0$$
 (15)

$$p_{Lj} = p_{Lj}^F + p_{Lj}^S (16)$$

$$P_{km} = B_{km} \left[\delta_k - \delta_m \right] \tag{17}$$

Alternatively,

$$\sum_{i \in I_k} p_{Gi} - \sum_{j \in J_k} p_{Lj}^S - \sum_{km \text{ or } mk \in BR} P_{km} = \sum_{j \in J_k} p_{Lj}^F$$
(18)

Real power thermal constraint for each branch $km \in BR$:

$$|P_{km}| \leq P_{km}^U \tag{19}$$

Real power operating capacity constraints for each Generator i = 1, ..., I:

$$Cap_i^L \leq p_{Gi} \leq Cap_i^U$$
 (20)

Real power price-sensitive load constraints for each LSE j = 1, ..., J:

$$SLoad_j^L \leq p_{Lj}^S \leq SLoad_j^U$$
 (21)

Voltage angle setting at reference node 1:

$$\delta_1 = 0 \tag{22}$$

3 DC-OPF Problem in Matrix Form

3.1 General Matrix Formulation

Let δ_1 be set to zero everywhere in the DC-OPF problem presented in the previous section 2, in accordance with constraint (22). The general matrix depiction for the resulting reduced-form DC-OPF problem can then be expressed as follows:

Minimize

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{G}\mathbf{x} + \mathbf{a}^{\mathrm{T}}\mathbf{x}$$
 (23)

with respect to

$$\mathbf{x} = \begin{bmatrix} p_{G1} & \dots & p_{GI} & p_{L1}^S & \dots & p_{LJ}^S & \delta_2 & \dots & \delta_K \end{bmatrix}_{(I+J+K-1)\times 1}^{\mathbf{T}}$$

subject to

$$C_{eq}^{T}x = b_{eq} \tag{24}$$

$$C_{iq}^T x \ge b_{iq}$$
 (25)

Given this general matrix formulation, the problem is now to find the specific matrix and vector representations \mathbf{a} and \mathbf{G} for the objective function, $\mathbf{C_{eq}}$ and $\mathbf{b_{eq}}$ for the equality constraints, and $\mathbf{C_{iq}}$ and $\mathbf{b_{iq}}$ for the inequality constraints.

3.2 Objective Function Representation

First, the vector $\mathbf{a}^{\mathbf{T}}$ in the objective function is given by

$$\mathbf{a}^{\mathbf{T}} = \begin{bmatrix} a_1 & \cdots & a_I & -c_1 & \cdots & -c_J & 0 & \cdots & 0 \end{bmatrix}_{1 \times (I+J+K-1)}$$

Next, the positive definite matrix G in the objective function is given by

$$\mathbf{G} = \text{blockDiag} \begin{bmatrix} \mathbf{U} & \mathbf{W_{rr}} \end{bmatrix} = \begin{bmatrix} \mathbf{U} & \mathbf{0} \\ \mathbf{0} & \mathbf{W_{rr}} \end{bmatrix}_{(I+J+K-1)\times(I+J+K-1)}$$
(26)

where

$$\mathbf{U} = \operatorname{diag} \left[\begin{array}{cccc} 2b_1 & \cdots & 2b_I & 2d_1 & \cdots & 2d_J \end{array} \right]_{(I+J)\times(I+J)} \tag{27}$$

$$\mathbf{W_{rr}} = 2\pi \begin{bmatrix} \sum_{k \neq 2} \mathbb{E}_{k2} & -\mathbb{E}_{23} & \cdots & -\mathbb{E}_{2K} \\ -\mathbb{E}_{32} & \sum_{k \neq 3} \mathbb{E}_{k3} & \cdots & -\mathbb{E}_{3K} \\ \vdots & \vdots & \ddots & \vdots \\ -\mathbb{E}_{K2} & -\mathbb{E}_{K3} & \cdots & \sum_{k \neq K} \mathbb{E}_{kK} \end{bmatrix}_{(K-1) \times (K-1)}$$

