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Abstract

This article aims at reviewing recent empirical and theoretical developments usually grouped under the term
Econophysics. Since its name was coined in 1995 by merging the words “Economics” and “Physics”, this new
interdisciplinary field has grown in various directions: theoretical macroeconomics (wealth distributions),
microstructure of financial markets (order book modeling), econometrics of financial bubbles and crashes.
We give a brief introduction in the first part and begin with discussing interactions between Physics, Math-
ematics, Economics and Finance that led to the emergence of Econophysics in the second part. Then the
third part is dedicated to empirical studies revealing statistical properties of financial time series. We begin
the presentation with the widely acknowledged “stylized facts” describing the distribution of the returns of
financial assets: fat-tails, volatility clustering, etc. Then we show that some of these properties are directly
linked to the way “time” is taken into account, and present some new remarks on this account. We continue
with the statistical properties observed on order books in financial markets. For the sake of illustrations in
this review, (nearly) all the stated facts are reproduced using our own high-frequency financial database.
Contributions to the study of correlations of assets such as random matrix theory and graph theory are
finally presented in this part. The fourth part of our review deals with models in Econophysics through the
point of view of agent-based modeling. Using previous work originally presented in the fields of behavioural
finance and market microstructure theory, econophysicists have developed agent-based models of order-
driven markets that are extensively reviewed here. We then turn to models of wealth distribution where
an agent-based approach also prevails: kinetic theory models, and continue with game theory models and
review the now classic minority games. We end this review by providing an outlook on possible directions
of research.
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Part I

Introduction

What is Econophysics? Many years after the word “Econophysics” was coined by H. E. Stanley by a peculiar
merging of the words ‘Economics’ and ‘Physics’ at an international conference on Statistical Physics held in
Kolkata in 1995, this is still a commonly asked question. Many still wonder how theories aimed at explaining
the physical world in terms of particles could be applied to understand complex structures, such as those
found in the social and economic behavior of human beings. In fact physics is supposed to be precise or
specific and to base its prediction power on the use of a few but universal properties of matter which are
sufficient to explain many physical phenomena. But are there analogous precise universal properties known
for human beings, who, on the contrary of fundamental particles, are certainly not identical in any respect to
each other? And what little amount of information is sufficient to infer their complex behavior? Even if there
is no evidence yet, there exists a positive attitude towards these questions. During the past decade physicists
have made many successful attempts to approach problems in various fields of social science (1; 2; 3). In
particular, Economics and its various subfields have been the target of various investigations — based on
methods imported from or also used in physics — which are the subject of the present paper.

Economics deals with how societies efficiently use their resources to produce valuable commodities and
distribute them among different people or economic agents (4; 5). It is a discipline related to almost
everything around us, starting from the marketplace through the environment to the fate of nations. At
first sight this may seem a complementary situation, with respect to that of physics, whose birth as a well
defined scientific theory is usually associated with the study of particular mechanical objects moving with
negligible friction, such as falling bodies and planets. However, a deeper comparison shows many more
analogies than differences. On a general level, both economics and physics deal with “everything around
us”, despite with different perspectives. On a practical level, the goals of both disciplines can be either purely
theoretical in nature or strongly oriented toward the improvement of the quality of life. On a more technical
side, analogies often become equivalences. As a representative example, it is worth mentioning that the
frictionless systems which mark the early history of physics were recognized soon to be rare cases: not only
at microscopic scale, where they obviously represent an exception due to the unavoidable interactions with
the environment, but also at the macroscopic scale, where fluctuations of internal or external origin make a
prediction of their time evolution impossible. Thus equilibrium and nonequilibrium statistical mechanics, the
theory of stochastic processes, and the theory of chaos, became main tools for studying real systems as well
as an important part of the theoretical framework of modern physics. But this was no news for Economics,
in which the theory of the random walk had been already introduced by Bachelier some years before the
works on Brownian motion by Einstein, Smolukowski, and Langevin. Mathematics, and in particular the
theory of stochastic processes, certainly represents the main link, common language, and work framework,
for both Economics and Physics. It is hard to find other applied disciplines besides physics — apart from
probably chemistry — where the mathematical language of stochastic processes has a central role.

This review aims at reviewing recent empirical and theoretical developments that use tools from Physics
in the fields of Economics and Finance. The review is organized as follows. A short historical view on the
relationships between Mathematics, Physics, Economics and Finance, with an emphasis on the intermediary
role of statistical mechanics between various disciplines is given in part II. Econophysics research is then
reviewed in the following two parts. In part III, empirical studies revealing statistical properties of financial
time series are reviewed. We begin the presentation with the widely acknowledged “stylized facts” describing
the distribution of the returns of financial assets and continue with the statistical properties observed on
order books in financial markets. For the sake of illustrating this review, (nearly) all the stated facts are
reproduced using our own high-frequency financial database. In part IV, Econophysics models are reviewed
through the point of view of agent-based modeling. Using previous work originally presented in the fields of
behavioural finance and market microstructure theory, econophysicists have developed agent-based models
of order-driven markets that are extensively reviewed here. We then turn to models of wealth distribution
where an agent-based approach also prevails: kinetic theory models are presented. We continue with game
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theory models and review the now classic minority games. A final discussion, including an outline emerging
from these interesting recent interactions between economics and econophysics, is given in part V.
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Part II

