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Abstract

Sensitivity analysis may serve validation, optimization, and risk analysis of simulation models. This review surveys

‘classic’ and ‘modern’ designs for experiments with simulation models. Classic designs were developed for real, non-

simulated systems in agriculture, engineering, etc. These designs assume ‘a few’ factors (no more than 10 factors) with

only ‘a few’ values per factor (no more than five values). These designs are mostly incomplete factorials (e.g., frac-

tionals). The resulting input/output (I/O) data are analyzed through polynomial metamodels, which are a type of linear

regression models. Modern designs were developed for simulated systems in engineering, management science, etc.

These designs allow ‘many factors (more than 100), each with either a few or ‘many’ (more than 100) values. These

designs include group screening, Latin hypercube sampling (LHS), and other ‘space filling’ designs. Their I/O data are

analyzed through second-order polynomials for group screening, and through Kriging models for LHS.

� 2004 Published by Elsevier B.V.
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1. Introduction

Once simulation analysts have programmed a

simulation model, they may use it for sensitivity

analysis, which in turn may serve validation, opti-
mization, and risk (or uncertainty) analysis for

finding robust solutions. In this paper, I discuss

how these analyses can be guided by the statistical

theory on Design Of Experiments (DOE).

I assume that the reader is familiar with simu-

lation––at the level of a textbook such as Law and
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Kelton (2000), including their chapter 12 on

‘Experimental design, sensitivity analysis, and

optimization’. This assumption implies that the

reader’s familiarity with DOE is restricted to ele-

mentary DOE for simulation. In this article, I try to
summarize that elementary DOE, and extend it.

Traditionally, experts in statistics and stochastic

systems have focused on tactical issues in simula-

tion; i.e., issues concerning the runlength of a

steady-state simulation, the number of runs of a

terminating simulation, variance reduction tech-

niques (VRT), etc. I find it noteworthy that in the

related area of deterministic simulation––where
these tactical issues vanish––statisticians have been

attracted to DOE issues; see the standard publica-

mail to: kleijnen@uvt.nl
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tion by Koehler and Owen (1996). Few statisticians
have studied random simulations. And only some

simulation analysts have focused on strategic issues,

namely which scenarios to simulate, and how to

analyze the resulting I/O data.

Note the following terminology. Statisticians

speak of ‘factors’ with ‘levels’ whereas simulation

analysts speak of inputs or parameters with values.

Statisticians talk about design points or runs,
whereas simulationists talk about scenarios.

Two textbooks on classic DOE for simulation

are Kleijnen (1975, 1987). An update is Kleijnen

(1998). A bird-eye’s view of DOE in simulation is

Kleijnen et al. (2004a), which covers a wider area

than this review––without using any equations, ta-

bles, or figures; this review covers a smaller area––in

more detail. An article related to this one is Kleijnen
(2004), focusing on Monte Carlo experiments in

mathematical statistics instead of (dynamic) simu-

lation experiments in Operations Research.

Classic articles on DOE in simulation are

Schruben and Margolin (1978) and Donohue et al.

(1993). Several tutorials have appeared in the

Winter Simulation Conference Proceedings.

Classic DOE for real, non-simulated systems was
developed for agricultural experiments in the 1930s,

and––since the 1950s––for experiments in engi-

neering, psychology, etc. In those real systems, it is

impractical to experiment with ‘many’ factors;

k ¼ 10 factors seems a maximum. Moreover, it is

then hard to experiment with factors that have

more than ‘a few’ values; five values per factor

seems a maximum.
The remainder of this article is organized as

follows. Section 2 covers the black box approach to

simulation, and corresponding metamodels (espe-

cially, polynomial and Kriging models); note that

‘metamodels’ are also called response surfaces,

emulators, etc. Section 3 starts with simple meta-

models with a single factor for the M/M/1 simula-

tion; proceeds with designs for multiple factors
including Plackett–Burman designs for first-order

polynomial metamodels, and concludes with

screening designs for (say) hundreds of factors.

