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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
■   Progression of Parkinson’s disease (PD) induces modulations in dynamic functional brain networks.

■   Changes of dynamics functional brain network are linked to worsening PD symptoms.

■   Dynamic brain network has potential as a biomarker for evaluating PD progression.

M
ed

icine
REPORT

The Innovation Medicine 1(2): 100027, September 21, 2023　　　  1

mailto:liyang@buaa.edu.cn
mailto:yma@bnu.edu.cn
mailto:mengfg@ccmu.edu.cn
https://doi.org/10.59717/j.xinn-med.2023.100027
https://doi.org/10.59717/j.xinn-med.2023.100027
https://doi.org/10.59717/j.xinn-med.2023.100027
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Dynamic functional connectivity assesses the progression of
Parkinson’s disease
Zhibao Li,1,2 Wei Chen,1 Xiaoyu Zeng,4 Jun Ni,4 Yuzhu Guo,5 Hua Zhang,1 Yang Li,5,* Yina Ma,4,6,* and Fangang Meng2,3,6,*
 

1Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
 

2Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
 

3Department of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
 

4State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
 

5Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing 100191, China
 

6Chinese Institute for Brain Research, Beijing 102206, China
*Correspondence:  liyang@buaa.edu.cn (Y.L.);  yma@bnu.edu.cn (Y.M.);  mengfg@ccmu.edu.cn (F.M.)
Received: July 9, 2023; Accepted: September 9, 2023; Published Online: September 11, 2023; https://doi.org/10.59717/j.xinn-med.2023.100027
© 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Citation: Li Z., Chen W., Zeng X., et al., (2023). Dynamic functional connectivity assesses the progression of Parkinson’s disease. The Innovation Medicine 1(2), 100027.
 
Parkinson’s  disease  (PD)  induces  functional  connectivity  (FC)  changes
during its course. However,  the impact of PD progression on the temporal
properties  of  FC  remains  ambiguous.  In  the  current  study,  we  aimed  to
uncover  longitudinal  shifts  in  dynamic  FC  (DFC)  temporal  properties  of
brain networks during PD progression, proposing a novel biomarker for PD
progression  evaluation.  We  conducted  a  longitudinal  study  on  45  PD
patients  from  the  Parkinson’s  Progression  Markers  Initiative  database.
Patients underwent dual-timepoint neurological assessments and resting-
state  fMRI  scans at  baseline  and 1-4  years  of  subsequent  follow-up.  The
sliding-window technique and k-means clustering were employed to scru-
tinize DFC patterns of the entire brain network, including individual cortical
subnetworks  and  subcortical  nuclei  (SN)  at  every  timepoint.  From  this
analysis, DFC analyses revealed two predominant states: a high-frequency
sparse FC state and a low-frequency intense FC state. For the entire brain
network, the mean dwell time (MDT) in the sparse FC state diminished with
PD progression, and this decrease was closely tied to motor deterioration.
Concerning  cortical  subnetworks  and  SN,  MDTs  in  the  sparse  FC  state
reduced  at  the  second  timepoint  in  both  visual  (VN)  and  limbic  networks
(LN) linked with the SN. The MDT reduction in LN-SN positively correlated
with cognitive decline, while the MDT reduction in VN-SN showed a strong
link with motor degradation. These results emphasize that DFC might offer
insights into the evolving brain dynamics in PD patients over the disease's
course, underscoring its prospective utility as a progression biomarker.
 

INTRODUCTION
Parkinson’s  disease  (PD)  ranks  as  the  second-most prevalent  neurode-

generative disorder.25 Its primary etiology stems from dopamine neurotrans-
mission deficits  due to dopaminergic neuron degeneration in the substantia
nigra,  leading  to  a  spectrum  of  motor  and  non-motor  symptoms.29 As  the
disease evolves, these symptoms intensify, profoundly compromising patient
well-being and safety. Gaining deeper insights into PD progression is pivotal
for the timely introduction of therapeutic interventions, subsequently enhanc-
ing  patients'  life  quality.  However,  there's  a  pressing  need  for  dependable
biomarkers that can effectively trace PD progression.

Resting-state (RS) functional connectivity (FC) MRI presents an invaluable
tool  to  gauge  the  brain's  functional  network  status  without  the  potential
biases  of  task  performance.  Earlier  studies  have  illuminated  its  potential  in
delineating disease progression trajectories.5, 11, 20, 23 A study by Filippi M et al.
showcased  that  longitudinal  whole-brain  FC  variations  differ  among  PD
patients  at  various  disease  stages,  observing  a  mix  of  hypo- and  hyper-
connectivity linked with symptomatic developments.11 This suggests that PD
progression  indeed  instigates  notable  changes  in  the  functional  brain
network,  emphasizing  a  relationship  between  disease  evolution  and  these
functional  shifts.  Nevertheless,  a  majority  of  prior  works  overlooked  the
potential  influence  of  PD  progression  on  the  patient's  dynamic  functional
connectivity (DFC) and its capability to monitor PD evolution.