Economics, Markets, Mathematics, Physics

1. Classic modeling in Finance: Probability and Stochastic Calculus

Mathematical finance has benefited a lot in the past thirty years from modern probability theory: Brow-
nian motion, martingale theory are mandatory courses for any quantitative finance student. Financial
mathematicians are often proud to recall the most well-known source of the interactions between the two
fields: five years before Einstein’s seminal work, the theory of the Brownian motion was formulated first by
the French mathematician Bachelier in his doctoral thesis (6; 7; 8) where he used this model to describe price
fluctuations at the Paris Bourse. Bachelier had even given a course as a “free professor” at the Sorbonne
University with the title: “Probability calculus with applications to financial operations and analogies with
certain questions from physics” (see the historical articles in Refs. (9; 10; 11)).

Then Itô, motivated by the works of Bachelier, formulated the presently known Itô calculus (12) and
a variant called the geometric Brownian motion. Later, geometric Brownian motion became an important
ingredient of models in Economics (13; 14), and in the well-known theory of option pricing (15; 16). In
fact, stochastic calculus of diffusion processes combined with classical hypotheses in Economics led to the
development of the arbitrage pricing theory ((17), (18)). The deregulation of financial markets at the end
of the 1980’s led to the exponential growth of the financial industry. Mathematical finance followed the
trend: stochastic finance with diffusion processes and exponential growth of financial derivatives have had
intertwined developments. Finally, this relationship was carved in stone when the Nobel prize was given to
M.S. Scholes and R.C. Merton in 1997 (F. Black died in 1995) for their contribution to the theory of option
pricing and their celebrated “Black-Scholes” formula.

However, this whole theory is closely linked to classical economics hypotheses and has not been grounded
with empirical studies of financial time series. The Black-Scholes hypothesis of Gaussian log-returns of prices
is in strong disagreement with empirical evidence. Mandelbrot (19; 20) was one of the firsts to observe a clear
departure from Gaussian behaviour for these fluctuations. Within the framework of stochastic finance and
martingale modeling, more complex processes have been considered (e.g. jumps processes (21), stochastic
volatility (22; 23; 24)), but recent events on financial markets and the succession of financial crashes (e.g.
(25) for a historical perspective) should lead scientists to re-think basic concepts of modelization. This is
where Econophysics is expected to come to play (see e.g. (26; 27; 28) for reactions within the Econophysics
community to the 2008 crash).

2. Statistical Mechanics bridging Physics and Economics

Statistical mechanics has been defined as that

“branch of physics that combines the principles and procedures of statistics with the laws of
both classical and quantum mechanics, particularly with respect to the field of thermodynamics.
It aims to predict and explain the measurable properties of macroscopic (bulk) systems on the
basis of the properties and behaviour of their microscopic constituents.” (29)

The tools of statistical mechanics or statistical physics (30; 31; 32) that include extracting the average
properties of a macroscopic system from the microscopic dynamics of the systems, are believed to prove
useful for an economic system, because even though it is difficult or almost impossible to write down the
“microscopic equations of motion” for an economic system with all the interacting entities, in general,
economic systems can be investigated at various size scales. The understanding of the global behaviour of
economic systems seems to need such concepts as stochastic dynamics, correlation effects, self-organization,
self-similarity and scaling, and for their application we do not have to go into the detailed “microscopic”
description of the economic system.

Besides the chaos theory (which had some impact in Economics modelling - e.g. Brock-Hommes-
Chiarella), the theory of disordered systems has played a core role in Econophysics and study of “complex
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systems”. The term “complex systems” was coined to cover the great variety of such systems which include
examples from physics, chemistry, biology and also social sciences. The concepts and methods of statistical
physics turned out to be extremely useful in application to these diverse complex systems including economic
systems. Many complex systems in natural and social environments share the characteristics of competition
among interacting agents for resources and their adaptation to dynamically changing environment (33; 34).
The concept of disordered systems for instance allowed to go beyond the representative agent approach
prevailing in much of (macro)-economics.

This deep interest in the nature of fluctuations already links the communities of physicists and economists.
To make the connections even more evident we mention a few important contributions. The Italian social
economist Pareto investigated a century ago, the wealth of individuals in a stable economy (35; 36) by
modelling them with the distribution, P (> x) ∼ x−α, where P (> x) is the number of people having income
greater than or equal to x and α is an exponent (known now as the Pareto exponent) which he estimated
to be 1.5.

In the physics community it was Majorana who first took scientific interest in financial and economic
systems. He wrote a pioneering paper on the essential analogy between statistical laws in physics and
in social sciences (37; 38; 39). However, prior to the 1990’s very few physicists like Kadanoff (40) and
Montroll (41) had an explicit interest for research in social or economic systems. It was not until around
1990 that physicists started turning to this interdisciplinary subject and their research activity to begin to
be complementary to the most traditional approaches of mathematical finance.