Section 4 introduces Kriging metamodels, which

provide exact interpolation in deterministic simu-

lation. These metamodels often use space-filling

designs, such as Latin hypercube sampling (LHS).
Section 5 discusses cross-validation of the meta-
model, to decide whether the metamodel is an

adequate approximation of the underlying simula-

tion model. Section 6 gives conclusions and further

research topics.
2. Black boxes and metamodels

DOE treats the simulation model as a black

box––not a white box. To explain the difference, I

consider an example, namely an M/M/1/ simula-

tion. A white box representation is

�w ¼
PI

i¼1 wi

I
; ð1aÞ

wi ¼ maxðwi�1 þ si�1 � ai; 0Þ; ð1bÞ

ai ¼ � lnðr2iÞ=k; ð1cÞ

si�1 ¼ � lnðr2i�1Þ=l; ð1dÞ

w1 ¼ 0; ð1eÞ
with average waiting time as output in (1a); inter-

arrival times a in (1c); service times s in (1d);

pseudo-random numbers (PRN) r in (1c) and (1d);

empty starting (or initial) conditions in (1e); and the

well-known single-server waiting-time formula in

(1b).

This white box representation may be analyzed

through perturbation analysis and score function
analysis in order to estimate the gradient (for local

sensitivity analysis) and use that estimate for opti-

mization; see Spall (2003). I, however, shall not

follow that approach.

A black box representation of this M/M/1

example is

�w ¼ wðk; l; r0Þ; ð2Þ
where wð:Þ denotes the mathematical function

implicitly defined by the computer simulation pro-

gram implementing (1a)–(1e); r0 denotes the seed of

the PRN.

One possible metamodel of the black box model

in (2) is a Taylor series approximation––cut off after

the first-order effects of the two factors, k and l:

y ¼ b0 þ b1k þ b2l þ e; ð3Þ
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where y is the metamodel predictor of the simula-

tion output �w in (2); b0 ¼ ðb0; b1; b2Þ denotes the

parameters of the metamodel in (3), and e is the

noise––which includes both lack of fit of the meta-

model and intrinsic noise caused by the PRN.

Besides (3), there are many alternative meta-

models. For example, a simpler metamodel is

y ¼ b0 þ b1xþ e; ð4Þ

where x is the traffic rate––in queueing theory

usually denoted by q:

x ¼ q ¼ k
l
: ð5Þ

This combination of the two original factors

(k; l) into a single factor (q)––inspired by queueing

theory––illustrates the use of transformations. An-

other useful transformation may be a logarithmic

one: replacing y, l, and k by, logðyÞ, logðkÞ, and
logðlÞ in (3) makes the first-order polynomial

approximate relative changes; i.e., the regression

parameters b1 and b2 become elasticity coefficients.

There are many––more complex––types of

metamodels. Examples are Kriging models, neural

nets, radial basis functions, splines, support vector

regression, and wavelets; see Clarke et al. (2003)

and Antioniadis and Pham (1998). I, however, will
focus on two types that have established a track

record in random and deterministic simulation

respectively:

• linear regression models (see Section 3)

• Kriging (see Section 4).
Fig. 1. M/M/
To estimate the parameters of whatever meta-
model, the analysts must experiment with the sim-

ulation model; i.e., they must change the inputs (or

factors) of the simulation, run the simulation, and

analyze the resulting I/O data. This experimentation

is the topic of the next sections.
3. Linear regression metamodels and DOE

3.1. Simplest metamodels for M/M/1 simulations

I start with the simplest metamodel, namely a

first-order polynomial with a single factor; see (4).

Elementary mathematics proves that––to fit such a

straight line––it suffices to have two I/O observa-

tions; also see ‘local area 1’ in Fig. 1. It can be
proven that selecting those two values as far apart

as ‘possible’ gives the ‘best’ estimator of the

parameters in (4). In other words, if within the local

area the fitted first-order polynomial gives an er-

ror––denoted by e in (4)––that has zero mean (so

the polynomial is an ‘adequate’ or ‘valid’ approxi-

mation; i.e., it shows no ‘lack of fit’), then the

parameter estimator is unbiased with minimum
variance.

In practice, the analysts do not know over which

experimental area a first-order polynomial is a ‘va-

lid’ metamodel. This validity depends on the goals

of the simulation study; see Kleijnen and Sargent

(2000).

So the analysts may start with a local area, and

simulate the two (locally) extreme input values. Let
us denote these two extreme values by )1 and +1,
1 example.



Table 1

One-factor-at-a-time design for two factors, and possible

regression variables

Scenario x0 x1 x2 x1x2

1 1 0 0 0

2 1 1 0 0

3 1 0 1 0

4 J.P.C. Kleijnen / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
which implies the following standardization (also
called coding, linear transformation):

x ¼ q � �q
ðqmax � qminÞ=2

; ð6Þ

where �q ¼ ðqmax þ qminÞ=2 denotes the average
traffic rate in the (local) experiment.

