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DUOPOLY STRATEGIES PROGRAMMED BY
EXPERIENCED PLAYERS

By REINHARD SELTEN, MICHAEL MITZKEWITZ, AND GERALD R. UHLICH

The strategy method asks experienced subjects to program strategies for a game. This
paper reports on an application to a 20-period supergame of an asymmetric Cournot
duopoly. The final strategies after three programming rounds show a typical structure.
Typically, no expectations are formed and nothing is optimized. Instead of this, fairness
criteria are used to determine cooperative goals, called “ideal points.” The subjects try to
achieve cooperation by a “measure-for-measure policy,” which reciprocates movements
towards and away from the ideal point by similar movements. A strategy tends to be more
successful the more typical it is.

Keyworps: Duopoly, strategy method, computer tournarment.

1. INTRODUCTION

AFTER 150 YEARS SINCE COURNOT (1838) the duopoly problem is still open.
An empirically well supported duopoly theory has not yet emerged. Field studies
meet the difficulty that cost functions, demand functions, and prices are often
insufficiently observable. Game playing experiments permit the control of these
basic data. However, only plays are observed and strategies remain hidden.
Usually, any given play of a duopoly supergame can be the result of a great
multitude of strategy pairs.

More than 20 years ago, one of the authors described a method of experimen-
tation which makes strategies observable (Selten (1967)). This procedure, called
the “strategy methaod,” first exposes a group of subjects to the repeated play of a
game, and then asks them to design strategies on the basis of their experiences.
The strategy method was applied to an oligopoly situation with investment and
price variation (Selten (1967)). In view of the special character of the dynamic
oligopoly game investigated there, the issue of cooperation which will be
important in the paper did not arise in this earlier study. Here we are concerned
with a much more basic duopoly situation, namely a finite supergame of an
asymmetric Cournot duopaly. Asymmetry is essential for this study, because we
are interested in whether and how cooperation can evolve in such situations.

Cournat’s quantity variation madel is the most popular ane in the oligopoly
literature. Many theories have been developed in this framework. Supergames
of the Cournot model have also been explored in the newer game-theoretical
literature {e.g., Friecdman (1977), Radner (1980), Abreu (1986), Segerstrom
(1988)). Therefore, it secems to be interesting to apply the strategy method to a
supergame of an asymmetric Cournot duopaly.

Infinite supergames cannot be played in the laboratory. Attempts to approxi-
mate the strategic situation of an infinite game by the device of a supposedly
fixed stopping probability are unsatisfactory since a play cannot be continued
beyond the maximum time available. The stopping probability cannot remain
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fixed but must become one eventually. Therefore, we decided to base our study
on a finite supergame. The experimental literature shows that apart from the
end effect there seems to be no significant behavioral difference hetween
infinite and sufficiently long finite supergames (Stoecker (1983), Selten and
Stoecker (1986)).

Our subjects were participants of a seminar who first gained experience in
playing a 20-period supergame in the Bonn laboratory of experimental eco-
nomics which is equipped with a network of personal computers. After having
gained experience with the game, the participants had to program strategies.
These strategies were played against each other in computer tournaments. The
participants had the opportunity to improve their strategies in the light of their
experience in such tournaments.

Our evaluation will mainly concern the strategies programmed for the final
computer tournament. We shall only shortly report on some interesting phe-
nomena observed in the initial game playing rounds and the intermediate
tournaments.

The first step in the evaluation of the final tournament strategies was a
classification according to structural properties. These properties, called “char-
acteristics,” were suggested by a close lock at the strategies. We found 13
characteristics, all of which are present in the majority of cases to which they
can be applied. A typical structure of a strategy emerges from these characteris-
tics. The programs usually distinguish among an initial phase, a main phase, and
an end phase. The initial phase consists of the first one to four periods with
outputs depending only on the number of the period. In the main phase, outputs
were made dependent on the opponent’s previous cutputs. By the initial phase
the strategies try to prepare cooperation with the opponent to be reached in the
main phase. In an end phase of the last one to four periods cooperation is
replaced by noncooperative behavior.

Typically, the participants tried to approach the strategic problem in a way
which is very different from that suggested by mast oligopoly theories. These
theories almost always involve the maximization of profits on the basis of
expectations on the opponent’s behavior. It is typical that the final tournament
strategies make no attempt to predict the opponent’s reactions and nothing is
optimized. Instead of this, a cooperative goal is chosen by fairness considera-
tions and then pursued by an appropriate design of the strategy. Cocperative
goals take the form of “ideal points.” An ideal point is a pair of outputs at which
a player wants to achieve cooperation with his opponent. Such ideal points guide
the behavior in the main phase. A move of the opponent towards the player’s
ideal point usually leads to responses which move the player’s output in the
direction of his ideal point. Similarly, a move of the opponent away from the
ideal point is usually followed by a response which shifts the output away from
the ideal point. We refer to this kind of behavior as a “measure - for-measure
policy.”

The fairness criteria underlying the selection of ideal points are different for
different participants, but in most cases not completely arbitrary. Measure-for-



DUGPOLY STRATEGIES 519

measure policies for the effectuation of ideal points may be quite different in
detail, but they are all based on the same general idea.

On the basis of the 13 characteristics which express structural properties
common to most of the strategies we have constructed a measure of typicity
which is applied bath to characteristics and strategies. The typicity of a strategy
is proportional to the sum of the typicities of its characteristics and the typicity
of a characteristic is porportional to the sum of the typicities of the final
tournament strategies with this characteristic. It was an unexpected result of our
investigation that there is a highly significant positive correlation between the
typicity of a final tournament strategy and its success in the final tournament.
Moreaver, it turned cut that for each of the 13 characteristics separately those
strategies which have it are more successful than those which do not have it

In order to get a better insight into the implications of the typical structure of
final tournament strategies, we constructed a family of “simple typical strategies.”
In these strategies the details left open by the 13 characteristics are filled in the
simplest possible way. The behavior in the main phase is described by a
piecewise-linear continuous reaction function.

Two game- theoretical requirements on simple typical strategies are discussed:
“caonjectural equilibrium conditions” and “stability against short-run exploita-
tion.” These requirements impose restrictions on the ideal points. The first
requirement is rarely satisfied but the second one is fulfilled by the vast majority
of the ideal points used in final strategies. This condition also turns out to be of
descriptive value for the profit combinations reached in the last tournament.

We do not claim that our results are transferable to real duopaolies. First of
all, it is doubtful whether a supergame of the Cournot duapoly is a realistic
description of duopolistic markets. Nevertheless, the structure of behavior in
such supergames is of great theoretical interest. Our results throw a new light
on the duapoly prablem posed in this framework. The choice of an ideal point
by fairness consideration combined with the pursuit of this cooperative goal by a
measure-for-measure policy constitutes & surprisingly simple approach which
avoids optimization and the prediction of the opponent’s behavior. The connec-
tion between typicity and success in the final tournament shows that this
approach is not only simple and practicable but also advisable in the pursuit of
high profits.

The participants of our seminar did not develop their strategy programs
independently of each other. Interaction in the game playing rounds and the
preliminary tournaments was unavoidable. It cannot be completely excluded
that our results are due to a cultural evolution which might have a different
outcome in a different experimental group. One application of the strategy
method alone is not sufficient to establish a firm basis for far-reaching behav-
ioral conclusions.

The tit-for-tat strategy which did so well in Axelrod’s tournaments (Axelrod
(1984)) is the natural consequence of the transfer of the strategic approach
emerging from this study to the prisoner’s dilemma supergame. There one finds
only one reasonable ideal point, namely the cooperative choice taken by both
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players, and only one measure-for-measure policy fitting this cooperative goal,
namely tit-f{or-tat.

More recently, a paper by Fader and Hauser (1988) reports on programs
written for two symmetric price triopolies. The players had no opportunity to
play the games before writing their strategies and submitted a program only
once for each of both models. Fader and Hauser classified strategies according
to “features,” but jt cannot be said that a typical structure emerges from this
classification. Perhaps the Jack of a typical structure is due to the fact that in
comparison to our students the participants of the tournaments were much less
experienced with their task. Maybe it is necessary to provide the opportunity to
gain extensive game-playing experience and to permit repeated program revi-
sions after preliminary tournaments in order to obtain strategies which show a
typical structure.

Nevertheless, this study shows that strategies based on the measure-for-
measure principle are very successful against the strategies submitted. The
agreement of our findings with those of Axelrod and of Fader and Hauser
confirms our impression that the pursuit of ideal points by measure - for- measure
policies is more than the accidental result of an isolated study.

The mode] and the experimental pracedure are described in Sections 2 and 3.
Then the results of the game playing rounds and the results of the tournaments
are discussed in Sections 4 and 5. The evaluation of the strategies programmed
for the final tournament begins with Section 6. There the 13 characteristics are
introduced and explained in detail. The strategic approach underlying typical
strategies is discussed. Section 7 is devoted to the connection between typicity
and success. A family of simple typical strategies is introduced in Section § as an
idealization of the general pattern observed in the programmed strategies.
Theoretical properties of these strategies are discussed and game-theoretic
stability conditions are compared with the data of the final tournament. Section
9 looks at the implications of our results for duopaly theory. A summary of our
findings is given in Section 10.