The chronological development of Econophysics has been well covered in the book of B. Roehner (42).
Here it is worth mentioning a few landmarks. The first article on analysis of finance data which appeared in a
physics journal was that of Mantegna (43) in 1991. The first conference in Econophysics was held in Budapest
in 1997 and was followed by a series of meetings, such as the APFA — Application of Physics to Financial
Analysis, and the WEHIA — Workshop on Economic Heterogeneous Interacting Agents, Econophys-Kolkata
series of conferences should be mentioned. In the recent years the number of papers has increased dramat-
ically, the community has grown rapidly and several new directions of research have opened. By now such
renowned physics journals like Physical Review Letters, Physical Review E, Physica A, Europhysics Letters,
European Physical Journal B, International Journal of Modern Physics C regularly publish papers in this
area. The interested reader can also follow the developments quite well from the cond-mat preprint server
and should visit the Web Sites of the Econophysics Forum (44) and Econophysics.Org (45).

7



Part III

Some statistical properties of financial data

Prices of commodities or assets produce what is called time series. Financial time-series analysis has been of
great interest not only to the practitioners (an empirical discipline) but also to the theoreticians for making
inferences and predictions. The inherent uncertainty in the financial time-series and its theory makes it
specially interesting to economists, statisticians and physicists (46).

Different kinds of financial time series have been recorded and studied for decades, but the scale changed
twenty years ago. The computerization of stock exchanges that took place all over the world in the mid
1980’s and early 1990’s has lead to the explosion of the amount of data recorded. Nowadays, all transactions
on a financial market are recorded tick-by-tick, i.e. every event on a stock is recorded with a timestamp
defined up to the millisecond, leading to huge amounts of data. For example, as of today (2009), the Reuters
Datascope Tick History (RDTH) database records roughly 7 gigabytes of data every trading day.

Prior to this improvement in recording market activity, statistics could be computed with daily data
at best. Now scientists can compute intraday statistics in high-frequency. This allows to check known
properties at new time scales (see e.g. 1.2 below), but also implies special care in the treatement (see e.g.
the computation of correlation on high-frequency 3.1 below).

It is a formidable task to make an exhaustive review on this topic but we try to give a flavour of some
of the aspects in this section.

1. Time series of financial returns

1.1. “Stylized facts” of financial time series

The concept of “stylized facts” was introduced in macroeconomics around 1960 by Nicholas Kaldor, who
advocated that a scientist studying a phenomenon “should be free to start off with a stylized view of the
facts” (47). In his work, Kaldor isolated several statistical facts characterizing macroeconomic growth over
long periods and in several countries, and took these robust patterns as a starting point for theoretical
modeling.

This expression has thus been adopted to describe empirical facts that arose in statistical studies of
financial time series and that seem to be persistent across various time periods, places, markets, assets, etc.
One can find many different lists of these facts in several reviews (e.g. (48), (49; 50; 51)). We choose in this
article to present a minimum set of facts now widely acknowledged, at least for the prices of equities.

1.1.1. Fat-tailed empirical distribution of returns

Let pt be the price of a financial asset at time tt. We define its return over a period of time τ to be:

rτ (t) =
p(t+ τ) − p(t)

p(t)
≈ log(p(t+ τ)) − log(p(t)) (1)

It has been largely observed – see e.g. (52) in 1963, (53) for tests on more recent data – and it is the first
stylized fact, that the empirical distributions of financial returns and log-returns are fat-tailed. On figures
1 and 2 we plot these distribution for a liquid French stock (BNP Paribas) with τ = 5 minutes, and for the
index S& P500 with τ = 1 day.

Many studies obtain same observations on different sets of data. For example, using two years of data on
more than a thousand US stocks, (54) finds that returns asymptotically follow a power law F (rτ ) ∼ |r|−α

with α > 2 (α ≈ 2.8 − 3).
With α > 2, the second moment (the variance) is well-defined, excluding stable laws with infinite variance.

There has been various suggestions for the form of the distribution: Student’s-t, hyperbolic, normal inverse
Gaussian, exponentially truncated stable, and others, but no general consensus exists on the exact form of
the tails.
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Figure 1: Empirical distribution of BNP Paribas log-returns over a period of time τ = 5 minutes. This empirical probability
density function is computed by sampling tick-by-tick data from 9:05am til 5:20pm between January 1st, 2007 and May 3Oth,
2008, i.e. 15664 values. Gaussian fit is provided for comparison.
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Figure 2: Empirical cumulative distribution of S& P 500 daily returns. This empirical distribution is computed using official
daily close price between January 1st, 1950 and June 15th, 2009, i.e. 14956 values. Gaussian fit is provided for comparison.
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Figure 3: Autocorrelation function of BNPP.PA returns. This empirical function is computed by sampling tick-by-tick data
from 9:05am til 5:20pm between January 1st, 2007 and May 30th, 2008.

1.1.2. Absence of auto-correlations of returns

On figure 3 we plot the auto-correlation of log-returns defined as ρ(T ) ∼ 〈rτ (t + T )rτ (t)〉 with τ =1
minute and 5 minutes. We observe here, as it is widely known (see e.g. (49; 55)), that there is no evidence
of correlation between successive returns. The autocorrelation function decays very rapidly to zero, even for
a few lags of 1 minute.

1.1.3. Volatility clustering

The third “stylized-fact” that we present here is of primary importance. Absence of correlation between
returns must no be mistaken for a property of independance and identical distribution: price fluctuations
are not identically distributed and the properties of the distribution change with time.