The Taylor series argument implies that––as the

experimental area gets bigger (see ‘local area 2’ in

Fig. 1)––a better metamodel may be a second-order

polynomial

y ¼ b0 þ b1xþ b2x
2 þ e: ð7Þ

Obviously, estimation of the three parameters in (7)

requires at least the simulation of three input val-

ues. Indeed, DOE provides designs with three val-

ues per factor (for example, 3k designs. However,
most publications on DOE in simulation discuss

Central Composite Designs (CCD), which have five

values per factor; see Kleijnen (1975).

I emphasize that the second-order polynomial in

(7) is nonlinear in x (the regression variables), but

linear in b (the parameters to be estimated). Con-

sequently, such a polynomial metamodel is a type of

linear regression model.
Finally, when the experimental area covers the

whole area in which the simulation model is valid

(0 < q < 1), then other global metamodels become

relevant. For example, Kleijnen and Van Beers

(2004a) find that a Kriging metamodel outperforms

a second-order polynomial.
Fig. 2. One-factor-at-a-tim
Note that Zeigler et al. (2000) call the experi-
mental area the ‘experimental frame’. I call it the

domain of admissible scenarios, given the goals of

the simulation study.

I conclude that lessons learned from this simple

M/M/1 model, are:

i(i) The analysts should decide whether they want

to experiment locally or globally.
(ii) Given that decision, they should select a specific

metamodel type; for example, a low-order poly-

nomial or a Kriging model.

3.2. Metamodels with multiple factors

Let us now consider a metamodel with k factors;

for example, (4) implies k ¼ 1, whereas (3) implies
k ¼ 2. The following design is most popular, even

though it is inferior: change one factor at a time; see

Fig. 2 and the columns denoted by x1 and x2 in

Table 1. In that design the analysts usually start

with the ‘base’ scenario, denoted by the row (0; 0).
Then the next two scenarios that they run are (1; 0)
and (0; 1).
e design for two factors.
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In such a design, the analysts cannot estimate the
interaction between the two factors. Indeed, Table 1

shows that the estimated interaction (say) b1;2 is

confounded with the estimated intercept b̂0; i.e., the

columns for the corresponding regression variables

are linearly dependent. (Confounding remains when

the base values are denoted not by zero but by one;

then these two columns become identical.)

In practice, analysts often study each factor at
three levels (denoted by )1, 0, +1) in their one-at-a-

time design. However, two levels suffice to estimate

a first-order polynomial metamodel––as we saw in

Section 3.1.

To enable the estimation of interactions, the

analysts must change factors simultaneously. An

interesting problem arises if k increases from two to

three. Then Fig. 2 becomes Fig. 3––which does not
show the output w, since it would require a fourth

dimension; instead x3 replaces w. And Table 1 be-

comes Table 2. The latter table shows the 23 fac-

torial design; i.e., each of the three factors has two

values, and the analysts simulate all the combina-

tions of these values. To simplify the notation, the

table shows only the signs of the factor values, so )
means )1 and + means +1. The table further shows
possible regression variables, using the symbols ‘0’

through ‘1.2.3’––to denote the indexes of the

regression variables x0 (which remains 1 in all sce-

narios) through x1x2x3. Further, I point out that

each column is balanced; i.e., each column has four
Fig. 3. The
plusses and four minuses ––except for the dummy
column.

The 23 design enables the estimation of all eight

parameters of the following metamodel, which is a

third-order polynomial that is incomplete; i.e., some

parameters are assumed zero:

y ¼ b0 þ
X3

j¼1

bjxj þ
X2

j¼1

X3

j0>j

bj;j0xjxj0

þ b1;2;3x1x2x3 þ e: ð8Þ

Indeed, the 23 design implies a matrix of regression

variables X that is orthogonal

ðX 0XÞ ¼ nI ; ð9Þ

where n denotes the number of scenarios simulated;

for example, Table 2 implies n ¼ 8. Hence the or-

dinary least squares (OLS) estimator

b̂ ¼ ðX 0XÞ�1
X 0w ð10Þ

simplifies for the 23 design––which implies (9)––to

b̂ ¼ X 0w=8.
The covariance matrix of the (linear) OLS esti-

mator given by (10) is

covðb̂Þ ¼ ½ðX 0XÞ�1
X 0�covðwÞ½ðX 0XÞ�1

X 0�0: ð11Þ
In case of white noise; i.e.,

covðwÞ 2 r2I ; ð12Þ
23 design.



