Open-Source Software for Power Industry Research, Teaching, and Training

A DC Optimal Power Flow Illustration

Leigh Tesfatsion

Professor of Economics
Courtesy Professor of Mathematics
Iowa State University, Ames, IA 50011

https://www2.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu

> IEEE Power Engineering Society General Meeting, 27 June 2007

(Formatting Updated 3/13/2024)

Acknowledgement

The research reported in this presentation constitutes part of the AMES Market Project

https://www2.econ.iastate.edu/AMESMarketHome.htm

Project Director: Leigh Tesfatsion (Prof of Econ, Courtesy Prof. of Math, ISU)

Research Associate: Junjie Sun (Financial Economist, OCC, U.S. Treasury, Wash, D.C.)

Research Assistant: Hongyan Li (PhD. Cand, Electrical & Comp Eng., ISU)

funded in part by the

National Science Foundation and the ISU Electric Power Research Center

Presentation Outline

- □ Why Open-Source Software (OSS) for wholesale power markets?
- □ DCOPFJ: A DC Optimal Power Flow solver (in Java)

DCOPFJ Home Page (Code Release Site)

https://www2.econ.iastate.edu/tesfatsi/DCOPFJHome.htm

- DCOPFJ Illustration: A Simple 3-Node Test Case
- Release of DCOPFJ as free OSS
- □ Incorporation of DCOPFJ into the AMES (Java) software package

Agent-Based Modeling of Electricity Systems (AMES) https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

Conclusion

Why OSS for Wholesale Power Markets?

- ☐ In April 2003, the U.S. Federal Energy Regulatory Commission (FERC) proposed a Wholesale Power Market Platform (WPMP) for common adoption by all U.S. wholesale power markets.
- □ Over 60% of U.S. electric power generating capacity is now operating under some version of the WPMP market design.

North American Regions Adopting Versions of WPMP Design as of 2015

https://www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp

Fig. 1: Seven North-American RTO/ISO-managed wholesale power markets operate over a high-voltage AC transmission grid consisting of three separately-synchronized parts.

Features Generally Shared by These Restructured Wholesale Power Markets

- Their market designs are complicated!
- Managed by an Independent System Operator (ISO) or a Regional Transmission Organization (RTO)
- Day-ahead & real-time markets for power
- > Transmission grid congestion managed via some variant of Locational Marginal Pricing (LMP)
- Prices/power levels typically determined by ISO/RTO as solutions to DC Optimal Power Flow (DC-OPF) problems

Software Availability

- Many commercial packages now include components suitable for the simulation of restructured wholesale power markets.
- However, lack of open-source access:
 - prevents accurate understanding of implementation;
 - restricts experimentation with new features;
 - hinders tailoring software to specific needs;

Resource Site for Electric Power Market OSS

OSS for Electricity Market Research, Teaching, and Training

https://www2.econ.iastate.edu/tesfatsi/ElectricOSS.htm

Postings at this Site: Examples

- Market Simulators
 - AMES Market Package (Java) Sun, Li, Tesfatsion
 - JASA Class Library (Java) S. Phelps
- Optimal Power Flow (OPF) Solvers
- DCOPFJ (Java) -- J. Sun & L. Tesfatsion
 - MATPOWER (Matlab-based) -- R. Zimmermann et al.
 - PSAT (Matlab-based) -- F. Milano

DCOPFJ: A Java DC-OPF Solver

Sun & Tesfatsion, Proceedings, IEEE PES GM 2007

https://www2.econ.iastate.edu/tesfatsi/DCOPFJHome.htm

- Standard DC-OPF problems can usefully be augmented by a soft penalty function that controls the size of squared voltage angle differences.
- Such augmented DC-OPF problems can be formulated as Strictly Convex Quadratic Programming (SCQP) problems.
- SCQP problems can be solved by QuadProgJ, a stable accurate Java SCQP solver incorporated into DCOPFJ.
- ➤ The DCOPFJ shell transforms augmented DC-OPF input data from Standard International (SI) form to Per-Unit (PU) form, fills matrices needed by QuadProgJ, invokes QuadProgJ, and returns solution output in SI form.