$$(28)$$

$$\mathbb{E} = \begin{bmatrix} 0 & \mathbb{I}(1 \leftrightarrow 2) & \mathbb{I}(1 \leftrightarrow 3) & \cdots & \mathbb{I}(1 \leftrightarrow K) \\ \mathbb{I}(2 \leftrightarrow 1) & 0 & \mathbb{I}(2 \leftrightarrow 3) & \cdots & \mathbb{I}(2 \leftrightarrow K) \\ \mathbb{I}(3 \leftrightarrow 1) & \mathbb{I}(3 \leftrightarrow 2) & 0 & \cdots & \mathbb{I}(3 \leftrightarrow K) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbb{I}(K \leftrightarrow 1) & \mathbb{I}(K \leftrightarrow 2) & \mathbb{I}(K \leftrightarrow 3) & \cdots & 0 \end{bmatrix}_{K \times K}$$

$$(29)$$

$$\mathbb{I}(k \leftrightarrow m) = \begin{cases} 1 & \text{if either } km \text{ or } mk \in BR \\ 0 & \text{otherwise} \end{cases}$$

3.3 Equality Constraints Representation

Then, the equality constraint matrix C_{eq}^{T} takes the form:

$$\mathbf{C}_{\mathbf{eq}}^{\mathbf{T}} = \left[egin{array}{ccc} \mathbf{II} & -\mathbf{JJ} & -\mathbf{B}_{\mathbf{r}}^{'\mathbf{T}} \end{array}
ight]_{K imes (I+J+K-1)}$$

$$\mathbf{II} = \begin{bmatrix} \mathbb{I}(1 \in I_1) & \mathbb{I}(2 \in I_1) & \cdots & \mathbb{I}(I \in I_1) \\ \mathbb{I}(1 \in I_2) & \mathbb{I}(2 \in I_2) & \cdots & \mathbb{I}(I \in I_2) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{I}(1 \in I_K) & \mathbb{I}(2 \in I_K) & \cdots & \mathbb{I}(I \in I_K) \end{bmatrix}_{K \times I}$$

$$(30)$$

$$\mathbb{I}(i \in I_k) = \begin{cases} 1 & \text{if } i \in I_k \\ 0 & \text{if } i \notin I_k \end{cases}$$

$$\mathbf{JJ} = \begin{bmatrix} \mathbb{I}(1 \in J_1) & \mathbb{I}(2 \in J_1) & \cdots & \mathbb{I}(J \in J_1) \\ \mathbb{I}(1 \in J_2) & \mathbb{I}(2 \in J_2) & \cdots & \mathbb{I}(J \in J_2) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{I}(1 \in J_K) & \mathbb{I}(2 \in J_K) & \cdots & \mathbb{I}(J \in J_K) \end{bmatrix}_{K \times J}$$
(31)

$$\mathbb{I}(j \in J_k) = \begin{cases} 1 & \text{if } j \in J_k \\ 0 & \text{if } j \notin J_k \end{cases}$$

$$\mathbf{B}_{\mathbf{r}}' = \begin{bmatrix} -B_{21} & \sum_{k \neq 2} B_{k2} & -B_{23} & \cdots & -B_{2K} \\ -B_{31} & -B_{32} & \sum_{k \neq 3} B_{k3} & \cdots & -B_{3K} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -B_{K1} & -B_{K2} & -B_{K3} & \cdots & \sum_{k \neq K} B_{kK} \end{bmatrix}_{(K-1) \times K}$$

$$(32)$$

$$B_{km} = \begin{cases} \frac{1}{x_{km}} > 0 & \text{if } km \text{ or } mk \in BR \\ 0 & \text{otherwise} \end{cases}$$

The associated equality constraint vector $\mathbf{b_{eq}}$ takes the form:

$$\mathbf{b_{eq}} = \begin{bmatrix} \sum_{j \in J_1} p_{Lj}^F & \sum_{j \in J_2} p_{Lj}^F & \cdots & \sum_{j \in J_K} p_{Lj}^F \end{bmatrix}_{K \times 1}^{\mathbf{T}}$$

3.4 Inequality Constraints Representation

Finally, the inequality constraint matrix C_{iq} takes the form as follows.