In particular, “stylized fact” number three states that absolute returns or squared returns exhibit a long-
range slowly decaying auto correlation function. This phenomena is widely known as “volatility clustering”,
and was formulated by Mandelbrot in 1963 (52) as “large changes tend to be followed by large changes – of
either sign – and small changes tend to be followed by small changes”.

On figure 4, the autocorrelation function of absolute returns is plotted for τ = 1 minute and 5 minutes.
The levels of aurocorrelations at the first lags vary wildly with the parameter τ . On our data, it is found to
be maximum (more than 70% at the first lag) for a returns sampled every five minutes. However, whatever
the sampling frequency, autocorrelation is still above 10% after several hours of trading. On this data, we
can grossly fit a power law decay with exponent 0.4. Other empirical tests report exponents between 0.1
and 0.3 ((55; 56; 57)).

1.1.4. Aggregational normality

It has been observed that as one increases the time scale over which the returns are calculated, the
fat-tail property becomes less pronounced, and their distribution approaches the Gaussian form.

On figure 5, we plot these standardized distributions for S& P 500 index between January 1st, 1950 and
June 15th, 2009. It is clear that the larger the time scale increases, the more Gaussian the distribution. The
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fact that the shape of the distribution changes with τ makes it clear that the random process underlying
prices must have non-trivial temporal structure.

1.2. Getting the right “time”

1.2.1. Four ways to measure “time”

In the previous section, all “stylized facts” have been presented in calendar time, i.e. time series were
indexed, as we expect them to be, in hours, minutes, seconds, milliseconds. Let us recall here that tick-by-
tick data available on financial markets all over the world is timestamped up to the millisecond, but that
the order of magnitude of the guaranteed precision is much larger, usually one second.

Calendar time is the time usually used to compute statistical properties of financial time series. This
means that computing these statistics involves sampling, which might be a delicate thing to do when dealing
for example with several stocks with different liquidity. Therefore, three other ways to keep track of time
may be used.

Let us first introduce event time. Using this count, time is increased by one unit each time one order is
submitted to the observed market. This framework is natural when dealing with the simulation of financial
markets, as it will be showed in section 1. The main characteristic of event time lies in its “smoothing” of
data. In event time, intraday seasonality (lunch break) or outburst of activity consequent to some news are
smoothened in the time series, since we always have one event per time unit.

Now, when dealing with time series of prices, another count of time might be relevant, and we call it
trade time or transaction time. Using this count, time is increased by one unit each time a transaction
happens. The advantage of this count is that limit orders submitted far away in the order book, and may
thus be of lesser importance with respect to the price series, do not increase the clock by one unit.

Finally, going on with focusing on important events to increase the clock, we can use tick time. Using
this count, time is increased by one unit each time the price changes. Thus consecutive market orders that
progressively “eat” liquidity until the first best limit is removed in an order book are counted as one unit
time.

Let us finish by noting that with these definition, when dealing with mid prices, or bid and ask prices, a
time series in event time can easily be extracted from a time series in calendar time. Furthermore, one can
always extract a time series in trade time or in price time from a time series in event time. However, one
cannot extract a series in price time from a series in trade time, as the latter ignores limit orders that are
submitted inside the spread, and thus change mid, bid or ask prices without any transaction taking place.

1.2.2. Revisiting “stylized facts” with a new clock

Now, using the right clock might be of primary importance when dealing with statistical properties and
estimators. For example, (58) investigates the standard realized variance estimator (see section 3.1) in trade
time and tick time. In this section we compute some statistics complementary to the ones we’ve presented
in the previous section 1.1 and show the role of the clock in the studied properties.

Aggregational normality in trade time. We have seen above that when the sampling size increases, the
distribution of the log-returns tends to be more gaussian. This property is much better seen using trade
time. On figure 6, we plot the distributions of the log-returns for BNP Paribas stock using 2-month-long
data in calendar time and trade time. Over this period, the average number of trade per day is 8562, so
that 17 trades (resp.1049 trades) corresponds to an average calendar time step of 1 minute (resp. 1 hour).
We observe that the distribution of returns sampled every 1049 trades is much more gaussian than the one
sampled every 17 trades (aggregational gaussianity), and that it is also more gaussian that the one sampled
every 1 hour (quicker convergence in trade time).

Note that this gaussianity in trade time is observed only when shorter time-series are studied. When
dealing with much longer time series, this is no longer the case as observed on figure 7. We compute the same
distribution of returns in trade time for a 17-month long series et and a 2-month long series. It appears
that the distribution computed on the longer time series has much fatter tails than the other one. Our
understanding of this phenomena is that much longer time series include much rarer events, and periods
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Figure 6: Distribution of log-returns of stock BNPP.PA. This empirical distribution is computed using data from 2007, April
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Figure 8: Auto-correlation of trade signs for stock BNPP.PA. This empirical distribution is computed using data from 2007,
January 1st until 2008, May 31st.

with very different levels of volatility. When dealing with smaller series, we have a more homogeneous
sample, hence the gaussianity.

Note that this property appears to be valid in a multidimensional setting, see (59).