Contrary to static FC, DFC encapsulates functional connectivity dynamics,
often  viewed  as  a  more  precise  portrayal  of  neural  networks.  Preliminary
cross-sectional  analyses  have  highlighted  significant  deviations  in  the
temporal  facets  of  specific  FC  patterns  in  PD  patients'  DFC  compared  to

healthy counterparts, both globally12,18 and within the interplay between corti-
cal  and  subcortical  networks.7 Yet,  the  question  remains:  how  does  PD
progression reshape the temporal dynamics and patterns of DFC? To unravel
this, we utilized dual-timepoint clinical and RS-fMRI datasets at baseline and
during a 1-4 year follow-up to probe DFC's longitudinal shifts with PD evolu-
tion,  utilizing  a  sliding  windows  strategy.  This  analysis  encompassed  the
entire  brain  network  and interactions between cortical  subnetworks and the
subcortical nucleus  (SN),  aiming  to  discern  connections  with  clinical  symp-
tom amplification.

This study aimed to (1) Detect longitudinal shifts in DFC temporal proper-
ties across global brain networks during PD progression. (2) Unearth longitu-
dinal transformations in DFC temporal properties within specific subnetwork
partitions27 and  SN  amidst  PD  progression.  (3)  Associate  these  temporal
properties  changes  with  neurological  function  deterioration,  aspiring  to
establish a groundbreaking biomarker for PD progression assessment. 

MATERIALS AND METHODS 

Data source
Participants'  data  were  sourced  from  the  Parkinson  Progression  Markers

Initiative  (PPMI)  database  (http://www.ppmi-info.org).  Local  research  ethics
committees  approved  all  PPMI-affiliated  studies.  Prior  to  the  study's
commencement,  every  participant  furnished  written  informed  consent.  This
research  incorporated  only  those  patients  who  had  available  imaging
(comprising fMRI and structural scans) and clinical assessment data. A total
of 72 PD patients, who were subjected to dual-timepoint imaging and clinical
evaluations  at  baseline  and  subsequent  follow-up  between  1  and  4  years,
were included. Figure 1 delineates the process of data selection, processing,
and analysis. 

Clinical assessments
The PPMI dataset facilitated comprehensive motor and non-motor neuro-

logical  evaluations  of  the  patients.  For  a  thorough  longitudinal  examination,
we selected  specific  assessment  scales,  ensuring  that  they  were  imple-
mented at both the evaluated timepoints. Daily non-motor and motor experi-
ences were gauged using the Movement Disorder Society Unified Parkinson’s
Disease Rating Scale part I (UPDRS-I) and part II (UPDRS-II). The UPDRS-III
and IV scales determined PD's motor signs and complications. Sleep distur-
bances were quantified via the Epworth Sleepiness Scale (ESS) and the Rapid
Eye  Movement  Sleep  Behavior  Disorder  Screening  Questionnaire  (RBDSQ),
while the Montreal Cognitive Assessment (MoCA) evaluated cognitive impair-
ments. 

Image acquisition and preprocessing
To maintain  result  consistency  and  reliability,  identical  scanning  parame-

ters  were  used  for  imaging  data  at  both  timepoints.  A  3.0-Tesla  SIEMENS
Prisma scanner was employed for image acquisition. Structural images were
acquired using three-dimensional T1-weighted MPRAGE with flip angle (FA) =
90°, matrix X = 256 pixels, matrix Y = 256 pixels, matrix Z = 176, pixel spacing
X = 1 mm, pixel spacing Y = 1 mm, slice thickness = 1.2 mm, echo time (TE) =
2.9  ms,  and  repetition  time  (TR)  = 2300 ms.  RS-fMRI  data  were  acquired
using an echo-planar imaging sequence that lasted 7 min (210 volumes) with
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TR = 2400 ms, TE = 25 ms, FA = 80°,  matrix X = 518 pixels,  matrix Y = 518
pixels, pixel spacing X = 3 mm, pixel spacing Y = 3 mm, and slice thickness =
3 mm.

DPABISurf, a derivative of the DPABI/DPARSF toolbox designed for surface-
based RS-fMRI data analysis, was employed for image data preprocessing,6,34

with the fMRIprep pipeline overseeing the structural and functional MRI data
processing.10 An  exhaustive  six-step  process  was  utilized  for  MRI  data
processing, further elaborated upon in the supplemental information section. 

Extract time courses for regions of interest
We  used  numerous  cortical  regions  and  SN  as  regions  of  interest  (ROI).