$$\mathbf{C_{iq}^{T}} = \begin{bmatrix} \mathbf{\underline{MatrixT}} \\ \mathbf{\underline{MatrixC}} \\ \mathbf{\underline{MatrixL}} \end{bmatrix} = \begin{bmatrix} \mathbf{O_{NI}} & \mathbf{O_{NJ}} & \mathbf{Z}\mathbb{A_r} \\ \mathbf{O_{NI}} & \mathbf{O_{NJ}} & -\mathbf{Z}\mathbb{A_r} \\ \mathbf{I_{II}} & \mathbf{O_{IJ}} & \mathbf{O_{IK}} \\ -\mathbf{I_{II}} & \mathbf{O_{IJ}} & \mathbf{O_{IK}} \\ \mathbf{O_{JI}} & \mathbf{I_{JJ}} & \mathbf{O_{JK}} \\ \mathbf{O_{JI}} & -\mathbf{I_{JJ}} & \mathbf{O_{JK}} \end{bmatrix}_{(2N+2I+2J)\times(I+J+K-1)}$$

where $\mathbf{O_{NI}}$ is an $N \times I$ zero matrix, $\mathbf{O_{NJ}}$ is an $N \times J$ zero matrix, $\mathbf{O_{IJ}}$ is an $I \times J$ zero matrix, $\mathbf{O_{IK}}$ is an $I \times (K-1)$ zero matrix, $\mathbf{O_{JI}}$ is a $J \times I$ zero matrix, and $\mathbf{O_{JK}}$ is a $J \times (K-1)$ zero matrix; $\mathbf{I_{II}}$ is an $I \times I$ identity matrix and $\mathbf{I_{JJ}}$ is a $J \times J$ identity matrix; and matrices \mathbf{Z} and $\mathbb{A_r}$ are defined as follows.

Let **BI** denote the listing of the N physically distinct branches $km \in BR$ constituting the transmission grid, lexicographically sorted as in a dictionary from lower to higher numbered nodes. Let **BI**_n denote the nth branch listed in **BI**. Then the $adjacency \ matrix$ \mathbb{A} with entries of 1 for the "from" node and -1 for the "to" node can be expressed as follows:

$$\mathbb{A} = \begin{bmatrix} \mathbb{J}(1, \mathbf{BI}_1) & \mathbb{J}(2, \mathbf{BI}_1) & \cdots & \mathbb{J}(K, \mathbf{BI}_1) \\ \mathbb{J}(1, \mathbf{BI}_2) & \mathbb{J}(2, \mathbf{BI}_2) & \cdots & \mathbb{J}(K, \mathbf{BI}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{J}(1, \mathbf{BI}_N) & \mathbb{J}(2, \mathbf{BI}_N) & \cdots & \mathbb{J}(K, \mathbf{BI}_N) \end{bmatrix}_{N \times K}$$
(33)

where $\mathbb{J}(\cdot)$ is an indicator function defined as:

$$\mathbb{J}(k, \mathbf{BI}_n) = \begin{cases} +1 & \text{if } \mathbf{BI}_n \text{ takes the form } km \in BR \text{ for some node } m > k \\ -1 & \text{if } \mathbf{BI}_n \text{ takes the form } mk \in BR \text{ for some node } m < k \\ 0 & \text{otherwise} \end{cases}$$

for all nodes k = 1, ..., K and for all branches n = 1, ..., N

Let the reduced adjacency matrix $\mathbb{A}_{\mathbf{r}}$ be defined as \mathbb{A} with its first column deleted. Thus, $\mathbb{A}_{\mathbf{r}}$ is expressed as

$$\mathbb{A}_{\mathbf{r}} = \begin{bmatrix} \mathbb{J}(2, \mathbf{BI}_{1}) & \cdots & \mathbb{J}(K, \mathbf{BI}_{1}) \\ \mathbb{J}(2, \mathbf{BI}_{2}) & \cdots & \mathbb{J}(K, \mathbf{BI}_{2}) \\ \vdots & \ddots & \vdots \\ \mathbb{J}(2, \mathbf{BI}_{N}) & \cdots & \mathbb{J}(K, \mathbf{BI}_{N}) \end{bmatrix}_{N \times (K-1)}$$
(34)

The matrix **Z** is defined as the diagonal matrix whose diagonal entries give the B_{km} values for all distinct connected branches $km \in BR$ ordered as in BI. That is,

$$\mathbf{Z} = \operatorname{diag} \left[\begin{array}{ccc} Z_1 & Z_2 & \cdots & Z_N \end{array} \right]_{N \times N} \tag{35}$$

where $Z_n = B_{km}$ if BI_n (the *nth* element of BI) corresponds to branch $km \in BR$.