DCOPFJ: A DC-OPF Solver (Java)

QuadProgJ: A Java SCQP Solver Incorporated Into DCOPFJ

Brief Description of QuadProgJ

(Sun/Tesfatsion, ISU Econ WP #06025, Revised 7/07)

- Appears to be the first open-source Java SCQP solver
- Implements the well-known dual active-set SCQP algorithm developed by Goldfarb and Idnani (1983)
- Can be used as a stand-alone SCQP solver or as a plug-and-play SCQP solution module
- Numerically stable (uses Cholesky decomposition, QR factorization, etc.)
- Accuracy tested on a repository of small-to-medium-sized SCQP problems.
- Performance matches or exceeds that of BPMPD, a well-known proprietary
 C-language QP solver recommended highly in the MATPOWER User's
 Manual

Repository of QP Min Problems with BPMPD Solutions (TN = Total Number of Constraints Plus Decision Variables)

Table 3: SCQP Test Cases: Structural Attributes and BPMPD Solution Values

10010 0. 00 001	2000 000	Jep. 502 ac	COLLOID I I I CO.	110000000	,11(t 1)1	THE DOIGNOUT TOTAL
$NAME^a$	TND^b	TNEC^c	TNIC^d	TNC^e	TN^f	fBPMPD^g
DUAL1	85	1	170	171	256	3.50129662E-02
DUAL2	96	1	192	193	289	3.37336761E-02
DUAL3	111	1	222	223	234	1.35755839E-01
DUAL4	75	1	150	151	226	7.46090842E- 01
DUALC1	9	1	232	233	242	6.15525083E+03
DUALC5	8	1	293	294	302	4.27232327E+02
HS118	15	0	59	59	74	6.64820452E+02
HS21	2	0	5	5	7	-9.99599999E+01
HS268	5	0	5	5	10	5.73107049E-07
HS35	3	0	4	4	7	1.11111111E-01
HS35MOD	3	0	5	5	8	2.50000001E-01
HS76	4	0	7	7	11	-4.68181818E+00
KSIP	20	0	1001	1001	1021	5.757979412E-01
QPCBLEND	83	43	114	157	240	-7.84254092E-03
QPCBOEI1	384	9	971	980	1364	1.15039140E+07
QPCBOEI2	143	4	378	382	525	8.17196225E+06
QPCSTAIR	467	209	696	905	1372	6.20438748E+06
S268	5	0	5	5	10	5.73107049E-07
MOSARQP2	900	0	600	600	1500	-0.159748211E+04

RD = [QuadProg - BPMPD]/|BPMPD|

(All Test Cases Run on a Laptop PC operating under Win XP SP2)

Table 4: QuadProgJ Test Case Results

NAME	$\text{Mean} \text{ECE} ^a$	$\text{Max} \text{ECE} ^b$	NVIC^c	f^{*d}	RD^e
DUAL1	0.0	0.0	0	3.50129657E-2	-1.42804239E-8
DUAL2	0.0	0.0	0	3.37336761E-2	0.0
DUAL3	6.66E-16	6.66E-16	0	1.35755837E-1	-1.47323313E-8
DUAL4	2.11E-15	2.11E-15	0	7.46090842E-1	0.0
DUALC1	2.40E-12	2.40E-12	0	6.15525083E+3	0.0
DUALC5	5.33E-15	5.33E-15	0	4.27232327E+2	0.0
HS118	NA^f	NA	0	6.64820450E + 2	-3.00833103E-9
HS21	NA	NA	0	-99.96	-1.00040010E-9
HS268	NA	NA	0	-5.47370291E-8	-1.09550926
HS35	NA	NA	0	1.11111111E-1	0.0
HS35MOD	NA	NA	0	2.50000000E-1	-4.00000009E-9
HS76	NA	NA	0	-4.68181818	0.0
KSIP	NA	NA	0	5.75797941E-1	0.0
QPCBLEND	5.66E-16	8.94E-15	0	-7.84254307E-3	-2.74145844E-7
QPCBOEI1	2.05E-6	9.58E-6	0	1.15039140E + 7	0.0
QPCBOEI2	3.42E-6	1.37E-5	0	8.17196224E+6	-1.22369628E-9
QPCSTAIR	4.34E-7	6.01E-6	0	6.20438745E+6	-4.83528799E-9
S268	NA	NA	0	-5.47370291E-8	-1.09550926
MOSARQP2	NA	NA		Out of Memory Erro	or —

Generator total variable costs

Augmented DC-OPF Problem (SI) with LSE Fixed Demand Bids

(Solved by DCOPFJ-Version 1.1)