Cortical  regions  were  mapped  using  the  Schaefer  200  ROI  cortical  brain
atlas.27 The 200 ROIs belong to seven brain networks, namely visual network
(VN),  sensorimotor  network  (SMN),  dorsal  attention  network  (DAN),  ventral
attention  network  (VAN),  limbic  network  (LN),  frontoparietal  network  (FTN),
and default mode network (DMN). The SN were defined using the Tian 16 ROI
subcortical brain atlas.31 The time series of the 216 ROIs were extracted. To
avoid the effect of brain parcellations on the results, the cortical regions were
also  defined  by  the  Schaefer  400  ROI  cortical  brain  atlas27 and  the  Tian  16
ROI subcortical brain atlas. 

Quality control for head motion
Prior  to  initiating  the  DFC  analysis,  a  rigorous  head  motion  quality  check

was undertaken. Any patient demonstrating a mean framewise displacement
(FD) surpassing 0.2 mm was excluded from successive evaluations. A final-
ized  cohort  of  45  patients  was  established  for  subsequent  analyses  post
exclusions. 

DFC analysis of the whole brain network 

Sliding window approach. The DFC analysis was conducted using a slid-
ing window approach and the k-means cluster  algorithm in  the DynamicBC
toolbox(version  2.2, http://www.restfmri.net/forum/DynamicBC).21 Based  on
prior  research,1 we  chose  a  44-second  window  spanning  22  volumes,
convolved  with  a  3  TR  Gaussian  kernel.  This  window  moved  in  single  TR
increments across 200 volumes, resulting in 179 overlapping windows with a
96%  overlap.  Within  this  framework,  Pearson  linear  correlation  coefficients
were  calculated  between  ROI  pairs,  producing  FC  maps  with  216  x  216
covariance  matrices  for  each  participant.  To  normalize  these  maps,  we
applied Fisher’s z transformation, yielding 179 dynamic FC maps per partici-

pant to  represent  DFC  variations  during  scan-
ning.  For  added  robustness,  we  also  employed
the  flexible  least  squares  (FLS)  method  to
generate  a  DFC  map  for  every  scan  timepoint.
Further  details  on  the  FLS  approach  can  be
found  in  the  Supplementary  Materials  asd
Methods. 

Clustering  analysis. Based  on  prior
research,1 we  applied  the  k-means  clustering
algorithm  to  discern  recurring  FC  maps,  or
"states", gauged  by  their  frequency  and  struc-
ture.  By  amalgamating  all  FC  maps  across
subjects  from  both  timepoints,  a  collective  FC
map  of  16,110  windows  was  produced.  To
gauge the similarity between these FC maps, we
employed  the  L1  Manhattan  distance-effective
for  high-dimensional  data.  To  ascertain  the
optimal cluster count, three criteria were utilized:
Calinski-Harabasz  (CH),  Davies-Bouldin  (DB),
and silhouette indices. The final optimal number
of  clusters  was  obtained  by  averaging  the
values obtained  from  the  above  three  algo-

rithms  and  rounding  up.  The  optimal  cluster  number  was  determined  by
varying k from 2 to 10.

For the temporal dynamics of DFC, we examined mean dwell  time (MDT),
fractional window (FW),  and  number  of  transitions  (NT).  MDT gauges  aver-
age continuity  within the same state;  FW signifies the ratio  of  windows in a
specific  state;  and  NT  encapsulates  state  transitions  for  each  participant.
Variations in MDT,  FW, and NT across PD patient  timepoints were analyzed
using paired t-tests (p < 0.05, FDR corrected). 

DFC analysis of cortical subnetworks and SN
We investigated the DFC across the entire brain, encompassing all cortical

areas  and  the  SN.  Furthermore,  we  separately  analyzed  each  of  the  seven
cortical  subnetworks  and  the  SN.  For  each  subnetwork,  we  extracted  the
relevant  time  series  and  subsequently  merged  it  with  the  SN's  time  series,
resulting  in  seven  distinct  time  series.  These  were  then  subjected  to  DFC
analysis  using  the  sliding  window  approach  and  k-means clustering  algo-
rithm,  maintaining  consistent  parameters  as  established  earlier.  We  then
contrasted the temporal properties of states across two observation points. 

Relationship between neurological functions and temporal properties
To ascertain the link between the decline in neurological  function and the

longitudinal shifts in temporal properties, we executed a correlation analysis,
juxtaposing the z-scored difference in neurological assessments with the z-
scored  difference  in  temporal  properties.  This  analytical  approach  was
employed in the DFC evaluation of the entire brain network, as well as in the
examination of cortical subnetworks in conjunction with SN. A p-value of less
than 0.05 was deemed statistically significant. 

RESULTS 

Demographic and clinical characteristics
In the final analysis, our cohort comprised 45 patients. We had to exclude

27  patients  owing  to  excessive  head  movement,  quantified  as  a  FD  greater
than  0.2  mm.  Both  DFC  data  and  clinical  neurological  evaluations  were
ascertained  at  two  distinct  timepoints  for  every  participant,  adhering  to  a
within-subjects  design  paradigm. Table  1 delineates  the  comprehensive
demographic and clinical profile of the participants. 