Let $P_{BI_n}^U = P_{km}^U$ if BI_n corresponds to branch $km \in BR$. The associated inequality constraint vector $\mathbf{b_{iq}}$ can then be expressed as follows:

$$\mathbf{b_{iq}} = \left[\begin{array}{cccc} -\mathbf{P^U} & -\mathbf{P^U} & \mathbf{Cap^L} & -\mathbf{Cap^U} & \mathbf{SLoad^L} & -\mathbf{SLoad^U} \end{array} \right]_{(2N+2I+2J)\times 1}^{\mathbf{T}}$$
 where

$$\mathbf{P^{U}} = \begin{bmatrix} P_{\mathbf{BI}_{1}}^{U} & P_{\mathbf{BI}_{2}}^{U} & \cdots & P_{\mathbf{BI}_{N}}^{U} \end{bmatrix}_{N \times 1}^{\mathbf{T}}$$

$$\mathbf{Cap^{L}} = \begin{bmatrix} Cap_{1}^{L} & Cap_{2}^{L} & \cdots & Cap_{I}^{L} \end{bmatrix}_{I \times 1}^{\mathbf{T}}$$

$$\mathbf{Cap^{U}} = \begin{bmatrix} Cap_{1}^{U} & Cap_{2}^{U} & \cdots & Cap_{I}^{U} \end{bmatrix}_{I \times 1}^{\mathbf{T}}$$

$$\mathbf{SLoad^{L}} = \begin{bmatrix} SLoad_{1}^{L} & SLoad_{2}^{L} & \cdots & SLoad_{J}^{L} \end{bmatrix}_{J \times 1}^{\mathbf{T}}$$

$$\mathbf{SLoad^{U}} = \begin{bmatrix} SLoad_{1}^{U} & SLoad_{2}^{U} & \cdots & SLoad_{J}^{U} \end{bmatrix}_{J \times 1}^{\mathbf{T}}$$

4 Illustrative 5-Node Example

Now consider a five-node case for which the transmission grid is not completely connected; see Figure 1. Let five Generators and three LSEs be distributed across the grid as follows: Generators 1 and 2 are located at node 1; LSE 1 is located at node 2; Generator 3 and LSE 2 are located at node 3; Generator 4 and LSE 3 are located at node 4; and Generator 5 is located node 5.

Figure 1: 5-Node Transmission Grid

4.1 5-Node Structural Form

This information implies the following structural configuration for the transmission grid:

$$I = 5; \ J = 3; \ K = 5; \ N = 6$$

$$I_1 = \{G1, G2\}, \ I_2 = \{\emptyset\}, \ I_3 = \{G3\}, \ I_4 = \{G4\}, \ I_5 = \{G5\};$$

$$J_1 = \{\emptyset\}, \ J_2 = \{LSE1\}, \ J_3 = \{LSE2\}, \ J_4 = \{LSE3\}, \ J_5 = \{\emptyset\};$$

$$BR = \{(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (4, 5)\}$$

The structural DC-OPF problem then takes the following form:

Minimize

$$\sum_{i=1}^{5} [a_i \cdot p_{Gi} + b_i \cdot p_{Gi}^2] - \sum_{j=1}^{3} [c_j \cdot p_{Lj}^S - d_i \cdot p_{Lj}^{S^2}] + \pi \left[[\delta_1 - \delta_2]^2 + [\delta_1 - \delta_4]^2 + [\delta_1 - \delta_5]^2 + [\delta_2 - \delta_3]^2 + [\delta_3 - \delta_4]^2 + [\delta_4 - \delta_5]^2 \right]$$
(36)

with respect to real power generation levels, real power price-sensitive loads, and voltage angles

$$p_{Gi}, i = 1, ..., 5; p_{Li}^S, j = 1, ..., 3; \delta_k, k = 1, ..., 5$$

subject to:

Real power balance constraint for each node k = 1, ..., 5:

$$\sum_{i \in I_k} p_{Gi} - \sum_{j \in J_k} p_{Lj}^S - \sum_{km \text{ or } mk \in BR} P_{km} = \sum_{j \in J_k} p_{Lj}^F$$
(37)

where

$$P_{km} = B_{km} \left[\delta_k - \delta_m \right] \tag{38}$$

Real power thermal constraint for each branch $km \in BR$:

$$|P_{km}| \leq P_{km}^U \tag{39}$$

Real power operating capacity constraints for each Generator i = 1, ..., 5:

$$Cap_i^L \leq p_{Gi} \leq Cap_i^U$$
 (40)

Real power price-sensitive load constraints for each LSE $\mathbf{j}=1,..,3$:

$$SLoad_j^L \leq p_{Lj}^S \leq SLoad_j^U$$
 (41)

Voltage angle setting at reference node 1:

$$\delta_1 = 0 \tag{42}$$

4.2 5-Node Objective Function Representation

First, the solution vector \mathbf{x} takes the form

 $\mathbf{x} = \begin{bmatrix} p_{G1} & p_{G2} & p_{G3} & p_{G4} & p_{G5} & p_{L1}^S & p_{L2}^S & p_{L3}^S & \delta_2 & \delta_3 & \delta_4 & \delta_5 \end{bmatrix}_{12\times 1}^{\mathbf{T}}$ The vector $\mathbf{a}^{\mathbf{T}}$ in the objective function is given by

$$\mathbf{a^T} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a_5 & -c_1 & -c_2 & -c_3 & 0 & 0 & 0 \end{bmatrix}_{1 \times 12}$$

Next, the positive definite matrix G in the objective function is given by

$$\mathbf{G} = \operatorname{blockDiag} \left[\begin{array}{cc} \mathbf{U} & \mathbf{W_{rr}} \end{array} \right] = \left[\begin{array}{cc} \mathbf{U} & \mathbf{0} \\ \mathbf{0} & \mathbf{W_{rr}} \end{array} \right]_{12 \times 12} \tag{43}$$

$$\mathbf{U} = \operatorname{diag} \begin{bmatrix} 2b_1 & 2b_2 & 2b_3 & 2b_4 & 2b_5 & 2d_1 & 2d_2 & 2d_3 \end{bmatrix}_{8 \times 8}$$
 (44)

$$\mathbf{W_{rr}} = 2\pi \begin{bmatrix} 2 & -1 & 0 & 0 \\ 1 & 2 & -1 & 0 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}_{4\times4}$$
 (45)

4.3 5-Node Equality Constraints Representation

Then, the equality constraint matrix C_{eq}^{T} takes the form:

$$\mathbf{C}_{\mathbf{eq}}^{\mathbf{T}} = \begin{bmatrix} \mathbf{II} & -\mathbf{JJ} & -\mathbf{B}_{\mathbf{r}}^{'\mathbf{T}} \end{bmatrix}_{5 \times (12)}$$

where

$$\mathbf{JJ} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{5\times3} \tag{47}$$

$$\mathbf{B}_{\mathbf{r}}' = \begin{bmatrix} -B_{21} & B_{21} + B_{23} & -B_{23} & 0 & 0\\ 0 & -B_{32} & B_{32} + B_{34} & -B_{34} & 0\\ -B_{41} & 0 & -B_{43} & B_{41} + B_{43} + B_{45} & -B_{45}\\ -B_{51} & 0 & 0 & -B_{54} & B_{51} + B_{54} \end{bmatrix}_{4 \times 5}$$
(48)

The associated equality constraint vector $\mathbf{b_{eq}}$ takes the form:

$$\mathbf{b_{eq}} = \begin{bmatrix} 0 & p_{L1}^F & p_{L2}^F & p_{L3}^F & 0 \end{bmatrix}_{5\times1}^{\mathbf{T}}$$