Auto-correlation of trade signs in tick time. It is well-known that the series of the signs of the trades on a
given stock (usual convention: +1 for a transaction at the ask price, −1 for a transaction at the bid price)
exhibit large autocorrelation. It has been observed in (60) for example that the autocorrelation function of
the signs of trades (ǫn) was a slowly decaying function in n−α with α roughly 0.5. We compute this statistics
for the trades on BNP Paribas stock from 2007, January 1st until 2008, May 31st. We plot the result in
figure 8. We find that the first values for short lags are about 0.3, and that he log-log plot clearly shows
some power-law decay with roughly α = 0.7.

A very plausible explanation of this phenomenon relies on the execution strategies of some major brokers
on a given markets. These brokers have large transaction to execute on the account of some clients. In
order to avoid to make the market move because of an inconsideratly large order (see below section 2.6 on
market impact), they tend to split large orders into small ones. We think that these strategies explains, at
least partly, the large auto-correlation observed. Using data on markets where orders are publicly identified
and linked to a given broker, it can be shown that the auto-correlation function of the order signs of a given
broker is even higher. See (61) for a review of these facts and some associated theories.

We propose here another hint supporting this explanation. We compute the auto-correlation function of
order signs in tick time, i.e. taking only into account transactions that make the price change. Results is
plotted on figure 8. We find that the first values for short lags are about 0.10, which is much smaller than
the values observed on the previous graph. This support the idea that many small transactions progressively
“eat” the available liquidity at the best quotes. Note however that even in tick time the correlation remains
positive even for large lags.
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1.2.3. Correlation between volume and volatility

Investigating time series of cotton prices, Clark (22) notes that “trading volume and price change variance
seem to have a curvilinear relationship”. Trade time allows us to have a better view on this property: Plerou
et al. (62), Silva et al. (63) among others, shows that the variance of log-returns after N trades, i.e. over a
time period of N in trade time is proprtional to N .

We confirm this observation by plotting the second moment of the distribution of log-returns after N
trades as a function of N for our data, as well as the average number of trades and the average volatility on
a given time interval. The results are shown on figure 9 and 10.

This results are to be put in relationship with the one presented in Gopikrishnan et al. (64), where
the statistical properties of the number of shares traded Q∆t for a given stock in a fixed time interval ∆t
is studied. They analyzed transaction data for the largest 1000 stocks for the two-year period 1994-95,
using a database that recorded every transaction for all securities in three major US stock markets. They
found that the distribution P (Q∆t) displayed a power-law decay as shown in Fig. 11, and that the time
correlations in Q∆t displayed long-range persistence. Further, they investigated the relation between Q∆t

and the number of transactions N∆t in a time interval ∆t, and found that the long-range correlations in
Q∆t were largely due to those of N∆t. Their results are consistent with the interpretation that the large
equal-time correlation previously found between Q∆t and the absolute value of price change |G∆t| (related
to volatility) were largely due to N∆t.

Therefore, studying variance of price changer in trade time suggests that the number of trade might be
a good proxy for the unobserved volatility.

1.2.4. A link with stochastic processes: subordination

These empirical facts (aggregational normality in trade time, relationship between volume and volatil-
ity) reinforce the interest for models based on the subordination of stochastic processes, which has been
introduced in financial modeling by Clark (22).
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Let us introduce it simply here. Assuming the proportionality between the variance 〈x〉2τ of the returns
x and the number of trades Nτ over a time period τ , we can write:

〈x〉2τ = αNτ . (2)

Therefore, assuming the normality in trade time, we can write the density function of log-returns after N
trades as

fN(x) =
e

−x2

2αN√
2παN

, (3)

Finally, denoting Kτ (N) the probability density function of having N trades in a time period τ , the distri-
bution of log returns in calendar time can be written

Pτ (x) =

∫ ∞

0

e
−x2

2αN√
2παN

Kτ (N)dN. (4)

This is the subordination of the Gaussian process xN using the number of trades Nτ as the directing
process, i.e. as the new clock. With that kind of modelization, it is expected, since PN is gaussian, that
observed non-gaussian behavior will comme from Kτ (N). For example, some specific choice of directing
processes may lead to a symetric stable distribution (see (65), to be checked). (22) tests empirically a
lognormal subordination with time series of prices of cotton. In a similar way, (63) tests the hypothesis of
an exponential subordination:

Kτ (N) =
1

ητ
e−

N
ητ . (5)

If the orders were submitted to the market in a independant way and at a constant rate η, then the
distribution of the number of trade per time period τ should be a Poisson process with intensity ητ . There-
fore, the empirical fit in equation 5 is inconsistent with such a simplistic hypothesis of distribution of time
of arrivals of orders. We will suggest in the next section some possible distribution that fit our empirical
data.

2. Statistics of order books

The computerization of financial markets in the second half of the 1980’s provided the empirical scientists
with easier access to extensive data on order books. (66) is an early study of the new data flows on the newly
(at that time) computerized Paris Bourse. Variables crucial to a fine modeling of order flows and dynamics
of order books are studied: time of arrival of orders, placement of orders, size of orders, shape of order
book, etc. Many subsequent papers offers complementary empirical findings, e.g. (67), (68), (69), (70), (71).
Before going further in our review of available models, we try to summarize some of these empirical facts.