2. THE MODEL

The experiment is based on a fixed nonsymmetric Cournot duopaly with linear
cost and demand functions. Strategies had to be programmed for the 20-period
supergame of this Cournot ducpaly. The duopolists were fully informed about
cost and demand functions, the length of the supergame, and the opponent’s
decisions in past periods. The decision variable of duopolist i in period ¢ is the
quantity x{¢) for i=1,2 and ¢=1,...,20. Quantities must be chosen from
nonnegative real numbers. The costs C(¢) and C,(¢} of duapolists 1 and 2 and
the price p(r} in period ¢ are given as follows:

C(6) =9820+9x,(6),  x,(e) »0,
Co(1) = 1260 4 51a,(e),  x,(£) 20,
p(t} = max (0;300 — x,(¢) —x,{2)).
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TABLET
SoMmE THEORETICAL POINTS IN THE SOURCE GAME

Player 1's Player 2°s Player 1's Player 2's

Caoneept Gutput Catgut Price Profit Prafi

Cournot 111.0 69.0 12040 2501.0 3501.0

Monopaly of 145.5 0.0 154.5 113503 —1260.0
player 1

Monapoly of 0.0 124.5 175.5 —9820.0 14240.3
player 2

Stackelberg 166.5 41.3 92.3 4041.1 441.6
with player
1 as leader

Stackelberg 93 .8 103.5 102.7 —1030.9 4096.1
with player
2 as leader

Nash product 86.8 49.5 163.7 3615.0 4313.5
maximurm

Pareto optimum 9.1 56.1 164.8 2503.8 5124.2
A of Figure 1

Pareto optimum 94.3 42.7 162.5 4731.8 3501.0
B of Figure 1

The supergame payoff of each duapolist is the sum of his profits over all twenty
periods.

Table I and Figure 1 show some theoretical features of the Cournot duopoly
described above. The row “Nash product maximum™ presents the ocutput combi-
nation which maximizes the Nash product with the Cournaot solution as fixed
threat point. Point A in Figure 1 is the Pareto optimum which yields Cournot
equilibrium profits for player 1. Analogously, B is the Pareto optimum which
yields Cournot profits for player 2. Figure 1 shows that the model is quite
asymmetric. Even point A is below the 45-degree line.

3. EXPERIMENTAL PROCEDURE

The experiment was performed in a seminar lasting over the whole summer
semester 1987 at Bonn University, Federal Republic Germany. The subjects
were 24 students of economics in the third or fourth year with some knowledge
of micro- and macroeconomics and some experience with computer program-
ming, but without special training in price theory and game theory. No introduc-
tion in these ficlds was given in the seminar and no references to the relevant
literature was supplied. The seminar was organized in five plenary sessions,
three rounds of game playing, and three computer tournaments of programmed
strategies.

Plenary sessions: In the first plenary session the participants were informed
about the organization of the seminar and the model presented in Section 2,
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FIGURE 1.—Graphical representation of theoretical features of the one-period Cournat duopoly.

but, of course, without the theoretical features. Moreover, an introduction to
the programming of strategies in PASCAL was given. It was not necessary to
explain mare than an excerpt of PASCAL, since strategies were conceived as
subroutines in a game program.”

The participants had the task first to gain experience by three rounds of
playing the 20-period supergame and then to program strategies for both players
in the 2(}-period supergame. They were told that their objective should be to
attain a sum of profits as high as possible in a final tournament in which the
strategies of all participants compete against each other. Final strategies had to
be documented and reasons had to be given for the decisions embodied in the
strategies.

The second plenary session took place after two rounds of game playing. The
results of these games were presented, but in a way which left players anony-
mous. The participants were asked to comment on their experiences.

"The Pascal source cade of the students’ strategies is available on request.
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Each of the three tournaments was followed by one plenary session. Results
were presented and students received printouts of the games in which their own
strategies were involved, Oppaonents remained unidentified. The participants
were encouraged to discuss strategic problems.

In the last of the five plenary sessions, the most successful participant
explained his strategy. Anonymity was not completely preserved in this final
plenary session at the end of the seminar.

Game playing rounds: Twenty-two subjects played three 20-period supergames
against changing anonymous opponents, two subjects played only two su-
pergames. The subjects were visually isolated from each other in cubicles
containing computer terminals. The players interacted only by their decisions via
the computer network. The decision time for each period was limited to three
minutes. One week passed between one supergame and the next one. In this
time the participants had the opportunity to reflect on their experiences. Each
subject played with each of both cost functions at least once.

Strategy prograpuming: After the game playing rounds the students had to
program strategies in PASCAL. for the 20-period supergame. Every student had
to write a pair of strategies, one for each player of the supergame. We shall
refer to this pair as the student’s strategy. PC-owners could program at home,
but all participants had the opportunity to develop their strategies at the Bonn
laboratory of experimental economics with our technical assistance. A special
program called “trainer” could be used by the students to play against their own
programmed strategies. The “trainer” was a valuable tool for the development
of strategies. No restrictions were imposed on strategies. Decisions could de-
pend on the whole previous history of the play.

Computer towrnaments: At three fixed dates the students had to hand in a
programmed strategy. In the first two tournaments all workable strategies
submitted at this date competed with each other. In the third tournament the
last workable strategy of each participant was used. Each of the 24 students
succeeded in writing at least one workable strategy.

The tournament program proceeded as follows: Let n be the number of
workable strategies. Each of the » strategies played against all others in the role
of both players. Payoff sums for player 1 and player 2 were computed on the
basis of the n — 1 games played in the concerning role.

The procedure has the consequence that for each pair of strategies and each
assignment of player roles, two supergames are simulated even if the payoff
summation for one strategy makes use only of one of these games. Since
sometimes random decisions are used in strategy programs, both games may be
different. Altogether, 2n(n — 1} supergames were simulated in a tournament.
The success of a strategy can be measured for the roles of both players
separately by the corresponding payoff sums. The sum of these two measures is
a measure for the overall success of a strategy in a tournament. This measure of
overall success was the goal variable in the tournament. Strategies were ranked
according to the measure of overall success, but also for the success of both
player roles separately. Each participant received period-by-period printouts of
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all 2(n — 1) games underlying the computation of his success measure. More-
aver, all participants received lists of success measures, but without identifica-
tion of the other writers of strategy programs. On the basis of this information
the students could try to improve their strategy programs from one tournament
to the next one.

Mortivation: In view of the length of the experiment, it was not possible to
provide an appropriate financial incentive. Presumably, money payoffs in the
framework of a student seminar are not legal anyhow. The students were told
that their grades would strongly depend on their success in the last tournament.
It was emphasized that the absolute payoff sum rather than the rank was
important in this respect. We had the impression that for almost all participants
the task itself provided a high intrinsic motivation.

4, RESULTS OF THE GAME PLAYING ROUNDS

In this section we give a brief summary of the results of the game playing
rounds. The games served the purpase to provide experiences which could be
used in the development of strategy programs. Of course, it is plausible to
assume that the subjects were intrinsically motivated by the game payoffs, but it
is also possible that some of the behavior in these games was exploratory rather
than directly payoff-oriented. Nevertheless, it is interesting to look at the results
of the game playing rounds. However, our discussion will not be very detailed
because our main interest is in the investigation of the final strategy programs.

First game playing round: Although the participants had been informed one
week in advance about the structure of the game, their behavior seemed to be
confused. Figure 2 shows the supergame payoffs of the 11 groups (two partici-

110000 ) i Pareto

x efficient

% X frontier

.
% C
X
Supergame x
payoffs
of player 2
x %
* X

-

-20000
-80000 Supergame payoffs of player 1 110000

FigURE 2.—Supergame payoff pairs in the first game playing round.
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pants were absent). The repeated Cournot solution (point C in the diagram}
yields 50020 for player 1 and 7002¢ for player 2. It never happened that both
players achieved at least their Cournot payoffs. Furthermore, in all 11 cases the
sum of both supergame payoffs was below the sum of the Cournot payoffs. In
seven cases both players earned less than the Cournot payoffs. The role of
player 1 ( low variable and high fixed costs) was relatively less successful than
the role of player 2. In the mean, subjects in the role of player 1 earned 79% of
the Cournot gross profit (gross profit is profit plus fixed costs), whereas the
caorresponding figure for player 2 is 91%. The correlation coefficient between
the payoffs of the two players within the groups is —.36. This suggests that some
players succeeded to exploit their opponents. Figure 2 also shows part of the
Pareto efficient frontier.

Second game playing round: The results of the second game playing round are
shown in Figure 3. Here, two groups reached a Pareto improvement over the
Cournot payoffs. In one group both players supplied the Cournot outputs in
almoast all periads. “It’s the best thing you can do,” they commented afterwards.
In the remaining nine groups, both players sustained a loss in comparison with
the Cournot solution. The mean gross profits of subjects in the role of player 1
was higher than in the first game playing round (87% of the Cournot gross
profit), but the mean gross profit of subjects in the role of player 2 was lower
than in the first game playing round (77% of the Cournot gross profit). The
mean joint profit of both players was only slightly improved compared with the
first game playing round.