4.4 5-Node Inequality Constraints Representation

Finally, the inequality constraint matrix C_{iq} takes the form as follows.

$$\mathbf{C_{iq}^{T}} = \left[\begin{array}{c} \mathbf{MatrixT} \\ \hline \mathbf{MatrixG} \\ \hline \mathbf{MatrixL} \end{array} \right] = \left[\begin{array}{cccc} \mathbf{O_{NI}} & \mathbf{O_{NJ}} & \mathbf{Z}\mathbb{A_{r}} \\ \mathbf{O_{NI}} & \mathbf{O_{NJ}} & -\mathbf{Z}\mathbb{A_{r}} \\ \hline \mathbf{I_{II}} & \mathbf{O_{IJ}} & \mathbf{O_{IK}} \\ \hline -\mathbf{I_{II}} & \mathbf{O_{IJ}} & \mathbf{O_{IK}} \\ \hline \mathbf{O_{JI}} & \mathbf{I_{JJ}} & \mathbf{O_{JK}} \\ \hline \mathbf{O_{JI}} & -\mathbf{I_{JJ}} & \mathbf{O_{JK}} \\ \end{array} \right]_{28\times12}$$

$$\mathbf{BI} = [(1,2), (1,4), (1,5), (2,3), (3,4), (4,5)]_{6\times 1}^{T}$$
(49)

$$\mathbf{Z} = \operatorname{diag} \begin{bmatrix} B_{12} & B_{14} & B_{15} & B_{23} & B_{34} & B_{45} \end{bmatrix}_{6 \times 6}$$
 (50)

$$\mathbb{A}_{\mathbf{r}} = \begin{bmatrix}
-1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}_{6\times4}$$
(51)

Hence the complete matrix $\mathbf{C}_{\mathbf{iq}}^{\mathbf{T}}$ can be found as

[0	0	0	0	0	0	0	0	$-B_{12}$	0	0	0]
	0	0	0	0	0	0	0	0	0	0	$-B_{14}$	0	
	0	0	0	0	0	0	0	0	0	0	0	$-B_{15}$	
	0	0	0	0	0	0	0	0	B_{23}	$-B_{23}$	0	0	
	0	0	0	0	0	0	0	0	0	B_{34}	$-B_{34}$	0	
	0	0	0	0	0	0	0	0	0	0	B_{45}	$-B_{45}$	
	0	0	0	0	0	0	0	0	B_{12}	0	0	0	
	0	0	0	0	0	0	0	0	0	0	B_{14}	0	
$\mathbf{C_{iq}^T} =$	0	0	0	0	0	0	0	0	0	0	0	B_{15}	
	0	0	0	0	0	0	0	0	$-B_{23}$	B_{23}	0	0	
	0	0	0	0	0	0	0	0	0	$-B_{34}$	B_{34}	0	
	0	0	0	0	0	0	0	0	0	0	$-B_{45}$	B_{45}	
	1	0	0	0	0	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	0	0	0	
İ	0	0	0	0	1	0	0	0	0	0	0	0	
	$\overline{-1}$	0	0	0	0	0	0	0	0	0	0	0	
	0	-1	0	0	0	0	0	0	0	0	0	0	
	0	0	-1	0	0	0	0	0	0	0	0	0	
İ	0	0	0	-1	0	0	0	0	0	0	0	0	
	0	0	0	0	-1	0	0	0	0	0	0	0	
	0	0	0	0	0	1	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	0	1	0	0	0	0	
	0	0	0	0	0	-1	0	0	0	0	0	0	
	0	0	0	0	0	0	-1	0	0	0	0	0	
	0	0	0	0	0	0	0	-1	0	0	0	0] _{28×}