DFC state analysis 

Clustering analysis and the DFC states. Using optimal clustering criteria,
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Figure 1.  The  flowchart  to  provide  an  overview  of
the  data  screening,  processing,  and  analysis
procedures.
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we discerned two distinct FC states, both consistently observed across indi-
vidual  scans  and  the  patient  cohort  (Supplementary Figure  1).  State  I  was
characterized by  sparse  connectivity  among  brain  regions,  robust  connec-
tions in specific between-networks (notably VN-DAN, SMN-DAN, SMN-VAN),
and  within  networks  like  VN,  SMN,  and  VAN.  It  manifested  prominently,
observed  9,881  times,  and  constituted  61.33%  of  all  states  (Figure  2A).  In
contrast, State II showcased broader, stronger inter-regional connections but
was less  recurrent,  with  6,229  instances,  representing  38.67%  of  all  occur-
rences  (Figure  2A).  Notably,  the  prevalence  of  State  I  was  statistically  more
significant  than  that  of  State  II,  with  percentages  of  61.33%±29.19%  vs.
38.67%±29.19% (p＜0.01).

Figure 3A and 3B show timepoint-specific FC states obtained using the k-
means clustering analysis and the top 1% connections in each state, respec-
tively.  Similarly,  the  state  I  exhibited  sparse  FC  between  brain  regions  with
strong  connections  in  several  between-networks  (VN-DAN,  SMN-DAN,  and
SMN-VAN) and within-networks (VN, SMN, and VAN). While state II  showed
stronger positive FC between brain regions.

Figures  3A and  3B  display  the  timepoint-specific  FC  states  determined
through  k-means  clustering  analysis  and  the  dominant  1%  of  connections
within each state, respectively. Analogously, State I demonstrated sparse FC
amongst  brain  regions,  coupled  with  pronounced  connections  in  several
between-networks  such  as  VN-DAN,  SMN-DAN,  and  SMN-VAN,  and  within
the  VN,  SMN,  and  VAN  networks.  In  contrast,  State  II  was  characterized  by
more intensified positive FC between brain regions. 

Temporal  properties  of  FC  states  in  the  two  timepoints.. We  further
delved into discerning whether the temporal attributes of FC states exhibited
alterations concomitant with the progression of PD. Notably,  the FW did not
demonstrate  significant  temporal  variations  for  either  State  I  (0.63±0.30  vs
0.60±0.30,  p=0.42;  FDR  corrected, Figure  4A)  or  State  II  (0.37±0.30  vs
0.40±0.30,  p=0.42;  FDR  corrected, Figure  4A). However,  a  compelling  differ-
ence was observed in the MDT for  State I  between the two timepoints.  The
MDT for State I at timepoint II was significantly truncated compared to time-
point  I  (58.38±61.06  vs  39.93±44.02,  p=0.004;  FDR  corrected; Figure  4B),
implicating a reduction in dwell time for the sparse FC state as PD advanced.
Intriguingly,  the  state  transitions'  frequency  remained  consistent  across  the
timepoints  (5.51±3.88  vs  6.53±4.05,  p=0.13;  FDR  corrected, Figure  4C).  In  a
subsequent  analysis  aiming to  establish associations between MDT decline
and neurological  decline,  a  prominent positive correlation was identified:  the
diminishing  MDT  in  State  I  was  conjoined  with  exacerbated  motor  function
decline  (r=0.63;  p<0.001; Figure  4D).  This  suggests  that  the  deterioration  in
motor  function  is  intertwined  with  a  more  pronounced  decline  in  State  I's
MDT. 

DFC analysis  of  cortical  subnetworks and SN. To explore the longitudi-
nal  alterations  in  DFC  across  individual  cortical  subnetworks  and  SN  in  PD
patients, we employed a sliding window approach and clustering analysis on
the  time  series  data  of  each  subnetwork  and  SN.  Our  results  revealed  a
pattern  parallel  to  whole-brain  DFC.  Specifically,  DFC  analyses  within  each
subnetwork and SN isolated two salient FC states: a frequently occurring but
sparsely  connected  state  and  a  less  common  yet  more  robustly  connected

state (as evidenced in Figure 5A & 5D).  Notably,  deviations in  temporal  DFC
properties were evident in LN-SN and VN-SN. In the LN-SN domain, the MDT
for  the  sparse  connections  (termed  State  II)  exhibited  a  marked  reduction
during  timepoint  II  (40.77±47.66  vs.  24.52±16.93;  p=0.023,  FDR-corrected,
Figure 5B). A parallel trend was discerned in VN-SN, with the MDT of sparse
connections  (State  I)  also  diminishing  significantly  at  timepoint  II
(36.21±37.96  vs.  23.36±17.61;  p=0.023,  FDR-corrected, Figure  5E).  Further
correlational analyses underscored that the MDT decline in LC-SN was asso-
ciated with cognitive weakening (r=0.46, p=0.001, Figure 5C), and the MDT dip
in VN-SN correlated with deteriorating motor function (r=0.72, p<0.001, Figure
5F) among PD patients.