110000 ‘ Pareto
efficient
% frontier
X
2c
X
X
Supergame x
payofis x
of piayer 2 3 .
X
-
X
-20000
-80000 Supergame payoffs of player 1 110000

FIGURE 3.—Supergame payoff pairs in the second game playing round.
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There is one striking difference to the first game playing round. In the second
game playing round, the correlation coefficient between both players’ payoffs is
now +.91. This suggests that in the second game playing round the aggressive-
ness of both players shows a stronger coordination than in the first one. Even if
maost of the subjects did not yet succeed to play the game well, they seemed to
have learned something about the power relationship in the game.

Third game playing round: This round shows an enormous improvement in
mean payoffs (Figure 4). Now, subjects in the role of player 1 achieved 1% of
the Cournot gross profit and the corresponding figure for those in the role of
player 2 is 107%. Eight of the twelve groups succeeded to obtain Pareto
improvements over the Cournot payoffs. One group reached a result almost at
the Pareto efficient frontier. This group was the only one among those with
Pareto impravements over the Cournot payoffs which did not show an end
effect. The end effect consists in the breakdown of cooperation in the last
periods of the supergame. It is clear that payoffs at the Pareto efficient frontier
cannot be achieved if an end effect occurs.

The correlation coefficient between the payoffs of both players is +.72 in the
third game playing round. In this respect, the third game playing round is similar
to the second one.

It is clear that most of the subjects had learned to cooperate in the supergame
in the third game playing round. The results of the three game playing rounds
are not dissimilar to those abtained in other experimental studies where finite
supergames were repeatedly played against changing anonymous opponents
(Stoecker (1983), Selten and Stoecker (1986)). Subjects tend to learn to coaper-
ate but they also learn to exhibit end effect behavior.

110000 ‘ Pareto
efficient
x oy . N frontier
XX x
-
C
X
Supergame *
payoffs
of player 2
_...
-20000
-80000 Supergame payoffs of player 1 1100600

FiGURE 4.—Supergame payoff pairs in the third game playing round.
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5. RESULTS OF THE TOURNAMENTS

In the following section we shall discuss the results of the tournaments
without giving a detailed account of the strategies used. The typical structure of
the strategies of the final tournament will be examined in the next section.

First tournament: Two weeks after the third game playing round the partici-
pants had to hand in a programmed strategy for the supergame. Unfortunately,
4 of the 24 strategies had to be excluded from the first tournament since
programming etrors like dividing by zero or taking the root of a negative
number prevented the execution of these programs. The outcome of the first
tournament is presented in Figure 5. The significance of the points in Figure 5 is
not the same as in Figures 2, 3, and 4. A point now shows the combination of
mean payoffs achieved by one participant’s strategy in both player roles. More-
over, a larger scale has been chosen. One of the 20 strategies competing in
tournament 1 is not shown in Figure 5 since it achieved a very bad result,
namely (—6484, +58178), which is outside the scape of the drawing. We
omitted this point in order to be able to present the results of all three
tournaments with the same scale without losing the distinguishability of differ-
ent points.

The participant with the omitted bad result programmed a strategy which
supplied the respective Stackelberg leader output each period regardless of the
behavior of the other player. Only a few times he succeeded in forcing his
opponent to the Stackelberg follower position. In most cases his “aggressive™
behavior was punished by high opponent’s outputs.

806000 Pareto
efficient
frontier

Mean
supergame
payofis in %
the role of @’{(
X »*
player 2 . e é
x x
X
« .
X
60000
35000 Mean supergame payoffs 80000

in the rale of player 1

FIGURE 5.—Mean supergame payoffs for both player roles in the first tournament. Each “X7
refers to ane participant.
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The mean gross profit aver the whole simulation was 98% of the Cournot
gross profit for the role of player 1 and 99.8% of the Cournot gross profit for the
role of player 2. The mean performance is inferior to the third game playing
round. Maybe the subjects did not yet succeed sufficiently well to mold their
game playing intuition into computer programs.

Second toumament: Within three weeks after the first tournament the partici-
pants had the opportunity to improve their strategies. Unfortunately, this time
only 16 participants presented workable strategies. In the same way as in Fig-
ure 3, the results are shown in Figure 6. One point, namely (23860, 63691) is
omitted in Figure 6. Each of the other 15 subjects achieved results higher than
Cournot payoffs in both player roles. The mean gross profit was now 104% of
Cournot gross profit for Player 1 and 109% of Cournot gross profit for player 2.
This is a considerable improvement in comparison with the first tournament. It
must be admitted, hawever, that the comparison with the first tournament is
difficult in view of the smaller number of workable strategics. Moreover, the
result of the second tournament is also influenced by a “conspiracy” of two
subjects represented by the two points nearest the right border of Figure 6. In
the first period both participants used special outputs specified up to many
decimal places in an unusual way. With the help of this code they recognized
cach other when they played together in the tournament. They then played in
the remaining periods the output combination that maximizes joint profits. In
order to prevent this type of behavior in the final tournament, we replaced the
8th digit behind the decimal point of each output decision by a random number.

30000 Pareto

efficient
frontier
R
Mean x
supergame X X%
payofis in
the role of %
piayer 2 ¥
‘c
60000
35000 Mean supergame payoffs 80000

in the role of player 1

FIGURE 6.—Mean supergame payoffs for both player roles in the second tournament. Each X"
refers to one participant.
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This has a negligible influence on the computation of profits. In the plenary
session after the second tournament, we announced that similar conspiracies
will be prevented in the future. We did not observe any attempt to conspire in
the final tournament.

Third tournament. After two more weeks the final strategies had to be turned
in. Again four participants did not succeed to program a workable strategy.
Fortunately, each of these participants had completed at least one workable
strategy in the two preceding tournaments. The last workable strategy entered
the final tournament.

A superficial examination of the programs revealed that one strategy con-
sisted of two sequences of fixed outputs for every period, one sequence for each
player. The numbers varied unsystematically from period to period. The seminar
paper of this student loosely described a completely different strategy which was
much more reasonable. Obviously, this student wanted to avoid investing time
and effort into the programming of the strategy described in his paper. The
irregularity of the output sequences served the purpase of hiding the discrep-
ancy between the program and its description in the seminar paper. Obviously,
the programmed strategy cannot be taken seriously and therefore has been
excluded from the third tournament for the purposes of this paper.

The mean gross profit was 103% of the Cournot gross profit for player 1 and
1119 of the Cournot gross profit for player 2. These figures are only slightly
higher than thase of the second tournament. Figure 7 shows the results of the
third tournament. Computations of standard deviations of mean payoffs canfirm
the visual impression that the points in Figure 7 are more strongly concentrated
than those in Figure 6.

In 983 of the 1012 supergames simulated in the third tournament, the payoffs
of both players were greater than their Cournot payoffs. In this sense, we can
speak of successful cooperation in 97.1% of all cases. It is also worth mentioning
that in none of the remaining 29 supergames did both players obtain smaller
payoffs than their Cournot payoffs.

In the third game playing round only eight out of twelve supergames resulted
in payoffs which were greater than the corresponding Cournot payoffs for hath
players. The comparison with the results of the third tournament shows that the
final programmed strategies tend to be much more cooperative than the behav-
ior in the third game playing round. This suggests that the learning process
which began with the three game playing rounds was continued in the three
tournaments. The results of the third tournament do not seem to be very
different from that which could be expected as the outcome of spontaneous
game playing after a comparable amount of experience.

6. THE STRUCTURE OF PROGRAMMED STRATEGIES

In this section we shall concentrate our attention on the structure of the final
strategies. We shall not be concerned with the success of the strategies. For the
reasons which have been discussed in Section 5 (third tournament), one of
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FrGURE 7.—Mean supergame payoffs for both player roles in the third tournament. Each “X”
refers to one participant.

the programs will not be considered here. The remaining 23 programs and the
underlying ideas expressed in the seminar papers are the basis of the evaluation
of structural praperties.

A preliminary examination of the strategies and the seminar papers conveyed
the impression of a typical structure which is more or less present in almost all
programs. Most programs deviate from this typical structure in some respects
but the degree of canformity is remarkable.

Usually a program distinguishes three phases of the supergame: an initial
phase, a main phase, and an end phase. The initial phase consists of one to four
periods and the end phase is formed by the one to four last periods. The main
phase covers the periods between the initial phase and the end phase. Different
methods of output determination are used in the three phases. The initial phase
is characterized by fixed outputs which do not depend on the behavior of the
opponent. In the main phase the decisions are responsive to previous develop-
ments with the purpose to establish cooperation. In the end phase decisions are
guided by the attempt to maximize short-run payoffs.

Different strategies approach the decision problems of the three phases in
different ways, but nevertheless a typical structure emerges in this respect, too.
In order to describe similarities and differences among the 23 strategies, we
introduce 13 characteristics. A characteristic is a property of a strategy whase
presence or absence can be objectively determined by the examination of a
program and its description in the seminar paper. In some cases our characteris-
tics are indicators of strategic ideas underlying the program; in other cases the
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characteristics directly refer to the structure of decision rules. We shall distin-
guish characteristics concerning general principles and the three phases of the
supergame.