Voltage angle for node k

Minimize
$$\sum_{i=1}^{I} [A_{i} \ p_{Gi} + B_{i} \ p_{Gi}^{2}] + \pi \left[\sum_{km \in BR} [\delta_{k} - \delta_{m}]^{2} \right]$$

w.r.t. $p_{Gi}, i = 1, ..., I; \delta_{k}, k = 1, K$ Power

$$p_{G_i}, i = 1, ..., I; \quad \delta_k, k$$

Power level for Generator i=1,...,I

subject to

Balance constraints:

Shadow price for node k balance constraint gives LMP for node k

$$0 = \sum_{j \in J_k} p_{L_j} - \sum_{i \in I_k} p_{G_i} + \sum_{k m \text{ or } mk \in BR} y_{km} (\delta_k - \delta_m)$$

Branch flow (thermal) constraints:

$$|y_{km}(\delta_k - \delta_m)| \leq F_{km}^U$$

Reported production capacity constraints:

$$P_{Gi}^{L} \leq p_{Gi} \leq P_{Gi}^{U}$$

Voltage angle setting at reference node 1:

$$\delta_1 = 0$$

Fixed demand bid (load) for LSE j

Shadow price for each inequality constraint is also determined

Augmented DC-OPF Problem (SI) with LSE Fixed and/or Price-Sensitive Demand Bids (Solved by DCOPFJ - Version 2.0)

Minimize

LSE gross buyer surplus

$$\sum_{i=1}^{I} [a_i p_{Gi} + b_i p_{Gi}^2] - \sum_{j=1}^{J} [c_j p_{Lj}^S - d_j p_{Lj}^{S^2}] + \pi \left[\sum_{km \in BR} [\delta_k - \delta_m]^2 \right]$$

w.r.t.
$$p_{Gi}$$
, $i = 1, ..., I$; p_{Li}^S , $j = 1, ..., J$; δ_k , $k = 1, ..., K$

Subject to

$$\sum_{i \in I_k} p_{Gi} \ - \ \sum_{j \in J_k} (p_{Lj}^F \ + \ p_{Lj}^S) \ - \ \sum_{km \, \text{or} \, mk \, \in \, BR} \ \mathcal{Y}_{km} \left[\delta_k - \delta_m \right] \ = \ 0$$

Fixed and price-sensitive demand bids for LSE j

$$|y_{km} \left[\delta_k - \delta_m\right]| \leq F_{km}^U$$

$$P^{L}_{Gi} \leq p_{Gi} \leq P^{U}_{Gi}$$

$$SLoad_j^L \leq p_{Lj}^S \leq SLoad_j^U$$

 $\delta_1 = 0$

Augmented DC-OPF Problem in SCQP Form Suitable for QuadProgJ

(Same general form for fixed or price-sensitive demand)

Minimize

$$f(x) = \frac{1}{2}x^{T}Gx + a^{T}x$$

with respect to

$$\mathbf{x} = (\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_M})^{\mathbf{T}}$$

subject to

$$C_{eq}^T x = b_{eq}$$

$$C_{iq}^T x \ge b_{iq}$$

where G is an $M \times M$ symmetric positive definite matrix.

DCOPFJ Illustration: A Simple 3-Node Test Case

- A 3-node DC-OPF problem with LSE fixed demand bids (no price-sensitive demand)
- > DC-OPF problem for each hour formulated as a matrix SCQP Problem: $(x, G, a, C_{eq}, b_{eq}, C_{iq}, b_{iq})$
- DC-OPF solutions for 24 successive hours obtained by DCOPFJ (Version 1.1) through invocation of its internal SCQP solver QuadProgJ
- Unit conversions (SI-to-PU-to-SI) omitted for expositional simplicity