To validate the robustness of our findings across varied ROIs and analyti-
cal techniques, we executed a DFC analysis using a sliding window approach
for 416 ROIs and the FLS method for 216 ROIs. Consistent with our primary
analysis,  we observed analogous results  (refer  to  Supplementary Figures 2-
7). Specifically, the MDT of sparse FC states at timepoint II was significantly
diminished compared to  timepoint  I.  Further,  a  positive  correlation  emerged
between  the  extent  of  MDT  reduction  in  these  sparse  FC  states  and  the
decline  in  motor  function.  Comprehensive  details  of  these  observations  are
elaborated  upon  in  the  supplemental  material.  Collectively,  these  findings
underscore the replicability and robustness of our results, suggesting they are
not  contingent  on  a  specific  methodological  approach  or  parcellation
scheme. 

DISCUSSION
In this investigation, we delved into the longitudinal changes of DFC in PD

patients  by  leveraging two-timepoint  imaging alongside clinical  neurological
evaluations.  Echoing  findings  from  prior  research,12,18 we  discerned  two
distinct  DFC  states:  a  prevalent  state  characterized  by  sparse  connections
and a less frequent state marked by robust interconnections. Importantly, as
PD advanced, the MDT associated with these sparse connections exhibited a
pronounced decline.  This  reduction  was  positively  aligned  with  the  worsen-
ing  of  neurological  functions.  To  bolster  the  credibility  of  our  outcomes,  we
employed diverse  parameters  and  methodologies,  underscoring  the  robust-

 

Table 1.  The demographic and clinical characteristics of participants

Stage 1 Stage 2 P-value

Sex 14 F, 31 M 14 F, 31 M -

Age 58.7 (10.3) 61.5 (10.2) P<0.001

UPDRS-I 4.1 (3.0) 6.2 (3.9) P<0.001

UPDRS-II 5.4 (3.5) 7.9 (4.3) P<0.001

UPDRS-III 18.9 (9.2) 25.3 (11.1) P<0.001

UPDRS-IV 0.4 (1.4) 1.2 (2.6) P=0.01

ESS 8.1 (4.3) 11.1 (4.8) P<0.001

RBDSQ 5.4 (2.6) 6.2 (3.2) P=0.026

MoCA 27.9 (2.7) 27.2 (2.6) P=0.007
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Figure 2.  Results  of  the  clustering  analysis  for  each  state (A)  Cluster  centroids  for
each state. The total number of occurrences and percentage of total occurrences are
listed  above  each  cluster  median.  The  blue  box  indicates  strong  within-network
connections, and the red box indicates strong between-network connections. (B) The
chordal graph generated using Circos shows only the top 1% of connections for each
state. Red lines represent connections within-network, while blue lines depict connec-
tions  between-networks.  VN  =  visual  network,  SMN  =  sensorimotor  network,  DAN  =
dorsal attention network, VAN = ventral attention network, LN = limbic network, FPN =
frontoparietal network, DMN = default mode network, SN = subcortical nucleus
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ness and consistency of our findings.
PD  is  a  multifaceted  neurodegenerative  disorder,  rendering  predictions

regarding  its  progression  challenging.  While  numerous  studies  have
harnessed  sophisticated  neuroimaging  techniques  to  pinpoint  potential

biomarkers  for  gauging  PD  progression,11,20,24 the  practical  applicability  of
these  markers  is  still  under  scrutiny.  This  limited  utility  may  stem  from  the
constrained dimensions  inherent  in  the  neuroimaging  data.  DFC  encom-
passes both spatial and temporal facets, underscoring the evolving nature of
FC rather  than a static  portrayal,  offering a more nuanced representation of
functional  brain  networks.17 In  our  current  endeavor,  we  employed  DFC  to
monitor PD's evolution,  affirming its potential  as a compelling biomarker for
assessing PD progression. Specifically, a diminished MDT in sparse connec-
tions  could  be  emblematic  of  PD's  advancement.  These  receding  MDTs  in
sparse connections might hint at a scenario where PD progression adversely
impacts the functionality of several  between-networks (VN-DAN, SMN-DAN,
SMN-VAN) and within-networks (VN, SMN, DAN).