Table 2

The 23 design and possible regression variables

Scenario 0 1 2 3 1.2 1.3 2.3 1.2.3

1 + ) ) ) + + + )
2 + + ) ) ) ) + +

3 + ) + ) ) + ) +

4 + + + ) + ) ) )
5 + ) ) + + ) ) +

6 + + ) + ) + ) )
7 + ) + + ) ) + )
8 + + + + + + + +
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(11) reduces to the well-known formula

covðb̂Þ ¼ r2ðX 0XÞ�1
: ð13Þ

However, I claim that in practice this white noise
assumption does not hold:

i(i) The output variances change as the input (sce-

nario) changes so the assumed common variance

r2 in (12) does not hold. This is called variance

heterogeneity. (Well-known examples are queue-

ing models, which have both the mean and the

variance of the waiting time increase as the traffic
rate increases; see Cheng and Kleijnen, 1999.)

(ii) Often the analysts use common random numbers

(CRN) so the assumed diagonality of the matrix

in (12) does not hold.

Therefore I conclude that the analysts should

choose between the following two options.

i(i) Continue to apply the OLS point estimator (10),

but use the covariance formula (11) instead of

(13).

(ii) Switch from OLS to generalized least squares

(GLS) with estimated covðwÞ based on m > n
replications (using different PRN); for details

see Kleijnen (1992, 1998).

The variances of the estimated regression

parameters––which are on the main diagonal in

(11)––can be used to test statistically whether some

factors have zero effects. However, I emphasize that

a significant factor may be unimportant––practically

speaking. If the factors are scaled between )1 and

+1 (see the transformation in (6)), then the esti-

mated effects quantify the order of importance. For
example, in a first-order polynomial metamodel the
factor estimated to be the most important factor is

the one with the highest absolute value for its esti-

mated effect. Also see Bettonvil and Kleijnen

(1990).

3.3. Fractional factorials and other incomplete de-

signs

The incomplete third-order polynomial in (8)

included a third-order effect, namely b1;2;3. Standard

DOE textbooks include the definition and estima-

tion of such high-order interactions. However, the

following claims may be made:

1. High-order effects are hard to interpret.

2. These effects often have negligible magnitudes.

Claim # 1 seems obvious. If claim #2 holds, then

the analysts may simulate fewer scenarios than

specified by a full factorial (such as the 23 design).

For example, if indeed b1;2;3 is zero, a 23�1 fractional

factorial design suffices. A possible 23�1 design is

shown in Table 2, deleting the four rows (scenarios)

that have a minus sign in the 1.2.3 column (rows 1,
4, 6, 7). In other words, only a fraction––namely 2�1

of the 23 full factorial design––is simulated. This

design corresponds with the points denoted by the

symbol * in Fig. 3. Note that this figure has the

following geometrically property: each scenario

corresponds with a vertex that cannot be reached

via a single edge of the cube.

This 23�1 design has two identical columns,
namely the 1.2.3 column (which has four plusses)

and the dummy column 0 (which obviously has four

plusses). Hence, the corresponding two effects are
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confounded––but b1;2;3 is assumed zero, so this
confounding can be ignored!

Sometimes a first-order polynomial metamodel

suffices. For example, in the (sequential) optimiza-

tion of black-box simulation models the analysts

may use a first-order polynomial to estimate the

local gradient; see Ang€un et al. (2002). Then a 2k�p

design suffices with the biggest p value such that

2k�p > k. An example is: k ¼ 7 and p ¼ 4 so only
eight scenarios are simulated; see Table 3. This table

shows that the first three factors (labeled 1, 2, and 3)

form a full factorial 23 design; the symbol ‘4¼ 1.2’

means that the values for factor 4 are specified by

multiplying the elements of the columns for the

factors 1 and 2. Note that the design is still balanced

and orthogonal. Because of this orthogonality, it

can be proven that the estimators of the meta-
model’s parameters have smaller variances than

one-factor-at-a-time designs give. How to select

scenarios in 2k�p designs is discussed in many DOE

textbooks, including Kleijnen (1975, 1987).

Actually, these designs––i.e., fractional factorial

designs of the 2k�p type with the biggest p value still

enabling the estimation of first-order metamodels––

are a subset of Plackett–Burman designs. The latter
designs consists of k þ 1 scenarios rounded upwards

to a multiple of four. For example, if k ¼ 11, then

Table 4 applies. If k ¼ 8, then the Plackett–Burman

design is a 27�4 fractional factorial design; see

Kleijnen (1975, pp. 330–331). Plackett–Burman

designs are tabulated in many DOE textbooks,

including Kleijnen (1975). Note that designs for

first-order polynomial metamodels are called reso-

lution III designs.