All characteristics are typical in the sense that they are present in the majority
of all strategies to which they can be meaningfully applied. Characteristic 7 is
meaningful only if Characteristic 6 holds, too, and Characteristics 12 and 13
presuppose that the strategy has an end phase, These three characteristics are
present only in the majority of all relevant cases. All other characteristics hold
for the majority of all final strategies.

8.1, General Principles

The first three characteristics are indicators of general principles underlying
the typical approach to the problem of writing a strategy program.

CHARACTERISTIC 1: No prediction.

Many oligopaly theories proceed from the assumption that a player has a
method to predict his opponent’s behavior and tries to optimize against his
predictions. The predictions may involve reactions to own output changes and
the payoff maximization may be long-term rather than short-term. In the final
tournament, only 5 of 23 strategies involved any predictions of the opponent’s
behavior.

In the first two tournaments, predictions were more widespread. Subjects tried
to obtain a satisfactory payoff against the predicted output of the opponent in
the next period. Several subjects who initially wrote programs involving predic-
tions later expressed the opinion that it is useless to try to predict the opponent’s
behavior. It seems to be more important to react in a way which indicates
willingness to coopetate and resistance to exploitation.

The fact that the absence of any predictions is a typical feature of final
strategies seems to be of great significance, precisely because it is in contrast
with most oligopoly theories.

CHARACTERISTIC 2: No random decisions.

At the beginning of the seminar we abserved that several students preferred
to build random decisions into their strategies. They motivated this by the belief
that a deterministic strategy could possibly be outguessed and exploited by the
opponent. In the course of the seminar, most of them learned that in an attempt
to achieve cooperation, it is important to signal one’s intentions. It may be
preferable to be outguessed by the opponent. Cooperation requires reliability
and random decisions may be counterproductive in this respect. Twenty-two of
the 23 final strategies never make a random decision.
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CHARACTERISTIC 3: Non-integer outputs.

It is natural that real persons playing at computer terminals use mostly
integer outputs. This was actually the case in the game playing rounds. Usually,
a programmed strategy employs functions which make the output dependent an
previous quantities. In general, the values obtained are not integers. However,
four of the final strategies did not specify such functions but rather made case
distinctions; for each case a different integer output or integer output change
was prescribed. Since only relatively few cases are distinguished, this way of
programming output decisions is less flexible than the specification of a func-
tion. In this light, Characteristic 3 is an indicator of smoothness and flexibility of
the response pattern.

6.2. The Initial Phase

Two characteristics describe the typical behavior in the initial phase.

CHARACTERISTIC 4: Fixed outputs for at least the first two periods.

If no randomization takes place the first period is always a fixed output.
Therefore, Characteristic 4 is almost equivalent to a nontrivial initial phase
where fixed outputs are chosen. Ten strategies make their decision for the
second period dependent on their opponent’s choice in the first period, but 13
strategies have fixed amounts for more than one period. The length of the initial
phase with fixed outputs is two periods for seven strategies, three periods for
four strategies, and four periods for two strategics. Twelve of the 13 strategies
with nontrivial initial phases play successively reduced outputs. The participants
explained this behavior as a signal of their willingness to cooperate. If one’s own
output is a respoense to that of the opponent too early, an unsatisfying decision
of the opponent in the first period could lead to an aggressive reaction of
oneself in the second period that again could annoy the opponent and so forth,
so that no cooperation might evolve aver the 20 periods. Some subjects observed
such unfavorable oscillations in the printouts of the first two tournaments.

CHARACTERISTIC 5: The last fixed output decision is at least 8% below the
Cournot quantity of the concerning player.

The percentage by which the last fixed output in the initial phase is below the
Cournot output can be regarded as a rough measure of a strategy’s initial
cooperativeness. A Pareto optimum is reached if both players’ outputs are about
24.5% helow the Cournot output. The criterion of the 8% limit of Characteristic
3 goes roughly a third of the way towards this Pareto optimum. Admittedly, it is
arbitrary to measure cooperativeness by percentages of the Cournot output and
to fix the limit at exactly 8%. Characteristic 5 is present in 13 of the 23
strategies. If the limit were increased to 10%, only a minority of 10 strategics
would meet the criterion.
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6.3. The Main Phase

The decision rules for the main phase are the most important part of a
strategy program. Characteristics 6 to 11 concern the main phase. The rules
given there do not apply to the initial phase and the end phase. This will not be
mentioned explicitly in the text of the characteristics.

Typically participants approached the problem of decision making in the main
phase by first looking at the question of where cooperation should be achieved.
They tried to find an output combination which gives higher profits than
Cournot profits to both players and can be considered as a reasonable compro-
mise between the interests of both players. An output combination of this Kind
which guides the decisions in the main phase will be called an “ideal point.”
Ideal points are usually not far away from Pareto optimality. They are often
based on considerations of equity which will be described below. Some partici-
pants used different ideal points for the roles of both players.

In Characteristic 6 we shall speak of “decisions guided by ideal points.” With
these words we want to express that the strategy program makes explicit use of
an ideal point in order to determine the next output as a function of the past
history. This can be done in many ways. One possible method connects the ideal
point and the Cournot paint by a straight line segment in the quantity or profit
space. The next output then matches the opponent’s last output on the line
segment as long as the opponent’s last output is in the range where this is
possible.

CHARACTERISTIC 6: Decisions are guided by one or two ideal points.

The property expressed by Characteristic 6 holds for 18 of the 23 final
strategies. Twelve strategies use only one ideal point for both players, whereas 6
strategies specify different ideal paints for the two player roles.

Table II gives an overview over the equity concepts underlying the construc-
tion of ideal points as far as such concepts could be identified on the basis of the
seminar papers. The reasons for the choice of 10 of the 24 ideal points are at
least partially unclear. Ta some extent ideal points were adapted to the learning
experience of the first two tournaments and thereby shifted away from equity
concepts.

The participants who based their ideal points on equity considerations often
did not correctly compute the intended ideal points. They rarely used analytical
methods but rather relied on mére or less systematic numerical search. The
values used instead of the correct ones are given in the footnotes below
Table II.

The concept described by the first row of Table IT looks at equal profit
increases in comparison to Cournot profits as a fair compromise. The Pareto
optimum corresponding to this idea is the intended ideal point. The concept of
the second row requires profit increases proportional to Cournot profits at a
Pareto optimal point.
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TABLE II
CoeerTs UNDERLYING IDEAL POINTS

Quantities Nuglfher
Caneept Player 1 Player 2 Strategjes
Maximal equal absolute 85.61 50.50 3
additional profits compared
ta Courpot profits
Maximal profits proportional 84,37 51.56 2
ta Cournat profits
Profit monotanic quantity 86.53 4971 2
reduction alang the straight
line through the intersections
aof both Cournot-isoprofit
Curves
Profit monatanic quantity 29.73 55.77 1°
reduction proportianally to
Cournot quantities
Maximal equal profits 89.70 47.01 2
Prominent numbers 85.00 50.00 2
30.00 50.00 2
Unelear — — 10

*Approximated by (§5.50) in all three cases.
approximated by (96.53) and (84.33, 51.55).
“Approximated by (89.74, 55,80}

“In one case approximated by (39 0, 46.5).

The third and fourth rows of Table II involve a procedure referred to as profit
monofonic quantity reduction. Along a prespecified positively inclined straight
line through the Cournot point in the quantity diagram, quantities are gradually
reduced as long as both profits are increased in this way. The output combina-
tion reached by the procedure is the ideal point. In the case of row 3 of Table II,
the prespecified straight line connects the intersections of both Cournot jso-
profit curves. In the case of row 4 the prespecified straight line connects the
Cournot point and the origin.

The concept of row 3 yields a Pareto optimum even if Pareto optimality is not
a part of the underlying idea. Contrary to this, profit monotonic quantity
reduction proportional to Cournot quantities yields an ideal point which is not
even approximately Pareto optimal.

The concept of maximal equal profits determines the Pareto optimum where
both profits are equal. Obviously, this ideal point does not only depend on
variable costs but also on fixed costs. The same is true for maximal profits
proportional ta Cournot profits. Two of the ideal points classified as unclear also
were based on equal profits but without an attempt towards maximization.

Some participants chose pairs of prominent quantities as ideal points. Round-
ness in the sense of divisibility by 5 seems to be the prominence criterion. More
detailed discussions of prominence in the decimal system can be found in the
literature (Schelling (1960), Albers and Albers (1983), Selten (1987)).
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Figure 8 shows the ideal points used by the final strategies. The ideal points
are given as quantity combinations. In the quantity diagram the Cournot-
isoprofit curves of the two players enclose a lens-shaped area. The ideal points
used by final strategies are in a relatively small area in the middle of this lens.
The mean of all ideal points is located at (87.02, 49.43). This combination is
almost Pareto optimal.

Characteristics 7 to 11 are described as rules to be followed by a programmer
of a strategy.

CHARACTERISTIC 7: [If your opponent has chosen an output below his output
specified by your ideal point, thern choose your ideal point quantity in the next period.