Efficient  cognition  fundamentally  relies  on  the  integrative  functions  of
between-network  communication,  while  motor  execution  is  underpinned  by
within-network communication.8 In our findings, a significant association was
observed  between  the  MDT  decline  in  state  I  and  motor  exacerbation.  This
may be ascribed to diminished integrative function within the networks of VN,
SMN,  and DAN.  Historically,  PD has been linked to  dysfunction in  the visual
network,  engendering  specific  visual  perturbations.16,33 Such  disruptions  can
influence  a  spectrum  of  motor  and  non-motor  behaviors,  spanning  from
visuospatial  function to  the  perception of  gait  functionality.9,16 Moreover,  the
cornerstone  of  PD  diagnosis  remains  motor  symptomatology,  spurred  by
malfunctions  in  the  sensorimotor  area.  Such  dysfunctionality  prompts  FC
alterations  within  the  SMN,  culminating  in  hindered  sensorimotor
integration.19,30 This is probably rooted in the cortico-striatal pathway's dener-
vation,  consequent  to  the  degeneration  of  nigrostriatal  dopaminergic
neurons.15,28 As  PD  advances,  compounded  by  an  escalated  loss  of  these
neurons,  the  FC  anomalies  within  the  SMN  intensify.11,20 Furthermore,  the
DAN is posited to regulate the top-down voluntary attention allocation pivotal
for task-specific motor execution.32 Holistically, an aberrant integrative func-
tion within the VN, SMN, and DAN networks correlates with the motor func-
tional  decline  observed  in  PD  patients – a  resonance  with  prior  research
outcomes.  Although  our  study  detected  reduced  integrative  function  in
certain  between-networks  (VN-DAN,  SMN-DAN,  SMN-VAN)  within  state  I,  a
direct tie to cognitive function remained elusive, potentially attributable to the
nuances  of  network  parcellation.  Still,  it's  crucial  to  recognize  the  intimate
interplay between DAN, VN,  and SMN in modulating PD patients'  mobility.  A
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Figure 3.  Functional connectivity state results (A) Timepoint-specific cluster centroid for each state. The blue box indicates strong within-network connections, and the red box
indicates strong between-network connections. (B) The chordal graph generated using Circos shows only the top 1% of connections for each state for timepoints I and II. Red
lines represent connections within-network, while blue lines depict connections between-networks. VN = visual network, SMN = sensorimotor network, DAN = dorsal attention
network, VAN = ventral attention network, LN = limbic network, FPN = frontoparietal network, DMN = default mode network, SN = subcortical nucleus, TM1 = timepoint I, TM2 =
timepoint II.

 

Figure 4.  Results  of  the  between-timepoint  comparisons  of  temporal  properties  of
each  state (A)  Results  of  the  between-timepoint  comparisons  of  fractional  windows
for each state. (B) Results of the between-timepoint comparisons of mean dwell time
for  each  state.  (C)  Results  of  the  between-timepoint  comparisons  of  the  number  of
transitions  for  each  state.  (D)  Results  of  correlation  analysis  between  MDT  changes
(z-scored) in state I and motor worsening (z-scored). (**p < 0.01, FDR corrected).
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decline  in  VN-DAN FC  might  perturb  the  DAN's  regulatory  role  during  visu-
ospatial  attention  shifts,  resulting  in  aberrant  gait  patterns  in  PD  patients.35

Similarly,  a  reduced  FC  within  SMN-DAN  could  hamper  cognitive  strategies
pivotal for gait coordination.35 Collectively, these findings underscore the fluid
nature of DFC, both within and across networks, as PD evolves, perpetuating
a relentless decline in motor capabilities.

We investigated the longitudinal DFC variations in each of the seven corti-
cal subnetworks and the salience network SN in PD. Altered temporal proper-
ties were particularly notable in the LN-SN and VN-SN. The LN, incorporating
the orbitofrontal cortex and temporal pole, has regions like the hippocampus
vital  for  cognitive  functions.  Established  neural  circuits  link  the  SN  with  the
limbic  system,  influencing  cognitive  processes  like  memory,  learning,  and
emotion.3,14 Prior  research  highlights  LN–SN  pathway  dysfunction  in  PD
patients.4,22 Our  findings  emphasize  the  evolving  DFC  within  this  pathway,
possibly mirroring the progressive cognitive dysfunctions in PD. Similarly, the
VN-SN  demonstrated  a  decline  in  the  MDT  of  sparse  FC  states,  strongly
correlating with deteriorating motor function. Impairments within the VN-SN
can  indirectly  cause  motor  dysfunction  due  to  the  pivotal  role  of  the  visual
pathways  in  visuospatial  construction  and  motion  perception.33 Moreover,
Guan  et  al.13 documented  diminished  functional  connectivity  between  the
occipital lobule and basal ganglia in certain PD phenotypes, emphasizing the
connection between visual processing and motor symptoms. In essence, PD

progression  doesn't  only  alter  the  DFC  within  the  holistic  brain  network  but
also affects individual cortical subnetworks and the SN. This potentially eluci-
dates  the  escalating  spectrum  of  motor  and  non-motor  symptoms  in  PD
patients as the disease advances.