For each of the enumerated properties, we propose our own new empirical plots. We use Reuters tick by
tick data on the Paris Bourse. We select four stocks: France Telecom (FTE.PA) , BNP Paribas (BNPP.PA),
Societe Générale (SOGN.PA) and Renault (RENA.PA). For any given stocks, the data displays timestamps,
traded quantities, traded prices, the first five best bid limits and the first five best ask limits. from now on,
we will denote ai(t) (resp. (bj(t)) the price of the i-th limit at ask (resp. j-th limit at bid). Except when
mentioned otherwise, all statistics are computed using all trading days from Oct, 1st 2007 to May, 30th
2008, i.e. 168 trading days. On a given day, orders submitted between 9:05am and 5:20pm are taken into
account, i.e. first and last minutes of each trading days are removed.

Note that we do not deal in this section with the correlations of the signs of trades, since statistical
results on this fact have already been treated in section 1.2.2.

Note also that although most of these facts are wildly acknowledged, we will not describe them as new
“stylized facts for order books” since their range of validity is still to be checked among various prod-
ucts/stocks, markets and epochs, and strong properties have to be properly extracted and formalized from
these observations. However, we’ll keep them in mind as we go through the new trend of “empirical model-
ing” of order books.
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Figure 12: Distribution of interarrival times for stock BNPP.PA. This empirical distribution is computed using data from 2007,
January 1st until 2008, May 31st.

Finally, let us recall that the markets we are dealing with are electronic order books with no official market
maker and where orders are submitted in a double auction and executions follow price/time priority. This
type of exchange is now adopted nearly all over the world, but this was not obvious as long as computerization
was not complete. Different market mechanisms have been widely studied in the microstructure literature:
see e.g. (72; 73; 74; 75; 76; 77). We will not review this literature here (except (72) reviewed in part IV,
as this would be too large a digression, however such a literature is linked in many aspects to the problems
reviewed in this paper.

2.1. Time of arrivals of orders

As explained in the previous section, the choice of the time count might be of prime importance when deal-
ing with “stylized facts” of empirical financial time series. When reviewing the subordination of stochastic
processes (22; 63), we have seen that the Poisson hypothesis for the arrival times of orders is not empirically
verified.

We compute the empirical distribution for interarrival times of market orders on the stock BNP Paribas
using data from 2007, October 1st until 2008, May 31st. The result is plotted in figure 12 and 13, both in
linear and log scale. It is clearly observed that the exponential fit is not a good one. However, it seems that
a the fit of a gamma distribution is potentially a very good one.

Using the same data, we compute the empirical distribution of the number of transactions in a given
time period τ . Results are plotted in figure 14. It seems that the lognormal and the gamma distributions
are both good candidates, however none of them really describes the empirical result, suggesting a complex
structure of arrival of orders. A similar result on Russian stocks was presented in (78).

2.2. Volume of orders

Empirical studies show that the unconditional distribution of order size is very complex to characterize.
(67) and (69) observe a power law decay with an exponent 1 + µ =≈ 2.3 − 2.7 for market orders and
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Figure 13: Distribution of interarrival times for stock BNPP.PA (Main body, linear scale). This empirical distribution is
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1 + µ ≈ 2.0 for limit orders. (68) emphasize on a clustering property: orders tend to have a “round” size in
packages of shares, and clusters are observed around 100’s and 1000’s. As of today, no consensus emerges in
proposed models, and it is plausible that such a distribution varies very wildly with products and markets.

In figure 15, we plot the distribution of volume of market orders for the four stocks composing our
benchmark. Quantities are normalized by their mean. Power-law coefficient is estimated by a Hill estimator
(see e.g. (79; 80)). We find a power law with exponent 1 + µ = 2.7 which confirms studies previously cited.
Figure 16 displays the same distribution for limit orders (of all available limits). We find an average value
of 1+µ =≈ 2.1, consistent with previous studies. However, we note that the power law is a much poorer fit
in the case of limit orders: data normalized by their mean collapse badly on a single curve, and computed
coefficients vary with stocks.
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Figure 15: Distribution of volumes of market orders. Quantities are normalized by their mean.

2.3. Placement of orders

Placement of arriving limit orders. (70) observe a broad power-law placement arount the best quotes on
French stocks, confirmed in (71) on US stocks. Observed exponents are quite stable across stocks, but place
dependant: 1 + µ ≈ 1.6 on the Paris Bourse, 1 + µ ≈ 2.0 on the New York Stock Exchange, 1 + µ ≈ 2.5 on
the London Stock Exchange. (81) propose to fit the empirical distribution with a Student distribution with
1.3 degree of freedom.

We plot the distribution of the following quantity computed on our data set, i.e. using only the first five
limits of the order book:

∆p =















b(t) − b0(t−) if an bid order arrives at price b(t),
b0(t) being the best bid before the arrival of this order

a0(t−) − a(t) if an ask order arrives at price a(t),
a0(t) being the best ask before the arrival of this order

(6)

We use data on the BNP.Paribas order book from 2007, September 1st until 2008, May 31st. Results are
plotted on figure 17 in semilog scale and 18 in linear scale. This graphs being computed with incomplete
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Figure 16: Distribution of normalized volumes of limit orders. Quantities are normalized by their mean.

data (five best limits), we do not observe a placement as broad as in (70). However, our data makes it clear
that fat tails are observed. We also observe a slight asymetry in the empirical distribution: the left side is
less broad than the right side. Since the left side represent limit orders submitted inside the spread, this
was expected.