If a strategy is based on two ideal points then the words “your ideal point”
refer to the ideal points for the concerning player role. The interpretation of
Characteristic 7 is simple. If your opponent is even mere cooperative than
required by your ideal point, then there is no reason to deviate from your own
ideal point quantity. Ten of the 18 final strategies based on ideal points have this
characteristic. However, some other strategies increase the output in the situa-
tion of Characteristic 7 in order to test the opponent’s willingness to cooperate
at a point more favorable for oneself.

The remaining characteristics will be applicable to strategies without ideal
points, too. BEven if a strategy is not based on an ideal point, it may still involve a
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measure which permits an interpersonal comparison of cooperativeness. Thus a
strategy may look at the profit difference achieved at the beginning of the main
phase as a standard reference. Both players are judged to be equally coaperative
if this profit difference is attained.

CHARACTERISTIC 8: If your opponent has chosen an output above his Cournot
quantity, then in the next period choose your Cournot quantiry.

Twelve of the 23 strategies obey this rule. The other strategies do not use
more rigorous methads of punishment; instead, if they realize that their oppo-
nent plays permanently above his Cournot quantity, they abandon the idea of
punishment after some periods and reduce their own output below their
Cournot quantity to increase their profits. Such strategies run the danger of
becoming exploitable by attempts to establish Stackelberg leadership. Character-
istic 8 on the one hand avoids excessive aggressiveness and on the other hand
provides protection against exploitative opponents.

CHARACTERISTIC 9: If your opponent has chosen his Cowrnot quantity, then in
the next period choose g quantity not higher than your Cournor quantity and 5% at
maost below your Cowrnot quantity,

It can be seen with the help of Figure 8 that Characteristic 9 limits the
response to the opponent’s choice of his Cournot quantity ta a relatively small
interval. Sixteen of the 23 final strategies satisfy the requirement of Characteris-
tic 9. Among these 16 strategies there are 10 which respond to Cournot
quantities by Cournot quantities. The remaining 6 strategies want to indicate
their willingness to cooperate by a slightly smaller output. Of course, the
number of 5% in Characteristic 9 is to some extent arbitrary.

The following two Characteristics 10 and 11 apply to situations in which the
following four conditions hold.

(i} The last period was a period of your main phase.

(ii) Up to now you always followed your strategy.

(iii) In the last period your opponent’s output was below his Cournot cutput.

(iv) If you have an ideal point (for the relevant player role), then your
opponent’s output was above his output in your ideal point.

CHARACTERISTIC 10: Suppose that conditions (i), (i), (ii} and (iv) hold. If in
the last period your opponent has raised his output, then your decision raises your
output to a quantity below your Cowrnot outpul.

CHARACTERISTIC 11: Suppose that conditions (i), (it), (i}, and (iv} hold. If in
the last period your opponent has lowered his outpuit, then your decision lowers your
output. If you have an ideal point, then your new output remains above your ideal
POoint output.
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To illustrate Characteristics 10 and 11, let us give an example: Consider a
strategy which in the main phase matches the opponent’s last output on a
straight line between the Cournot point and an ideal point in the quantity space,
of course, only as long as the apponent’s last output was in the relevant range. A
strategy of this kind satisfies Characteristics 10 and 11. However, it is necessary
ta impose condition (i) since in the first period of the main phase matching on
the line may require an increase of output even if the opponent has lowered his
output.

As long as condition ([i) is satisfied matching on the line in later periods of the
main phase will move in the right direction. Conditions (iii} and (iv) make sure
that Characteristics 10 and 11 apply only in the relevant range.

Both characteristics can be satisfied for strategies not based on a line between
the Cournot point and an ideal point in any space. They may even be satisfied
for strategies without ideal points. Thus a strategy’s response may be guided by
the criterion of a profit difference equal to that at the Cournot point without
any regard to Pareto optimality. Two of the final strategies were of this kind.

Fourteen final strategies have Characteristic 1¢. The number of final strate-
gies with Characteristic 11 is also 14, but only 11 final strategies have both
characteristics.

6.4. The FEnd Phase

A strategy with an end phase has a special method of output determination
for the last one to four periods. Attempts towards cooperation which are typical
for the main phase are not continued in the end phase. Instead of this, short-run
profit goals are pursued.

Only 2 of the 23 final strategies do not have an end phase. One of these 2
strategies was typical in many other respects but the other was the most atypical.
This atypical strategy tries to estimate response functions of the opponent and
then computes the output decision by an elaborate approximative method for
the sclution of the dynamic program of maximizing expected profits for the
remainder of the game. Even if something like an end effect is automatically
produced by the dynamic programming approach, no end phase is present here
since the method of output determination is always the same.

CHARACTERISTIC 12: The strategy has an end phase of at least two periods.

Characteristic 12 is shared by 11 of the 21 final strategies with end phases.
Ten of these strategies planned an end effect only for the last period.

CHARACTERISTIC 13: The strategy has an end phase and specifies the Cournot
output of the relevant player as the owtput for all peviods of the end phase.

This characteristic is present in 12 final strategies. Other strategies sometimes
optimized shart-run profits against the opponent’s last output or approached the
Cournot output in several fixed steps.
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6.5. The Strategic Approach Underlying Typical Strategies

A typical strategy does not try to optimize against expectations on the
opponent’s behavior (Characteristic 1). The strategic prablem is not viewed as
an optimization problem but rather as a bargaining problem. The first question
to be answered concerns the point where cooperation should be achieved. Of
course, cooperation should be favorable for oneself but it also must be accept-
able for the opponent. A failure to reach cooperation is expected to lead to
Cournot behavior. Therefore, cooperation requires that both players obtain
more than their Cournot profits. Ideal points are constructed as reasonable
offers of cooperation within these constraints. Various kinds of fairness consid-
erations but also prominence (divisibility by five) and prior experience may
influence the selection of ideal points.

After the choice of an ideal point the question arises as to how caaperation at
this point or in its neighborhood can be achieved. It is necessary to indicate
one’s willingness to cooperate there and to show that one is not going to accept
less favorable terms.

A decreasing sequence of outputs in the initial phase is a natural signal
indicating cooperativeness. In the main phase a typical strategy evaluates the
cooperativeness of the opponent’s last output and responds by an output of a
similar degree of cooperativeness according to some criterion. The response may
depend on whether the opponent decreased or increased his output. If there is
such a difference, it is natural to respond more aggressively to the same output
after an increase.

One may say that main-phase behavior is guided by a principle of “measure
for measure.” Small changes of the opponent’s output lead to small reactions
and big changes cause big reactions.

Many oligopoly theories are based on the idea that a player anticipates the
reaction of his opponent in order to maximize his profits. Contrary to this, a
strategy based on an ideal point and a response rule guided by the principle
“measure for measure” does not involve any anticipation of the opponent’s
reactions. The aim is to exert influence an the opponent rather than to adapt to
his behavior. In order to achieve this aim one’s own behavior has to provide a
clear indication of one’s own intentions. If the implied offer of caoperation is
reasonable, one can hope that the aim will be reached. A response guided by the
principle “measure for measure” protects against attempts to exploit one’s own
cooperativeness and rewards coaperative moves of the other player.

Of course, cooperation breaks down in the end phase. The strategies have
been written for the 20-period supergame. This game permits only one subgame
perfect equilibrium path, namely Cournot cutputs in every period. The partici-
pants were aware of the backward induction argument which came up in the
discussions of the plenary sessions. They accepted the idea that cooperation
must break down in the last periods but as the strategies show they did not
accept the full force of the backward induction argument. An explanation of this
phenomenon is given elsewhere (Selten (1978a)).
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7. TYPICITY AND SUCCESS

All characteristics are typical for the final strategies in the sense that they are
present in the majority of the cases to which they are applicable. Of course, they
are not all equally typical. Some appear in more of the final strategies than
others. Moreaver, the extent to which a characteristic is typical should not only
be judged by the number of strategies with this characteristic, but also by the
extent to which these strategies are typical. In the following, we shall construct a
measure of typicity applicable to both characteristics and strategies which tries
to do justice to these considerations.

The measure of typicity assigns a real number to each characteristic and to
each strategy. The sum of the typicities of all 13 characteristics is normed to L.
The measure of typicity can be thought of as the outcome of an iterative
procedure. At the beginning, all characteristics have the same typicity 1/13.
Then, in each step, first a new typicity is computed for each strategy as the sum
of the typicities of its characteristics. Afterwards, a new typicity for each
characteristic is computed as proportional to the sum of the typicities of the
strategies with this characteristic. The sum of the typicities of all characteristics
is again normed to 1.

In order to give a more precise mathematical definition of our measure, it is
necessary to introduce some notation. The typicity of characteristic { is denoted
by ¢; and s, stands for the typicity of strategy j. The symbol ¢ is used for the
column vector with the components ¢,,...,c;, and s denotes the calumn vectar
with the components s+ 5;3. Let A be the 13 X 23-matrix with entries a,; as
follows: a;; = 1 if strategy j has characteristic i, and g;; =0 otherwise. In our
case ¢ and s are uniquely determined by the following equations.

c=onAs,
s=AT¢,

13

ra=1,

=1
where AT is the transpose of 4 and 1/« is the greatest eigenvalue of AA”. It is
a consequence of elementary facts of linear algebra that the iterative process
described above converges ta vectors ¢ and s which can be described as the
solution of this system of equations.