Transmission Grid for 3-Node Test Case

A 3-Node Transmission Grid

24-Hour DC-OPF Input Data (SI) for 3-Node Test Case

Base Values									
S_o	V_o								
100	10								
K	7								
3	0.05								
Branch									
From	То	$F_{\underline{k}m}^{U}$	Reactance	X_{km}					
1	2	55	0.20	KIII					
1	3	55	0.40						
2	3	55	0.25						
Gen									
ID	atNode	FCost	Cost Param	eters A _i ,B _i	${ m P_{Gi}}^{ m L}$	$\mathrm{P_{Gi}}^{\mathrm{U}\prime}$			
1	1	14	10.6940	0.00463	20	200			
2	2	21	18.1000	0.00612	10	150			
3	3	11	37.8896	0.01433	5	20			
LSE Hourly	Loads P ₁ ;								
ID	atNode	L-0	L-02	L-03	L-04	L-05	L-06	L-07	L-08
1	1	132.66	122.4	115.62	112.2	108.84	110.52	112.2	119.04
2	2	44.22	40.8	38.54	37.4	36.28	36.84	37.4	39.68
3	3	44.22	40.8	38.54	37.4	36.28	36.84	37.4	39.68
ID	atNode	L-09	L-10	L-11	L-12	L-13	L-14	L-15	L-16
1	1	136.02	149.64	153.06	154.74	153.06	149.64	147.96	147.96
2	2	45.34	49.88	51.02	51.58	51.02	49.88	49.32	49.32
3	3	45.34	49.88	51.02	51.58	51.02	49.88	49.32	49.32
ID	atNode	L-17	L-18	L-19	L-20	L-21	L-22	L-23	L-24
1	1	154.74	170.04	163.26	161.52	159.84	156.42	147.96	137.76
2	2	51.58	56.68	54.42	53.84	53.28	52.14	49.32	45.92
3	3	51.58	56.68	54.42	53.84	53.28	52.14	49.32	45.92

Three Node Test Case ... Continued SCQP Matrices/Vectors

$$(x, G, a, C_{eq}, b_{eq}, C_{iq}, b_{iq})$$

$$\mathbf{x} = [P_{G1}, P_{G2}, P_{G3}, \delta_2, \delta_3]_{(5 \times 1)}^{\mathbf{T}}$$

$$\mathbf{G} = \begin{bmatrix} 2B_1 & 0 & 0 & 0 & 0 \\ 0 & 2B_2 & 0 & 0 & 0 \\ 0 & 0 & 2B_3 & 0 & 0 \\ 0 & 0 & 0 & 42 & -2\pi \\ 0 & 0 & 0 & -2\pi \end{pmatrix}_{(5 \times 5)}$$

 $\mathbf{a^T} = [A_1 \ A_2 \ A_3 \ 0 \ 0]_{(1\times 5)}$

$$\mathbf{C}_{\mathbf{eq}}^{\mathbf{T}} = \begin{bmatrix} 1 & 0 & 0 & y_{12} & y_{13} \\ 0 & 1 & 0 & -(y_{12} + y_{23}) & y_{23} \\ 0 & 0 & 1 & y_{23} & -(y_{13} + y_{23}) \end{bmatrix}_{(3 \times 5)}^{\mathbf{T}}$$

$$\mathbf{b}_{\mathbf{eq}} = \begin{bmatrix} P_{L1} & P_{L2} & P_{L3} \end{bmatrix}_{(3 \times 1)}^{\mathbf{T}}$$

$$\mathbf{y}_{km} = \mathbf{1}/\mathbf{x}_{km}$$

$$\mathbf{c}_{\mathbf{iq}}^{\mathbf{T}} = \begin{bmatrix} 0 & 0 & 0 & y_{12} & 0 \\ 0 & 0 & 0 & y_{12} & 0 \\ 0 & 0 & 0 & -y_{23} & y_{23} \\ 0 & 0 & 0 & -y_{12} & 0 \\ 0 & 0 & 0 & 0 & -y_{13} \\ 0 & 0 & 0 & y_{23} & -y_{23} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}_{(12 \times 5)}$$

$$\mathbf{b_{iq}} = \begin{bmatrix} -F_{12}^U & -F_{13}^U & -F_{23}^U & -F_{12}^U & -F_{13}^U & -F_{23}^U & P_{G1}^L & P_{G2}^L & P_{G3}^L & -P_{G1}^U & -P_{G2}^U & -P_{G3}^U \end{bmatrix}_{(12\times1)}^{\mathbf{T}}$$