Thus, the empirical distribution of the placement of arriving limit orders is maximum at zero (same best
quote). How is it translated in terms of shape of the order book ?

Average shape of the order book. Contrary to what one might expect, it seems that the maximum of the
average offered volume in an order book is located away from the best quotes (see e.g. (70)). Our data
confirms this observation: the average quantity offered on the five best quotes grows with the level. This
result is presented in figure 19. We also compute the average price of these levels in order to plot a cross-
sectional graph similar to the ones presented in (66). Our result is presented for stock BNP.PA in figure 20
and displays the expected shape. Results for other stocks are similar. We find that the average gap between
to levels is constant among the five best bids and asks (less than one tick for FTE.PA, 1.5 tick for BNPP.PA,
2.0 ticks for SOGN.PA, 2.5 ticks for RENA.PA). We also find that the average spread is roughly twice as
large the average gap (factor 1.5 for FTE.PA, 2 for BNPP.PA, 2.2 for SOGN.PA, 2.4 for RENA.PA).

2.4. Cancelation of orders

(68) show that the distribution of the average lifetime of limit orders fits a power law with exponent
1 + µ ≈ 2.1 for cancelled limit orders, and 1 + µ ≈ 1.5 for executed limit orders. (81) finds that in any case
the exponential hypothesis (Poisson process) is not satisfied on the market.

We compute the average lifetime of cancelled and exectued orders on our dataset. Since our data does
not include a unique identifier of a given order, we reconstruct life time orders as follows: each time a
cancellation is detected, we go back through the history of limit order submission and look for a matching
order with same price and same quantity. If an order is not matched, we discard the cancellation from our
lifetime data. Results are presented in figure 21 and 22. We observe a power law decay with coefficients
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Figure 17: Placement of limit orders using the same best quote reference in semilog scale. Data used for this computation is
BNP Paribas order book from 2007, September 1st until 2008, May 31st.

1 + µ ≈ 1.3 − 1.6 for both cancelled and executed limit orders, with little variations among stocks. These
results are a bit different than the one presented in previous studies: similar for executed limit orders, but
our data exhibits a lower decay as for cancelled orders. Not that the observed cut-off in the distribution for
lifetimes above 20000 seconds is due to the fact that we do not take into account execution or cancellation
of orders submitted on a previous day.

2.5. Intraday seasonality

Activity on financial markets is of course not constant throughout the day. Figure 23 (resp. 24) plots the
(normalized) number of market (resp. limit) orders arriving in a 5-minute interval. It is clear that a U-shape
is observed (an ordinary least-square quadratic fit is plotted): the observed market activity is larger at the
beginning and the end of the day, and more quiet aroud lunchtime. Such a U-shaped curve is well-known,
see (66) for example. On our data, we observe that the number of order on a 5-minute interval can vary
with a factor 10 throughout the day.

(68) note that the average number of orders submitted to the market in a period ∆T vary wildly during
the day. The authors also observe that these quantities for market orders and limit orders are highly
correlated. Such a type of intraday variation of the global market activity is a well-known fact, already
observed in (66) for example.

2.6. Market impact

The statistics we have presented may help to understand a phenomenon of primary importance for any
financial market practitioner: the market impact, i.e. the relationship between the volume traded and the
expected price shift once the order has been executed. On a first approximation, one understands that it is
closely linked with many items described above: the volume of market orders submitted, the shape of the
order book (how much pending limit orders are hit by one large market orders), the correlation of trade
signs (one may assume that large orders are splitted in order to avoid a large market impact), etc.
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Figure 18: Placement of limit orders using the same best quote reference in linear scale. Data used for this computation is
BNP Paribas order book from 2007, September 1st until 2008, May 31st.

Many empirical studies are available. An empirical study on the price impact of individual transactions
on 1000 sotcks on the NYSE is conducted in (82). It is found that proper rescaling make all the curve
collapse onto a single concave master curve. This function increases as a power that is the order of 1/2 for
small volumes, but then increases more slowly for large volumes. They obtain similar results in each year
for the period 1995 to 1998.

We will not review any further the large literature of market impact, but rather refer the reader to the
recent exhaustive synthesis proposed in (61), where different types of impacts, as well as some theoretical
models are discussed.
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Figure 19: Average quantity offered in the limit order book.
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Figure 21: Distribution of estimated lifetime of cancelled limit orders.
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Figure 22: Distribution of estimated lifetime of executed limit orders.
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Figure 23: Normalized average number of market orders in a 5-minute interval.
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Figure 24: Normalized average number of limit orders in a 5-minute interval.
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3. Correlations of assets

The word “correlation” is defined as “a relation existing between phenomena or things or between
mathematical or statistical variables which tend to vary, be associated, or occur together in a way not
expected on the basis of chance alone” (see http://www.m-w.com/dictionary/correlations). When we talk
about correlations in stock prices, what we are really interested in are such relations with other variables,
such as stock transaction volumes, as well as in the statistical distributions and laws which govern the price
time series, the nature of the time series of stock prices, and whether the time series is random or not.