Resolution IV designs enable unbiased estimators

of first-order effects––even if two-factors interac-
Table 3

A 27�4 design

Scenario 1 2 3

1 ) ) )
2 + ) )
3 ) + )
4 + + )
5 ) ) +

6 + ) +

7 ) + +

8 + + +
tions are important. These designs require double
the number of scenarios required by resolution III

designs; i.e., after simulating the scenarios of the

resolution III design, the analysts simulate the

mirror scenarios; i.e., multiply by )1 the factor

values in the original scenarios.

Resolution V designs enable unbiased estimators

of first-order effects plus two-factor interactions. To

this class belong certain 2k�p designs with small
enough p values, and saturated designs developed

by Rechtschaffner (1967); saturated designs are de-

signs with the minimum number of scenarios––that

still allow unbiased estimators of the metamodel’s

parameters. Saturated designs are attractive for

expensive simulations; i.e., simulations that require

relatively much computer time per scenario.

CCD augment Resolution V designs with the
base scenario and 2k scenarios changing factors one

at a time; this changing means increasing and

decreasing each factor in turn. Saturated designs

(smaller than CCD) are discussed in Kleijnen (1987,

pp. 314–316).

3.4. Designs for screening

Most practical, non-academic simulation models

have many factors; for example, Kleijnen et al.

(2004b) ––experiment with a supply-chain simula-

tion model with nearly 100 factors. Even a Plack-

ett–Burman design would then take 102 scenarios.

Because each scenario needs to be replicated several

times, the total computer time may then be pro-

hibitive. For that reason, many analysts keep a lot
of factors fixed (at their base values), and experi-

ment with only a few remaining factors. An exam-

ple is a military (agent-based) simulation that was
4¼ 1.2 5¼ 1.3 6¼ 2.3 7¼ 1.2.3

+ + + )
) ) + +

) + ) +

+ ) ) )
+ ) ) +

) + ) )
) ) + )
+ + + +



Table 4

The Placket–Burman design for 11 factors

Scenario 1 2 3 4 5 6 7 8 9 10 11

1 + ) + ) ) ) + + + ) +

2 + + ) + ) ) ) + + + )
3 ) + + ) + ) ) ) + + +

4 + + + ) + + ) ) ) + +

5 + ) + + ) ) ) ) ) ) +

6 + + ) + + + + + ) ) )
7 ) + + + ) + + ) + ) )
8 ) ) + + + ) + + ) + )
9 ) ) ) + + + ) + + ) +

10 + ) ) ) + + + ) + + )
11 ) + ) ) ) + + + ) + +

12 ) ) ) ) ) ) ) ) ) ) )
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run millions of times for just a few scenarios––

changing only a few factors; see Horne and Leo-

nardi (2001).

However, statisticians have developed designs

that require fewer than k scenarios––called super-

saturated designs; see Yamada and Lin (2002).

Some designs aggregate the k individual factors into
groups of factors. It may then happen that the ef-
fects of individual factors cancel out, so the analysts

would erroneously conclude that all factors within

that group are unimportant. The solution is to de-

fine the )1 and +1 levels of the individual factors

such that all first-order effects are non-negative. As

an example, let us return to the metamodel for the

M/M/1 simulation in (3), which treats the arrival

and service rates as individual factors. Then the
value )1 of the arrival rate denotes the lowest value

in the experimental area so waiting time tends to be

low. The value )1 of the service rate is its high

value, so again waiting time tends to be low. My

experience is that in practice the users do know the

direction of the first-order effects of individual fac-

tors––not only in queueing simulations but also in

other types (e.g., an ecological simulation with
nearly 400 factors discussed by Bettonvil and

Kleijnen, 1996).

There are several types of group screening de-

signs; for a recent survey including references, I

refer to Kleijnen et al. (2004b). Here I focus on the

most efficient type, namely sequential bifurcation

(abbreviated to SB).

SB is so efficient because it is a sequential design.
SB starts with only two scenarios, namely, one
scenario with all individual factors at )1, and a

second scenario with all factors at +1. Comparing

the outputs of these two extreme scenarios requires

only two replications because the aggregated effect

of the group factor is huge compared with the

intrinsic noise (caused by the PRN). In the next

step, SB splits––bifurcates––the factors into two

groups. There are several heuristic rules to decide
on how to assign factors to groups (again see

Kleijnen et al., 2004b). Comparing the outputs of

the third scenario with the outputs of the preceding

scenarios enables the estimation of the aggregated

effect of the individual factors within a group.