This study is not without limitations. Firstly, we did not include the longitu-
dinal  RS-fMRI  data  from  healthy  controls,  limiting  our  ability  to  understand
the impact of natural aging on longitudinal DFC changes. Secondly, it is well-
established that dopaminergic medications affect RS-fMRI signals, as shown
in  FC,26 DFC,7 and  network  topology2 studies.  In  the  present  study,  due  to
limited data,  we were unable to determine whether RS-fMRI acquisition and
neurological functional assessments were performed during the medication-
OFF. Thus, we can’t ascertain the magnitude to which our results may have
been influenced by the effects of dopaminergic medications. But the effect of
dopaminergic medication may be present in two timepoints,  therefore,  there
would  have  been  a  balancing  effect  on  the  data  across  timepoints.  Thirdly,
our sample size was relatively small, suggesting that a broader sample might
produce  more  definitive  results.  Lastly,  our  study  did  not  delve  into  PD's
heterogeneity. Given that PD manifests differently among individuals, under-
standing  these  variations  could  provide  deeper  insights  into  its  progression
and impact.

In conclusion, our findings indicate that as PD advances, significant longi-
tudinal shifts occur in the temporal aspects of DFC. Furthermore, these shifts

 

Figure 5.  Results of DFC analysis of LN-SN and VN-SN (A) Cluster centroids for each state in DFC analysis of LN-SN. The total number of occurrences and percentage of total
occurrences are listed above each cluster median. (B) Between-timepoint comparisons of temporal properties of each state in DFC analysis of LN-SN. (C) Results of correlation
analysis between state II MDT changes (z-scored) and cognitive attenuation (z-scored) in DFC analysis of LN-SN. (D) Cluster centroids for each state in VN-SN. (E) Between-
timepoint comparisons of temporal properties of each state in DFC analysis of VN-SN. (F) Results of correlation analysis between state I MDT changes (z-scored) and motor
worsening (z-scored) in DFC analysis of VN-SN. (*p < 0.05, FDR corrected).
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correlate directly with worsening neurological symptoms. This suggests that
DFC holds promise as a valuable biomarker for assessing the progression of
PD.

Values are presented as mean (SD). UPDRS = Unified Parkinson’s Disease
Rating  Scale.  ESS  =  Epworth  Sleepiness  Scale.  GDS-SF =  Geriatric  Depres-
sion  Scale  Short  Form.  RBDSQ  =  REM  Sleep  Behavior  Disorder  Screening
Questionnaire. MoCA = Montreal Cognitive Assessment.
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METHODS AND MATERIALS

Image preprocessing

Image data preprocessing was performed using DPABISurf, which is a surface-based

RS-fMRI data analysis toolbox adapted from DPABI/DPARSF.2, 16 The DPABISurf

preprocesses the structural and functional MRI data using the fMRIprep pipeline.5 We used

several steps to process the MRI data: (1) the first 10 time points were removed for signal

stabilization; (2) the image data were converted to BIDS format, and the fMRIprep 1.5.0

docker was called; (3) anatomical data preprocessing, which comprised the correction of T1-

weighted (T1w) images for intensity non-uniformity using N4BiasFieldCorrection15 (used as

the T1w-reference image throughout the workflow), skull-stripping of the T1w-reference

image using the Nipype implementation of the antsBrainExtraction workflow (from ANTs),1

using OASIS30ANTs as the target template, segmentation of brain-extracted T1w brain

tissue into cerebrospinal fluid (CSF), white matter (WM), and gray matter using FAST (from

FSL 5.0.9),17 and reconstruction of brain surfaces using recon-all (from FreeSurfer 6.0.1);4 (4)

fMRI data preprocessing, which comprised several preprocessing steps for each blood

oxygen level-dependent (BOLD) runs per subject (across all tasks and sessions): a reference

volume and its skull-stripped version were generated using a custom fMRIprep pipeline;

susceptibility distortion correction was omitted; the BOLD reference image was co-registered

to the T1w-reference image using bbregister (FreeSurfer), which implements boundary-based

registration;8 head-motion parameters with respect to the BOLD reference image

(transformation matrices and six corresponding rotation and translation parameters) were

estimated before spatiotemporal filtering using mcflirt (FSL 5.0.9);12 BOLD runs were slice-

time corrected using 3dTshift from AFNI 20160207;3 BOLD time series were resampled into

fsaverage5 space; (5) nuisance covariates regression, which included the Friston 24



parameter model,6 mean framewise displacement (FD),12 and linear regression, to remove the

confounds of head motion, the residual effects of motion in group analyses, and other

spurious variance (i.e., WM and CSF signals), and linear trends were entered as a regressor to

account for drifts in the BOLD signal; (6) images were bandpass-filtered to 0.01–0.1 Hz and

smoothed using a 6 mm full width at half maximum Gaussian kernel.