 28×12

The associated inequality constraint vector $\mathbf{b_{iq}}$ can be expressed as follows:

where
$$\mathbf{b_{iq}} = \begin{bmatrix} -\mathbf{P^U} & -\mathbf{P^U} & \mathbf{Cap^L} & -\mathbf{Cap^U} & \mathbf{SLoad^L} & -\mathbf{SLoad^U} \end{bmatrix}_{28 \times 1}^{\mathbf{T}}$$

$$\mathbf{P^U} = \begin{bmatrix} P_{12}^U & P_{14}^U & P_{15}^U & P_{23}^U & P_{34}^U & P_{45}^U \end{bmatrix}_{6 \times 1}^{\mathbf{T}}$$

$$\mathbf{Cap^L} = \begin{bmatrix} Cap_1^L & Cap_2^L & Cap_3^L & Cap_4^L & Cap_5^L \end{bmatrix}_{5 \times 1}^{\mathbf{T}}$$

$$\mathbf{Cap^U} = \begin{bmatrix} Cap_1^U & Cap_2^U & Cap_3^U & Cap_4^U & Cap_5^U \end{bmatrix}_{5 \times 1}^{\mathbf{T}}$$

$$\mathbf{SLoad^L} = \begin{bmatrix} SLoad_1^L & SLoad_2^L & SLoad_3^L \end{bmatrix}_{3 \times 1}^{\mathbf{T}}$$

$$\mathbf{SLoad^U} = \begin{bmatrix} SLoad_1^U & SLoad_2^U & SLoad_3^U \end{bmatrix}_{3 \times 1}^{\mathbf{T}}$$

Table 1: DC OPF Admissible Exogenous Variables

Variable	Description	Admissibility Restrictions
K	Total number of transmission grid nodes	K > 0
N	Total number of physically distinct network branches	N > 0
I	Total number of Generators	I > 0
J	Total number of LSEs	J > 0
I_k	Set of Generators located at node k	$\operatorname{Card}(\bigcup_{k=1}^K I_k) = I$
J_k	Set of LSEs located at node k	$\operatorname{Card}(\bigcup_{k=1}^K J_k) = J$
S_o	Base apparent power (in three-phase MVAs)	$S_o \ge 1$
V_o	Base voltage (in line-to-line kVs)	$V_o > 0$
V_k	Voltage magnitude (in kVs) at node k	$V_k = V_o, \ k = 1, \dots, K$
km	Branch connecting nodes k and m (if one exists)	$k \neq m$
BR	Set of all physically distinct branches km , $k < m$	$BR \neq \emptyset$
x_{km}	Reactance (ohms) for branch km	$x_{km} = x_{mk} > 0, \ km \in BR$
B_{km}	$[1/x_{km}]$ for branch km	$B_{km} = B_{mk} > 0, \ km \in BR$
P_{km}^U	Thermal limit (MWs) for real power flow on km	$P_{km}^U > 0, \ km \in BR$
δ_1	Reference node 1 voltage angle (in radians)	$\delta_1 = 0$
a_i, b_i	Cost coefficients for Generator i	$b_i > 0, \ i = 1, \dots, I$
Cap_i^L	Lower real power operating capacity for Generator i	$Cap_i^L \ge 0, \ i = 1, \dots, I$
Cap_i^U	Upper real power operating capacity for Generator i	$Cap_i^U > 0, \ i = 1, \dots, I$
FCost_i	Fixed costs (hourly prorated) for Generator i	$FCost_i \ge 0, \ i = 1, \dots I$
c_j, d_j	Demand coefficients for LSE j	$c_j, d_j > 0, \ j = 1, \dots, J$
$SLoad_j^L$	Lower real power price-sensitive load limit for LSE j	$SLoad_j^L \ge 0, \ j = 1, \dots, J$
$SLoad_{j}^{U}$	Upper real power price-sensitive load limit for LSE j	$SLoad_j^U \le c_j/[2d_j], j = 1, \dots, J$
p_{Lj}^F	Price-insensitive fixed real power load for LSE j	$p_{Lj}^F \ge 0, j = 1, \dots, J$

Table 2: DC OPF Endogenous Variables

Variable	Description					
p_{Gi}	Real power generation (MWs) supplied by Generator $i = 1,, I$					
p_{Lj}^S	Price-sensitive real power load (MWs) demanded by LSE $j=1,\ldots,J$					
δ_k	Voltage angle (in radians) at node $k = 2,, K$					
P_{km}	Real power (MWs) flowing in branch $km \in BR$					