Groups––and all its individual factors––are elimi-

nated from further experimentation as soon as the

group effect is statistically unimportant. Obviously,
the groups get smaller as SB proceeds sequentially.

SB stops when the first-order effects of all important

individual factors are estimated. In the supply-chain

simulation only 11 of the 92 factors are classified as

important. This shortlist of important factors is

further investigated to find a robust solution.
4. Kriging metamodels

Let us return to the M/M/1 example in Fig. 1. If

the analysts are interested in the I/O behavior

within ‘local area 1’, then a first-order polynomial

such as (4) may be adequate. Maybe, a second-

order polynomial such as (7) is required to get an

valid metamodel in ‘local area 2’, which is larger
and covers a steeper part of the I/O function.



J.P.C. Kleijnen / European Journal of Operational Research xxx (2004) xxx–xxx 9

ARTICLE IN PRESS
However, Kleijnen and Van Beers (2004a) show
that the latter metamodel gives very poor predic-

tions compared with a Kriging metamodel.

Kriging has been often applied in deterministic

simulation models. Such simulations are used for

computer aided engineering (CAE) in the develop-

ment of airplanes, automobiles, computer chips,

computer monitors, etc.; see Sacks et al. (1989)’s

pioneering article, and––for an update––see Simp-
son et al. (2001).

For random simulations (including discrete-

event simulations) there are hardly any applications

yet. First, I explain the basics of Kriging; then DOE

aspects.

4.1. Kriging basics

Kriging is named after the South-African mining

engineer D.G. Krige. It is an interpolation method

that predicts unknown values of a random process;

see the classic Kriging textbook Cressie (1993).

More precisely, a Kriging prediction is a weighted

linear combination of all output values already

observed. These weights depend on the distances

between the input for which the output is to be
predicted and the inputs already simulated. Kriging

assumes that the closer the inputs are, the more

positively correlated the outputs are. This assump-

tion is modeled through the correlogram or the

related variogram, discussed below.

Note that in deterministic simulation, Kriging

has an important advantage over linear regression

analysis: Kriging is an exact interpolator; that is,
predicted values at observed input values are ex-

actly equal to the simulated output values.

The simplest type of Kriging (to which I limit

this review) assumes the following metamodel (also

see (4) with l ¼ b0 and b1 ¼ 0):

y ¼ l þ e ð14aÞ
with

EðeÞ ¼ 0; varðeÞ ¼ r2; ð14bÞ
where l is the mean of the stochastic process yð:Þ,
and e is the additive noise, which is assumed to have

zero mean and constant finite variance r2 (further-

more, many authors assume normality). Kriging

further assumes a stationary covariance process; i.e.,
the process yð:Þ has constant mean and constant

variance, and the covariances of yðxþ hÞ and yðxÞ
depend only on the distance between their inputs,

namely the lag jhj ¼ jðxþ hÞ � ðxÞj.
The Kriging predictor for the unobserved input

x0––denoted by ŷðx0Þ––is a weighted linear combi-

nation of all the n simulation output data:

ŷðx0Þ ¼
Xn

i¼1

ki � yðxiÞ ¼ k0 � y ð15aÞ

with

Xn

i¼1

ki ¼ 1; ð15bÞ

where k ¼ ðk1; . . . ; knÞ0 and y ¼ ðy1; . . . ; ynÞ
0
.

To quantify the weights k in (15), Kriging derives

the best linear unbiased estimator (BLUE), which

minimizes the mean squared error (MSE) of the

predictor:

MSEðŷðx0ÞÞ ¼ Eððyðx0Þ � ŷðx0ÞÞ2Þ

with respect to k. Obviously, these weights depend
on the covariances mentioned below (14). Cressie

(1993) characterizes these covariances through the

variogram, defined as 2cðhÞ ¼ varðyðxþ hÞ � yðxÞÞ.
(I follow Cressie (1993), who uses variograms to

express covariances, whereas Sacks et al. (1989) use

correlation functions.) It can be proven that the

optimal weights in (15) are

k0 ¼ c

�
þ 1

1� 10C�1c

10C�11

�0

C�1 ð16Þ

with the following symbols: c: vector of the n
(co)variances between the output at the new input

x0 and the outputs at the n old inputs, so

c ¼ ðcðx0 � x1Þ; . . . ; cðx0 � xnÞÞ0, C: n� n matrix of

the covariances between the outputs at the n old
inputs––with element (i; j) equal to cðxi � xjÞ, and
1: vector of n ones.