DFC Analysis with FLS

Please refer to previous studies7, 9 for details about DFC analysis with flexible least squares

(FSL). FSL was also conducted by the DynamicBC toolbox. FSL is a data-driven method

which could yield frame-wise DFC, which means this approach can yield a DFC map at each

time point for each scan. FLS uses a state-modeling based filtering approach and estimates a

state (i.e., beta coefficient) by minimizing the errors associated with (1) discrepancies

between the actual and estimated observation at each time point (measurement fit error), and

(2) discrepancies due to incorrect specifications of the state transition equations (dynamic

error). Two types of errors were characterized using ordinary least squares estimation. This is

in contrary to static linear regression, where a single β coefficient is obtained by minimizing

the residual fit error between two signals. The measurement fit error is given by

��
2 �, � =

�=1

�
� � − � � � �

2
� , #(1)

where x(t) and y(t) represent the values of two individual fMRI timeseries at time t, T is the

total number of time points in the given timeseries, and β denotes the model fit coefficient

vector. Dynamic error is given by
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The errors in Equations (1) and (2) are combined into a single cost-incompatibility function

weighted by a Lagrange multiplier μ, thus enabling multicriteria optimization. This function

is minimized to estimate the β coefficient sequence, formally:

� �, �, � = �. ��
2 �, � + ��

2 �, � , # 3

where μ denotes the weighting parameter (Lagrange multiplier) between the measurement fit

error, ��
2 , and the dynamic error, ��

2 . The incompatibility cost function was minimized with

ordinary least squares estimation, permitting the β(t) coefficients to vary over time. Therefore,



each FLS estimate (i.e., β(t) coefficient) shows the state vector evolved over time in a manner

that minimizes the cost incompatibility function and maximizing the trueness of the priors

defined in Equations (1) and (2). The weighting parameter μ arbitrates a trade-off between

erratic solutions with large dynamic errors (i.e., small μ) and solutions that tend toward the

static linear regression solution (i.e., large μ). Here, we used the default setting of μ = 100

since this produced optimal variation in the β sequence.13 This default setting is independent

of the temporal resolution of fMRI acquisition (i.e., TR) and none of the equations governing

FLS depend on the interval between time points. Furthermore, FLS is not limited by

requirements of prior window length specifications associated with the commonly used

sliding-window DFC, where an optimal choice of window length is arbitrary.10, 11, 14, 18 For

each individual, the frame-wise DFC computed by FSL would produce a 216 x 216 x 200

matrix of frame-wise DFC estimates.

Afterwards, we used k-means clustering algorithm to estimate reoccurring FC maps (state),

which could be assessed by frequency and structure of these states. Please refer to the main

text for the details of k-means cluster. To access the temporal properties of DFC, we calculate

three various temporal indices: mean dwell time (MDT), fractional window (FW), and

number of transitions (NT).



RESULTS

Figure S1 Estimating optimal clusters. The optimal clusters for all three criteria are 2.



The results of DFC analysis using sliding window approach with

416 ROIs. (Figure 2-4)

Figure S2. Results of the clustering analysis per state. (A) Cluster centroids for each state.

The total number of occurrences and percentage of total occurrences are listed above each

cluster median. (B) The chordal graph made by Circos shows only the top 1% of connections

for each state. Red lines represent connections within-network, while blue lines depict

connections between-networks.



Figure S3. Functional connectivity state results. (A) timepoint-specific cluster centroid for each state. (B) The chordal graph made by Circos

shows only the top 1% of connections for each state for timepoint I and timepoint II. Red lines represent connections within-network, while blue

lines depict connections between-networks.



Figure S4. Results of between-timepoint comparisons of temporal properties of each FC state. (A) Results of between- timepoint comparisons of

FW of each FC state. (B) Results of between- timepoint comparisons of MDT of each FC state. (C) Results of between- timepoint comparisons

of TN of each FC state. (D) Results of correlation analysis between MDT changes (z-scored) in state I and motor attenuation (z-scored). (One

asterisk indicates P<0.01, two asterisks indicate P<0.05, FDR corrected).



The results of DFC analysis using FSL approach with 216 ROIs.

(Figure 5-7)

Figure S5. Results of the clustering analysis per state. (A) Cluster centroids for each state.

The total number of occurrences and percentage of total occurrences are listed above each

cluster median. (B) The chordal graph made by Circos shows only the top 1% of connections

for each state. Red lines indicate intra-network connections, blue indicates inter-network

connections.



Figure S6. Functional connectivity state results. (A) Timepoint-specific cluster centroid for each state. (B) The chordal graph made by Circos

shows only the top 1% of connections for each state for timepoint I and timepoint II. Red lines indicate intra-network connections, blue indicates

inter-network connections.



Figure S7. Results of between-timepoint comparisons of temporal properties of each FC state. (A) Results of between-timepoint comparisons of

FW of each FC state. (B) Results of between-timepoint comparisons of MDT of each FC state. (C) Results of between-timepoint comparisons of

TN of each FC state. (D) Results of correlation analysis between MDT changes (z-scored) in state I and motor attenuation (z-scored). (One

asterisk indicates P<0.01, three asterisks indicate P<0.001, FDR corrected).
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