Table III shows which strategy has which characteristics. The rows correspond
to the 13 characteristics and the columns to the 23 final strategies. The
strategies have been numbered according to the success in the final tournament.
Strategy 1 is the most successful one, strategy 2 the second most successful one,
ete. A hlack mark indicates that the strategy correspaonding to the column has
the characteristic corresponding to the row.

Obvicusly, the black marks in Table III describe the matrix 4. A black mark
corresponds to an entry 1 and the absence of a black mark corresponds to an
entry 0. The typicities of the characteristics are given at the right margin and the
typicities of the strategies can be found at the bottom of Table III.
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TABLE III
Typ1city oF CHARACTERISTICS AND STRATEGIES?

Characteristics Strategies Typicity
Rankimgof 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
SUCCess
Rankingof 1 5 2 1714 8 16 7 4 6 181211 9 15 3 10192223 13 21 20
typicity
= B = T~ L T N T ST o Ty TR e o T o o B MLt SO Al 4 N~ B = T =
Typicity 288282780820 HEERE5 8
R e e B T DL I B A A T

 The Spearman rank correlation costficient between typicity and success of strategies is », = 619,

The table also shows the ranking of success in the final tournament and the
ranking of typicity of the 23 strategies. The Spearman rank correlation coeffi-
cient between success and typicity is +.619. This value is significant at the 1%

level (two-tailed test).

It is an unexpected phenomenon that there is a strongly significant positive
correlation between the typicity and the success of final strategies. In principle, the
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opposite relationship would also seem to be possible. It is not inconceivable that
typical characteristics reflect nothing else than typical mistakes. However, in our
case the characteristics seem to embody advisable strategic principles. Maybe
the positive correlation between typicity and success is the result of the learning
process which produced the final strategies.

For each characteristic the mean success rank of those strategies which have
it is smaller than the mean success rank of those which do not have it. This
shows that each of the characteristics separately is positively connected to the
success in the final townament. In this sense all 13 characteristics are favorahle
structural properties of a strategy.

Our judgments of the advisability of the characteristics must be understood
relative to the strategies developed by the participants of our experiment. We
cannot exclude the possibility that a very atypical strategy can be found which
turns out to be very good in a tournament against the 23 final strategies. In fact,
the participant who wrote a strategy with success rank 20 firmly believes that
this approximative dynamic programming approach based on an estimated
respense function of the opponent can be improved to a degree which will make
it superior to all final strategies in a tournament against them. We doubt that
this is the case. The difficulty with the dynamic programming approach is the
problem of forming a correct estimate of the opponent’s behavior. A best
response to a wrong prediction can have disastrous consequences.

Admittedly, our experiment does not really justify strong conclusions since the
final strategies have not been developed independently of each other. Perhaps a
different picture of a typical strategy would emerge in a repetition of the
experiment. Nevertheless, the results reported in this section seem to be of
considerable significance for the further development of oligopoly theory.

8. A FAMILY OF SIMPLE TYPICAL STRATEGIES

The 13 characteristics do not completely determine a strategy. Many details
are left open. In this section we shall construct a family of strategies which are
fypical in the sense that they have all 13 characteristics and the missing details
are furnished in a particularly simple way. The members of the family differ only
by the pair of ideal points used for bath player roles. The special case of only
one ideal point is not excluded.

For our family of simple typical strategies we shall discuss the question of
what happens if two strategies with different ideal points play against each
other. This exercise conveys some insight into the strategic properties implied by
the 13 characteristics. We shall also look at the question of what is a reasonable
choice of ideal points. For this purpose we have determined that member of the
family which did hest in a tournament against 22 of the final strategies. (The
only strategy which involved random decisions was eliminated in order to aveoid
time consuming Monte-Carlo simulation.)
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8.1. Description of the Simple Typical Strategies

The ideal peints are described by output pairs « and u, one for each player
role:

Ideal point for the role of player 11w = (uy,u,).

[deal peint for the role of player 2: v = (v, v,).

The first components of the vectors 1 and v denote player 1°s output and the
second stands for player 2's cutput. As mentioned above, the special case u =uv
is not excluded. We also introduce the following notation for the output
combination in the Cournot equilibrium of the underlying duopoly.

Cournot equilibrium: ¢ = (¢, ¢,).

We now can describe the decision x,(¢) specified by the simple typical strategy
with ideal points u and u. The following conditions (i) and (ii} have been
imposed on the ideal points:

(i) The ideal points u and v are Pareto superior to the Cournot equilibrium.

(i) u; =.92¢, and v, < .92¢,.

Condition (i) is necessary to make the specification of the initial phase
compatible with Characteristic 5.

Initial phase:
¢ 31
xl(r) = Eul + TCI,
4 I~
ch(.'.‘)=§uz+T(:2 for t=1,2,3.
Main phase:
u for x,(¢ — 1) < u,,
¢ for x,(t — 1) = ¢,,
xl(f) — 1 ¢ —u, 2 2
u + (x,(t - 1) —u,) otherwise;
€37 Uy
Uy for x,(z — 1) < vy,
¢ for x,(r = 1) 2 ¢,
x,(¢) = ! . : !
vy + (x,(t=1}—uv,) otherwise.
< Y
End phase:

x()=¢, fori=1,2and¢=19,20.
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The initial phase can be thought of as a sequence of three equal “concessions”
moving frem the Cournot output ¢, to the ideal point output u; or o,
respectively. The first period already makes the first concession. Obviously, the
initial phase satisfies Characteristic 4 which requires at least two periods.
Characteristic 5 is satisfied since u, and v, are not greater than .92¢, and .92¢,,
respectively.

Characteristic 6 requires that the strategy make use of ideal points. Obvicusly,
this is the case for our family of simple typical strategies.

We now turn our attention te the equation for the main phase. The upper
line on the right-hand side secures Characteristic 7. The middle line is in agree-
ment with Characteristics 8 and 9. Characteristic 9 concerns the special case
x{(t — 1) =¢, and permits a response x;(z) up to 5% lower than c,. As has been
pointed out hefore, the majority of these final strategies which conformed to
Characteristic 9 specified a response of exactly ¢,. Therefore, this response can
be considered as typical.

The lower line on the right-hand side of the equation for the main phase is a
very simple version of the principle “measure for measure.” The last output of
the opponent is matched by the corresponding ountput on the straight line which
connects the ideal point and the Cournot point in the quantity space. Obviously,
this has the consequence that Characteristics 10 and 11 are present in the
strategies of our family.

The end phase has two periods and, therefore, conforms to Characteristic 12.
The output in the end phase is always ¢;, as required by Characteristic 13.

The strategies of our family also have the Characteristics 1, 2, and 3. In
accordance with Characteristic 1, no attempt is made to predict the opponent’s
behavior and to optimize against this prediction. As required by Characteristic 2,
the strategies are completely deterministic. In the main phase the strategies
permit a continuum of possible responses and therefore have Characteristic 3.

8.2. Simple Typical Strategies Playing Against Each Other

Consider a play of the 20-period supergame where each of both players uses a
member of the family described above as his strategy. Let © and v be the ideal
peints of the strategy of player 1. Similarly, let u* and v* be the ideal points of
the strategy of player 2. Actually, only » and u* are of interest here since we
have fixed the player roles. .

The behavior in the main phase can be described by two “reaction functions,”
r and #*

I for x, <u,,
¢, for x; > ¢,,
!

(x, —u,) otherwise;
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uy” for x, <p/*,
. €y for x, = ¢,
F(x,) =
(1) ¢y — Uy .
vy + ———(x, —uv*) otherwise.
€, = v
1 1

The development of the play in the main phase is given by the following
equations:

x,(3) =u,,
x,(3) = v,%,
x()=r(x,(t—-1)) fort=4,...,18,
X (8) =r*(x,(r — 1)) fore=4,...,18.

Figure 9 shows four examples for the development of this system of difference

equations. In Figures 9a and 9b the path of cutput combinations moves towards
the Cournot equilibrium. In Figure 9¢ the path stays at (u;,v,*) for e =3,...,18.

w2k

e T

W o e o

(a) (b)

Y | b

"
@ @

Ficure 9.—Simple typical strategies playing against each other. Four examples with different
ideal point pairs u and o*.

-
x1
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In Figure 9d we have

x(t) =r(v,*) forr=4,...,18,
x, (2} =v,* forr=4,...,18.

We shall speak of a conflict case if the output combination path moves
towards the Cournot equilibrium, and of an agreement case if the output path
becames stationary in periods 4 to 18.

It can he seen without difficulty that a conflict case is obtained whenever the
Cournot output combination is the only common point of # and #*. All other
cases are agreement cases. An agreement case is also characterized by the
condition that player 2’s ideal point is not above the straight line through the
Cournot point and player 1's ideal point. This is the case if and only if player 1°s
ideal point is not below the straight line through the Cournot point and player
2’s ideal point. From what has been said it follows that an agreement case is
obtained if and only if the following inequality holds:

. -
c;— Uyt o,

e —u* ¢ -y

Figure 9 will illustrate the consequences of this condition: In the special case
in which both ideal points are Pareto optimal, an agreement case is reached if
each player does not ask for more than the other player will grant him. The
ideal points are like bargaining offers. The less one asks for oneself and the
more one grants to the other player, the better are the chances for agreement.