I point out that the optimal weights in (16) vary

with the input value for which output is to be pre-

dicted (see c), whereas linear regression uses the

same estimated metamodel (with b̂) for all inputs to

be predicted. (A forthcoming paper discusses the

fact that the weights k are estimated via the esti-
mated covariances c and C, so the Kriging predictor
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is actually a non-linear random variable; see, Den
Hertog et al., 2004.)

4.2. Designs for Kriging

The most popular design type for Kriging is

LHS. This design type was invented by McKay

et al. (1979) for deterministic simulation models.

Those authors did not analyze the I/O data by
Kriging (but they did assume I/O functions more

complicated than the polynomial models in classic

DOE). Nevertheless, LHS is much applied in Kri-

ging nowadays, because LHS is a simple technique

(it is part of spreadsheet add-ons such as @Risk).

LHS offers flexible design sizes n (number of

scenarios simulated) for any number of simulation

inputs, k. An example is shown for k ¼ 2 and n ¼ 4
in Table 5 and Fig. 4, which are constructed as

follows.

1. The table illustrates that LHS divides each input

range into n intervals of equal length, numbered

from 1 to n (the example has n ¼ 4; see the num-

bers in the last two columns); i.e., the number of
Table 5

A LHS design for two factors and four scenarios

Scenario Interval factor 1 Interval factor 2

1 2 1

2 1 4

3 4 3

4 3 2

Fig. 4. A LHS design for two
values per input can be much larger than in

Plackett–Burman designs or CCD.

2. Next, LHS places these integers 1; . . . ; n such

that each integer appears exactly once in each

row and each column of the design. (This ex-

plains the term ‘Latin hypercube’: it resembles

Latin squares in classic DOE.)

Within each cell of the design in the table, the

exact input value may be sampled uniformly; see

Fig. 4. (Alternatively, these values may be placed

systematically in the middle of each cell. In risk

analysis, this uniform sampling may be replaced by

sampling from some other distribution for the input

values.)

Because LHS implies randomness, its result may
happen to be an outlier. For example, it might

happen––with small probability––that in Fig. 4 all

scenarios lie on the main diagonal, so the values of

the two inputs have a correlation coefficient of )1.
Therefore, the LHS may be adjusted to become

(nearly) orthogonal; see Ye (1998).

We may also compare classic designs and LHS

geometrically. Fig. 3 illustrates that many classic
designs consist of corners of k-dimensional cubes.

These designs imply simulation of extreme scenar-

ios. LHS, however, has better space filling proper-

ties. (In risk analysis, the scenarios fill the space

according to a––possibly non-uniform––distribu-

tion.)

This space filling property has inspired many

statisticians to develop related designs. One type
factors and four scenarios.
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maximizes the minimum Euclidean distance be-
tween any two points in the k-dimensional experi-

mental area. Other designs minimize the maximum

distance. See Koehler and Owen (1996), Santner

et al. (2003), and also Kleijnen et al. (2004a).
5. Cross-validation of metamodels

Whatever metamodel is used (polynomial, Kri-

ging, etc.), the analysts should validate that mod-

el––once its parameters have been estimated.

Kleijnen and Sargent (2000) discuss many criteria.

In this review, I focus on the question: does the

metamodel give adequate predictions? To answer

this question, I discuss cross-validation for linear

regression; after that discussion, it will be obvious
how cross-validation also applies to other meta-

model types. I explain a different validation proce-

dure for linear regression models in Appendix A.

I assume that the analysts use OLS to estimate

the regression parameters; see (10). This yields the n
classic regression predictors for the n scenarios im-

plied by X in (10):

Ŷ ¼ X b̂ ð17Þ
However, the analysts can also compute regression

predictors through cross-validation, as follows.

1. Delete I/O combination i from the complete set of

n combinations. I suppose that this i ranges from
1 through n, which is called leave-one-out cross-

validation. I assume that this procedure results

in n non-singular matrixes, each with n� 1 rows

(say) X�iði ¼ 1; 2; . . . ; nÞ. To satisfy this assump-

tion, the original matrix Xð¼ X�0Þ must satisfy

n > q where q denotes the number of regression

parameters. Counter-examples are the saturated

designs in Tables 3 and 4; the solution is to exper-

iment with one factor less or to add one scenario
(e.g., the scenario with all coded x-values set to

zero, which is the base scenario).

2. Next the analysts recompute the OLS estimator

of the regression parameters b; i.e., they use

(10) with X�i and (say) w�i to get b̂�i.