DCOPFJ Solution Output (SI) for 3-Node Test Case

Hour	p_{G1}^{*}	p_{G2}^{*}	p_{G3}^{*}	δ_2^*	δ_3^*	LMP_1	LMP_2	${\rm LMP_3}$	$\min \text{TVC}$
01	200.0	16.1	5.0	-0.0799	-0.1095	18.30	18.30	18.30	2993.95
02	189.0	10.0	5.0	-0.0808	-0.1048	12.44	12.44	12.44	2724.33
03	177.7	10.0	5.0	-0.0752	-0.0979	12.34	12.34	12.34	2565.12
04	172.0	10.0	5.0	-0.0724	-0.0944	12.29	12.29	12.29	2485.70
05	166.4	10.0	5.0	-0.0696	-0.0910	12.23	12.23	12.23	2408.27
06	169.2	10.0	5.0	-0.0710	-0.0927	12.26	12.26	12.26	2446.91
07	172.0	10.0	5.0	-0.0724	-0.0944	12.29	12.29	12.29	2485.70
08	183.4	10.0	5.0	-0.0780	-0.1014	12.39	12.39	12.39	2645.13
09	200.0	21.7	5.0	-0.0741	-0.1077	18.37	18.37	18.37	3097.90
10	200.0	44.4	5.0	-0.0506	-0.1002	18.64	18.64	18.64	3527.13
11	200.0	50.1	5.0	-0.0447	-0.0983	18.71	18.71	18.71	3636.90
12	200.0	52.9	5.0	-0.0418	-0.0974	18.75	18.75	18.75	3691.11
13	200.0	50.1	5.0	-0.0447	-0.0983	18.71	18.71	18.71	3636.90
14	200.0	44.4	5.0	-0.0506	-0.1002	18.64	18.64	18.64	3527.13
15	200.0	41.6	5.0	-0.0535	-0.1011	18.61	18.61	18.61	3473.51
16	200.0	41.6	5.0	-0.0535	-0.1011	18.61	18.61	18.61	3473.51
17	200.0	52.9	5.0	-0.0418	-0.0974	18.75	18.75	18.75	3691.11
18	200.0	78.4	5.0	-0.0154	-0.0890	19.06	19.06	19.06	4193.64
19	200.0	67.1	5.0	-0.0271	-0.0927	18.92	18.92	18.92	3968.98
20	200.0	64.2	5.0	-0.0301	-0.0937	18.89	18.89	18.89	3911.83
21	200.0	61.4	5.0	-0.0330	-0.0946	18.85	18.85	18.85	3856.85
22	200.0	55.7	5.0	-0.0389	-0.0965	18.78	18.78	18.78	3745.51
23	200.0	41.6	5.0	-0.0535	-0.1011	18.61	18.61	18.61	3473.51
24	200.0	24.6	5.0	-0.0711	-0.1067	18.40	18.40	18.40	3152.03

Release of DCOPFJ as Free Java OSS: The DCOPFJ Package

- * DCOPFJ is implemented as a stand-alone Java DC-OPF solver by the DCOPFJ Package.
- * Versions 1.1 and 2.0 of the DCOPFJ Package have been released as free open-source software under the terms of the GNU General Public License (GPL).
- * For software downloads, manuals, and research pubs, visit:

DCOPFJ Package Home Page:

https://www2.econ.iastate.edu/tesfatsi/DCOPFJHome.htm

Incorporation of DCOPFJ into the AMES Market Package (Java OSS)

AMES Market Project

(AMES = Agent-based Modeling of Electricity Systems)

- Development of an Agent-Based Wholesale Power Market Test Bed
- Implemented by AMES Market Package (free OSS Java) https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
- Target Package Features
 - Research/teaching grade test-bed (2-500 pricing nodes)
 - Operational validity (structure, rules, behavioral dispositions)
 - Permits dynamic testing with learning traders
 - Permits intensive experimentation with alternative scenarios
 - Free open-source Java implementation (full access to code)
 - Easily modified (extensible/modular architecture)

Key Components of the AMES Market Test-Bed

(Based on Business Practices Manuals for MISO/ISO-NE)

> <u>Traders</u>

- Sellers and buyers
- Follow market rules
- Learning abilities

> Independent System Operator (ISO)

- System reliability assessments
- Day-ahead bid-based unit commitment (via DC OPF)

DCOPFJ

Real-time dispatch

Two-settlement process

- Day-ahead market (double auction, financial contracts)
- Real-time market (settlement of differences)

AC transmission grid

- Sellers/buyers located at various transmission nodes
- Congestion managed via Locational Marginal Pricing (LMP)

AMES Market Dynamics: Broad Overview

Conclusion

- Most simulation software available today for restructured electricity markets is <u>proprietary</u>.
- Open-source software is important for facilitating the rigorous performance study of these markets.
- ➤ It is hoped the free open-source release of DCOPFJ and the AMES Market Package will encourage the development of open-source software permitting the systematic performance study of restructured electricity market designs.

Resource Links for Electricity Market Open-Source Software (OSSO

OSS for Electricity Market Research, Teaching, and Training

https://www2.econ.iastate.edu/tesfatsi/ElectricOSS.htm

The AMES Market Package: A Free OSS Test-Bed for the Agent-based Modeling of Electricity Systems (Java)

https://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm

DCOPFJ: A Free OSS Solver for DC Optimal Power Flow Problems (Java)

https://www2.econ.iastate.edu/tesfatsi/DCOPFJHome.htm