In view of the condition for an agreement case it seems to be quite reasonable
to specify two different ideal points for the two player roles in such a way that
player 1’s ideal point is mare favorable for player 2 and vice versa. However,
thase 6 participants who specified two different ideal points did this in a way
which leads to a conflict case if the strategy plays against itself. In each player
role these subjects wanted more for themselves than they would grant to the
other player if he were in this role.

It can be seen without difficulty that the condition which distinguishes
agreement cases from conflict cases does not depend crucially on the special way
in which our simple typical strategies specify the initial phase. As long as at the
end of the initial phase both outputs are below the respective Cournot outputs,
the output combination path moves,towards the Cournot point in a conflict case
and towards stationary cooperation in an agreement case.

8.3, The Best Ideal-Point Selection Against the Final Strategies

It is interesting to ask the question of what is the best selection of ideal points
within the family of simple typical strategies defined above in a tournament
against the final strategies. Actually, we simulated tournaments only against 22
of the final strategies since we omitted the only strategy which uses random



546 R. SELTEN, M. MITZKEWITZ, AND G. UHLICH

choices. The best choice of ideal points turned out to be as follows:

u = (89.4,55.6),
v = (86.6,50.4).

Both comgponents of u are greater than the corresponding components of o,
but if this strategy plays against itself an agreement case is obtained; the
quantity combination (89.4,52.6) is played in periods 4 to 18.

The ideal point (86.6,50.4) is nearly Pareto optimal whereas u = (89.4,55.6) is
relatively far from the Pareto optimal line. However, u ={89.4,55.6) has the
advantage that it yields agreement cases against all ideal points which have been
specified for the role of player 2 by those of the 22 participants who used ideal
points. This is due to the fact that u, = 55.6 is rather large.

The ideal point o = {86.6,50.4) does vield conflict cases against some of the
ideal points specified for the role of player 1 by participants. These ideal points
for player 1 are too aggressive to make it worthwhile to reach agreement with
them by a more generous ideal-point choice which, of course, would diminish
payoffs against other strategies.

The simple typical strategy with u = {89.4,55.6) and v = (86.6, 50.4) is not only
the best amang its family but is also the winner of the tournament against the 22
final strategies. This seems to indicate that the way in which the simple typical
strategies fill in the details left open by the 13 characteristics is not an
unreasonable one. One may say that the structure of these strategies provides
an appropriate idealized image of typical behavior of experienced strategy
programmers, at least as far as our experiment is concerned.

8.4. Game-Theoretic Properties of Simple Typical Strategies

The 20-period supergame has only one subgame perfect equilibrium point. In
this equilibrium point both players always cheose their Cournot quantities
regardless of the previous history. If both players use simple typical strategies of
the family described ahove the resulting strategy pair is always a disequilibrium,
simply because it would be advantageous to deviate in the fourth last period.

Game theoretically there s a fundamental difference between finite and
infinite supergames. It is known from the experimental literature that this
difference seems to have little behavioral relevance. In sufficiently long finite
experimental supergames cooperation is possible until shortly before the end,
even if the source game has only one equilibrium point {(Stoecker (1983), Selten
and Stoecker {1986)). If one wants to connect finite supergame behavior with
game-theoretical equilibrium notions, one has to take the point of view that the
players behave as if they were in an infinite supergame.

It is shown in another paper of one of the authors that it is possible to
construct equilibrium points for the infinite supergame of our duopoly model
based on the main phase of our simple typical strategies (Mitzkewitz (1988)). In
these equilibrium points both plavers have the same ideal point. This ideal point
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is chosen in the first period of the game; later the strategies respond to the
previous period as specified by the reaction functions » and r*. Under certain
conditions which have to be impaosed on the ideal points, equilibrium points are
obtained in this way. However, these equilibrium points are not subgame
perfect. This is a consequence of a result in the literature which shows that
equilibria where output continuously depends on the opponent’s last-period
output only cannot be subgame perfect unless the Cournot output is specified
regardless of the previous history (Stanford (1986), Robson (1986)). Mitzkewitz
(1988) shows that an appropriate maodification of the main phase of the simple
typical strategies yields subgame perfect equilibrium points for a wide range of
ideal points.

Among the newer game-theoretical literature on the duopoly problem we
have only found one paper which shows some similarities with the approach
taken here (Friedman and Samuelson (1988)).

8.5. Reasonable Conditions for Ideal Points

One may ask the question whether it is possible to impase reasonable
restrictions on the choice of ideal points in our simple typical strategies. A
strategy programmer who considers an ideal point for one of the player roles
will probably explore what happens if his opponent uses the same ideal point for
the opposite player role. Therefore, it is natural to focus on the case in which
both opponents use the same ideal point u = {(u,, #,) for both player roles.

Suppose player 1 knows that player 2 plays a simple typical strategy as defined
above with the ideal point u ={u,,u,). Suppose that for some output x, the
profit G,(x;,#*(x,)) is greater than G,(u,,u,). Then player 1 has a better
alternative than to agree to player 2's ideal point (u,,u,). This consideration
and an analogous ane for player 2 lead to the following conditions:

Gl(ul,uz) = max Gl(xl‘ r*(xl))s
Xz

We refer ta these two equations as “conjectural equilibrium conditions”™ since
there is an obvious relationship to conjectural oligopoly theories (see Selten
(1980)).

Anaother reasanable condition on ideal points is connected ta the possibility of
attempts of short-run exploitation. Suppose that a player deviates just once from
the ideal point and then returns to caoperation at the ideal point. It should not
he possible to improve profits in this way. This leads to the following conditions:

2G(uy,u,) = max [G(x,,u4,) + Glu,,r*(x,))],

2G,(uy, 1) = max [G,(u,, x,) + Gy (r(xy), u,)].
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We refer to these equations as “stability against shorf-run exploitation.” In our
numerical case the conjectural equilibrium conditions imply stability against
short-run exploitation, but this is not the case for all possible parameter values.

As has been explained in subsection 8.4 it will be shown elsewhere (Mitzke-
witz (1988)) that subgame perfect equilibrium poiats for the infinite supergame
can be constriucted on the basis of the reaction functions (but with memory also
of the own behavior) embodied in the main phase of simple typical strategies if
certain conditions on the ideal point are satisfied. These conditions are nothing
else than the conjectural equilibrium conditions and the stability against short-
run exploitation.

Perhaps it is also of interest that only one Pareto optimal point satisfies the
conjectural equilibrium conditions, namely the point described in the third row
of Table 1I: profit monotonic quantity reduction along the straight line through
the intersections of both Cournot-isoprofit curves (see Mitzkewitz (1988)). It is
tempting to look at this ideal point as distinguished among others by its special
theoretical properties. In the final strategies it has been employed twice.
However, as can be seen in Table II, other ideal points based on different
principles have proved to be at least as attractive to the participants.

Figure 10 shows the ideal points used in final strategies of the participants and
the restrictions imposed by the conjectural equilibrium conditions (the smaller
Jens-shaped area) and by stability against short-run exploitation (the greater
lens-shaped area). The equations for these curves will be discussed elsewhere

704 Cournot (111, 69)
Pareto . .

&0 optima x one observatian

(>\I< m two abservations
@ five abservations
50
40 r . , , . :
75 a5 85 106 115

Ficure 10.—The set of ideal points satisfying the conjectural equilibrium conditions (smailer
lens), the set of ideal points stable against short-run exploitations (greater lens), and the ideal points
used in final strategies.
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(Mitzkewitz (1988)). Only 4 of the 24 ideal points satisfy the conjectural
equilibrium conditions, but 21 of the ideal points are stable against short-run
exploitation.

Obviously, the participants were not concerned about the conjectural equilib-
rium conditions. Maybe a violation of these conditions is not perceived as a
serious danger since in the case of an optimization of the other player along
one's own reaction function, cooperation will still be reached, evenr if the
resulting output levels are higher than in the ideal point.

Some strategies which were not yet the final ones contained attempts at
short-run exploitation. Most participants seemed to be aware of this possibility
since the “trainer”-program enables them to play against their own strategy.
They were able to check short-run exploitability without analytical computa-
tions. Of course, such numerical checks will sometimes fail to reveal the right
answer. Maybe it is of interest in this connection that two of the three ideal
points without stability against short-run exploitation are very near to the
corresponding area in Figure 10.

8.6. Stability against Short-Run Exploitation and Outcomes of Plays in the
Final Towmament

In the tournament among 23 final strategies (including the strategy with
random choices) 1012 plays were simulated (two plays for each strategy pair).
Table IV shows the distribution of the pairs of total profits in the 1012 plays.
The inner cells of the table correspond to profit intervals of four thousand for
both players.

The curve superimposed on this table is connected to stability against short-run
exploitations. The curve encloses all profit pairs which can be reached by plays
in which the same ideal point with the property of stability against short-run
exploitation is played in all 20 periods. We call the region enclosed by this curve
the “exploitation stability region.”