3. Substituting b̂�i (which results from step 2) for b̂

in (17) gives ŷi, which denotes the regression pre-

dictor for the scenario deleted in step 1.
4. Executing the preceding three steps for all sce-

narios gives n predictions ŷi.
5. These ŷi can be compared with the correspond-

ing simulation outputs wi. This comparison

may be done through a scatter plot. The analysts

may eyeball that plot to decide whether they find

the metamodel acceptable.

Case studies using this cross-validation proce-

dure are Vonk Noordegraaf (2002) and Van Groe-

nendaal (1998).
6. Conclusion and further research

Because simulation––treated as a black box––

implies experimentation with a model, DOE is

essential. In this review, I discussed both classic

DOE for polynomial regression metamodels and

modern DOE (including LHS) for other metamod-

els such as Kriging models. The simpler the meta-

model is, the fewer scenarios need to be simulated.
I did not discuss so-called optimal designs be-

cause these designs use statistical assumptions (such

as white noise) that I find too unrealistic. A recent

discussion of optimal DOE––including references––

is Spall (2003).

Neither did I discuss the designs in Taguchi

(1987), as I think that the classic and modern de-

signs that I did discuss are superior. Nevertheless, I
believe that Taguchi’s concepts––as opposed to his

statistical techniques––are important. In practice,

the ‘optimal’ solution may break down because the

environment turns out to differ from the environ-

ment that the analysts assumed when deriving the

optimum. Therefore they should look for a ‘robust’

solution. For further discussion I refer to Kleijnen

et al. (2004a).
Because of space limitations, I did not discuss

sequential DOE, except for SB and two-stage reso-

lution IV designs––even though the sequential nat-

ure of simulation experiments (caused by the

computer architecture) makes such designs very

attractive. See Jin et al. (2002), Kleijnen et al.

(2004a), and Kleijnen and Van Beers (2004b).

An interesting research question is: how much
computer time should analysts spend on replication;

how much on exploring new scenarios?
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Another challenge is to develop designs that
explicitly account for multiple outputs. This may be

a challenge indeed in SB (depending on the output

selected to guide the search, different paths lead to

the individual factors identified as being important).

In practice, multiple outputs are the rule in simu-

lation; see Kleijnen and Smits (2003) and also

Kleijnen et al. (2004a).

The application of Kriging to random simulation
models seems a challenge. Moreover, corresponding

software needs to be developed. Also see Lophaven

et al. (2002).

Comparison of various metamodel types and

their designs remains a major problem. For exam-

ple, Meckesheimer et al. (2001) compare radial ba-

sis, neural net, and polynomial metamodels. Clarke

et al. (2003) compare low-order polynomials, radial
basis functions, Kriging, splines, and support vector

regression. Alam et al. (2003) found that LHS gives

the best neural-net metamodels. Comparison of

screening designs has hardly been done; see Kleij-

nen et al. (2004a,b).
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Appendix A. Alternative validation test of linear
regression metamodels

Instead of the cross-validation procedure dis-

cussed in Section 5, I propose the following test––

which applies only to linear regression metamodels

(not to other types of metamodels); also see Kleij-

nen (1992).

The accuracy of the predictor for the new sce-
nario xnþ1 based on (17) may be quantified by its

variance

varðŷnþ1Þ ¼ x0
nþ1 covðb̂Þxnþ1; ðA:1Þ

where covðb̂Þ was given by (13) in case of white

noise. For more realistic cases, I propose that
analysts replicate each scenario (say) m times with

non-overlapping PRN and m > 1, and get m esti-

mates (say) b̂rðr ¼ 1; . . . ;mÞ of the regression

parameters. From these estimates they can estimate

covðb̂Þ in (A.1). ( The non-overlapping PRN reduce

the q� q matrix covðb̂Þ to a diagonal matrix with

the elements varðb̂jÞ, j ¼ 1; . . . ; q, on the main

diagonal; CRN is allowed.) Note that this valida-
tion approach requires replication, whereas cross-

validation does not.

Next, the analysts simulate this new scenario

with new non-overlapping PRN, and get wnþ1. To

estimate the variance of this simulation output, the

analysts may again use m replicates, resulting in
�wnþ1 and dvarð�wnþ1Þ.

I recommend comparing the regression predic-
tion and the simulation output through a Student t
test

tm�1 ¼
ŷnþ1 � �wnþ1

fdvarðŷnþ1Þ þdvarðŵnþ1Þg1=2
: ðA:2Þ

The analysts should reject the metamodel if this

test statistic exceeds the 1� a quantile of the tm�1

distribution.

If the analysts simulate several new scenarios,
then they can still apply the t test in (A.2)––now

combined with Bonferroni’s inequality.
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