Consider two simple typical strategies whose ideal points are stahle against
short-run exploitation. Whenever such strategies are played against each other,
the resulting profit combination of the 20-period supergame must be in the
exploitation stability region, regardless of whether the ideal points of both
players are equal or not. However, the set of all profit combinations which ¢an
be reached in this way is a proper subset of the exploitation stability region. This
is due to the behavior in the initial’ phase and the end phase. The exploitation
stability region can be obtained by pairs of modified simple typical strategies,
strategies in which the initial phase and the end phase are of different length,
but the behavior in the main phase remains the same.

In the final tournament 983 (97.1%) of the 1012 plays resulted in total profit
combinations in the exploitation stability region. In those few total profit
combinations outside the exploitation stability region, one of both profits is
below the corresponding Cournot profit.
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TABLE IV
SUPERGAME PROFIT PAIRS IN THE FINAL TOURNAMENT
AND THE EXPLOITATION STABILITY REGION.
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The evidence of Figure 10 and Table IV strongly suggests that stability against
short-run exploitation has some relevance for the prediction of outcomes of
plays between strategies written by experienced players.

9. IMPLICATIONS FOR DUOPOLY THEORY

The results presented in this paper suggest a new view of the duopoly
problem. Traditional duopoly theories and game-theoretical approaches rely
heavily on optimization ideas. Usually, a duopolist is assumed to optimize
against expectations on his opponent’s behavior. Contrary to this, it is typical for
the strategies programmed by the experienced players in our experiment that no
expectations are formed and nothing is optimized.

The approach to the duopoly prablem suggested by our results can be
described as the “active pursuit of a cooperative goal.” First, one has to answer
the question of where one wants to cooperate. The goal of cooperation is made
precise by the concept of an ideal point. The ideal point should be a reasonable
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compromise between both players’ interests; otherwise, one cannot hope to
achieve cooperation. Concepts of fairness such as those listed in Table II are the
basis for judgments on the reasonableness of compromises.

It is well known in the experimental literature that considerations of fairness
have a strong influence on observed behavior. Many of the empirical and
experimental phenomena can be subsumed under an equity principle (Selten
(1978b)). Further literature can be found there and in a newer paper which
contains many illustrative examples (Kahneman, Knetsch, and Thaler {1986)).
Fairness considerations also have been praved to be useful in the explanation of
behavior in duopaly experiments (Friedmann (1970), Selten and Berg (1970)).

Once an ideal point has been chosen one has to determine a policy for its
effectuation. Formally, an effectuation policy may be described by a reaction
function as in the simple typical strategies of Section 8, However, contrary to
conjectural oligopoly theory, such reaction functions are not to be interpreted as
hypotheses on the opponent’s behavior. Effectuation policies are more like
reinforcement schedules which serve the purpose to guide the opponent’s
behavior rather than to optimize against it.

The typical structure of an effectuation policy is based on the principle of
measure for measure. This principle requires an interpersonal comparison of
the degree of cooperativeness of the players’ actions. The degree of coaperative-
ness measures the nearness to the ideal point. The response matches the
apponent’s last action according to this measure.

A player whao plays the dynamic game may try to learn how to do best against
his opponent’s behavior. A player who does this takes a “learning approach.” It
is also possible to take a “teaching approach,” which means that one behaves in
a way which induces the other player to conform to one’s own goals.

It seems to be very difficult to design a reasonable strategy which takes the
learning approach. One participant tried to do this in a sophisticated way. His
strategy involved an approximate intertemporal optimization against statistical
estimates of his opponent’s strategy. His success rank was 20. As Table III
shows, his strategy has only one of the thirteen characteristics, namely the
absence of random decisions. Obviously, the optimization attempt, of this
participant failed badly. The reason for this lies in the difficulty of forming an
accurate estimate of the opponent’s behavior on the basis of relatively few
observations.

The difficulties connected to the learning approach point in the direction of a
teaching approach. Of course, somebody who takes the teaching approach does
not necessarily expect that the other player takes a learning approach. The other
player may very well take a teaching approach, too. This will not lead to
difficulties if both players pursue compatible cooperative goals. However, if the
opponent tries to adapt to my strategy, this should not endanger my cooperative
goal.

Maybe in a very long supergame of thousands of periods, a good strategy
would involve both, teaching and learning, but within 20 periods not much can
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be learned which still can be used within this time. Real duopoly situations
rarely are analogous to very long supergames. Maybe a relatively short su-
pergame more adequately captures the decision problem of managers who want
to be successful within a foreseeable time.

The new view of the duopoly problem emerging from our results may be
described by the slogan “fairness and firmness.” One must first choose a fair
goal of cooperation and then devise an effectuation palicy which shows one’s
willingness to cooperate and firmly communicates resistance to unfair behavior.

As we have seen, the requirement of stability against short-run exploitation
seems to be a restriction obeyed by the participants’ choices of ideal points, even
if their effectuation policies were not exactly the same as those of the simple
typical strategies. It is clear that one should not give rise to the possibility of
being exploited. Moreover, in the case in which the other player selects one’s
own idea] point, he should not be exploitable. This criterion of stability against
short-run exploitation is in good agreement with our data.

It is clear that the theory of fairness and firmness can be easily transferred to
different contexts, e.g. price-variation duopoly supergames. The tit-for-tat strat-
egy which was the winner of Axelrod’s contests (1984) is in harmony with the
fairness-and-firmness theory. In the prisoner’s dilemma the choice of an ideal
point is not an issue. In view of the symmetry of the situation there is only one
natural cooperative goal. Since there are only two choices available, measure for
measure cannot mean anything else than tit-for-tat,

It must be admitted that no strong conclusions can be drawn from our data
since the final strategies cannot be regarded as statistically independent observa-
tions. The participants interacted in game playing rounds and tournaments.
Moreover, there was some verbal communication, even if the participants
seemed to be reluctant to reveal the principles underlying their strategies.

More studies similar to the investigation presented here are necessary to
establish the empirical relevance of the fairness-and-firmness theory. It should
also be kept in mind that the final strategies of our participants are the result of
a long experience with the game situation. It is quite possible that real duopolists
have much less experience with their strategic situation and therefore do not
achieve the same extent of cooperation. The experimental literature shows that
only after a considerable amount of experience, subjects learn to cooperate
(Stoecker (1980), Friedman and Hogatt (1980), Alger (1984, 1986), Benson and
Faminow (1988)).

It would be wrong to assert that there is no difference between a programmed
strategy and spontaneous behavior, The strategy method cannot completely
reveal the structure of spontaneous behavior. However, it seems to be plausible
that somebody wha writes a strategy program is guided by the same mativational
forces which would influence his spontaneous behavior. Of course, a strategy
program is likely to be more systematic. Obviously this is an advantage from the
point of view of theory construction.
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10. SUMMARY OF RESULTS

1. Mean profits increased from one game playing round to the next.

2. The correlation between both player profits was negative in the first game
playing round and became positive in the second and the third game playing
round. This can be interpreted as a growth of understanding of the strategic
situation.

3. Mean profits increased from one computer tournament to the next. In the
final tournament 97.1% of all plays had profits abave Cournot profits for both
players.

4. Typically, a strategy program for the final tournament distinguishes among
an initial phase, a main phase, and an end phase. Qutputs independent of the
opponent’s previous behavior are specified for the initial phase of one to four
periods. In the main phase the strategies aim at a cooperation with the
epponent. Noncooperative behavior characterizes an end phase of one to four
periods.

5. Typical structural features of strategies programmed for the final tourna-
ment can be described by 13 characteristics. These characteristics imply a
strategic approach which begins with the selection of a cooperative goal de-
scribed by an “ideal point.” (A different ideal point may be chosen for each
player rale.} Cooperation at the ideal point is then pursued by a “measure-for-
measure policy.” If the oppenent maves towards the ideal point or away from it,
the response of a measure-for-measure policy is of similar force in the same
direction. In the end phase a typical strategy always chooses Cournot outputs.

6. Typically, no predictions about the opponent’s behavior are made and
nothing is optimized.

7. The extent to which a strategy or a characteristic is typical can be
measured by an index of typicity. There is a highly significant positive rank
correlation between the index of typicity and the success of a strategy in the
final tournament.

8. For each of the 13 characteristics separately those final strategies which
have this characteristic have a higher average success rank than those which do
not have it.

9. Ideal points are often based on various fairness considerations (see
Table II).

10. A family of “simple typical strategies” has been introduced as an idealized
description of the structure implied by the 13 characteristics. The simple typical
strategy which performed best against the final tournament strategies was
determined by a computer simulation. This “best” simple typical strategy is also
the winner in the tournament against the final strategies,

11. Two game-theoretical requirements for simple typical strategies impose
restrictions on ideal points. One of these restrictions, the “conjectural equilib-
rium conditions,” is rarely satisfied by the ideal points in the final strategies.
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However, most of these ideal points satisfy the weaker restriction of “stability
against short-run exploitation.”

12. An “exploitation stability region” for profit combinations reached in the
supergame can be derived from the requirement of stability against short-run
exploitation. The profit combinations of all plays in the final tournament in
which both players received more than their Cournot profits are in the exploita-
tion stability region. These are 97.1% of all plays in the final tournament.
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