This section deals with several topics concerning linear correlation observed in financial data. The first
part deals with the important issue of computing correlations in high-frequency. As mentioned earlier, the
computerization of financial exchanges has lead to the availability of huge amount of tick-by-tick data, and
computing correlation using these intraday data raises lots of issues concerning usual estimators. The second
and third parts deals with the use of correlation in order to cluster assets with potential applications in risk
management problems.

3.1. Estimating covariance on high-frequency data

Let us assume that we observe d time series of (log-)prices pi, i = 1, . . . , d, observed at times tm,m =
0, . . . ,M . The usual estimator of the covariance of prices i and j is the realized covariance estimator, which
is computed as:

Σ̂RV
ij (t) =

M
∑

m=1

(pi(tm) − pi(tm−1))(pj(tm) − pj(tm−1)). (7)

The trouble is that high-frequency tick-by-tick data record changes of prices at random times, non-
synchronously (contrary to daily close prices for example, that are recorded at the same time for all the
assets on a given exchange). Using standard estimators without caution could be one cause for the “Epps
effect”, first observed in (83), which stated that “[c]orrelations among price changes in common stocks of
companies in one industry are found to decrease with the length of the interval for which the price changes
are measured.” This has largely been verified since, e.g. in (84; 85). Non-synchronicity of tick-by-tick data
and necessary sampling of time series in order to compute the usual realized covariance estimator partially
explain this phenomenon (86). We very briefly review here two covariance estimators that do not need any
synchronicity (hence, sampling) in order to be computed.

3.1.1. The Fourier estimator

The Fourier estimator has been introduced in (87). Let us assume that we have d time series of log-prices
that are observations of Brownian semi-martingales:

dpi =

K
∑

j=1

σijdWj + µidt, i = 1, . . . , d. (8)

The coefficient of the covariance matrix are then written Σij(t) =
∑K

k=1 σik(t)σjk(t). (87) show that the
Fourier coefficient of Σij(t) are, with n0 a given integer:

ak(Σij) = lim
N→∞

π

N + 1 − n0

N
∑

s=n0

1

2
(as(dpi)as+k(dpj) + as+k(dpi)as(dpj)), (9)

bk(Σij) = lim
N→∞

π

N + 1 − n0

N
∑

s=n0

1

2
(as(dpi)bs+k(dpj) + bs+k(dpi)as(dpj)), (10)

where the Fourier coefficients ak(dpi) and bk(dpi) of dpi can be directly computed on the time series. Indeed,
rescaling the time window on [0, 2π] and using integration by parts, we have:

ak(dpi) =
p(2π) − p(0)

π
− k

π

∫ 2π

0

sin(kt)pi(t)dt. (11)
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This last integral can be discretized and approximately computed using the times tim of observations of the
process pi. Therefore, fixing a sufficiently large N , one can compute an estimator ΣF

ij of the covariance of
the processes i and j. See (85; 88) for empirical studies using this estimator.

3.1.2. The Hayashi-Yoshida estimator

(86) have proposed a simple estimator in order to compute covariance/correlation without any need
for synchronicity of time series. As in the Fourier estimator, it is assumed that the observed process is a
Brownian semi-martingale. The time window of observation is easily partitioned into d family of intervals
Πi = (J i

m), i = 1, . . . , d, where tim = inf{U i
m+1} is the time of the m-th observation of the process i. Let us

denote ∆pi(U
i
m) = pi(t

i
m)− pi(t

i
m−1). The cumulative covariance estimator as the authors named it, or the

Hayashi-Yoshida estimator as it has been largely refered to, is then built as follows:

Σ̂HY
ij (t) =

∑

m,n

∆pi(U
i
m)∆pj(U

j
n)1{Ui

m∩Uj
n 6=∅}. (12)

3.2. Correlation matrix and Random Matrix Theory

The stock-market data is essentially a multivariate time-series data, we construct correlation matrix to
study its spectra to contrast it with the random multivariate data from coupled map lattice. It is known
from previous studies that the empirical spectra of correlation matrices drawn from time-series data, for
most part, follow random matrix theory (89).

3.2.1. Correlation matrix and Eigenvalue density

Correlation matrix.

1. Financial Correlation matrix.
If there are N assets with price Pi(t) for asset i at time t, then the logarithmic return of stock i is
ri(t) = lnPi(t)− lnPi(t−1), which for a certain consecutive sequence of trading days forms the return
vector ri. In order to characterize the synchronous time evolution of stocks, the equal time correlation
coefficients between stocks i and j is defined as

ρij =
〈rirj〉 − 〈ri〉〈rj〉

√

[〈r2i 〉 − 〈ri〉2][〈r2j 〉 − 〈rj〉2]
, (13)

where 〈...〉 indicates a time average over the trading days included in the return vectors. These
correlation coefficients form an N ×N matrix with −1 ≤ ρij ≤ 1. If ρij = 1, the stock price changes
are completely correlated; if ρij = 0, the stock price changes are uncorrelated, and if ρij = −1, then
the stock price changes are completely anti-correlated.

2. Correlation matrix from spatio-temporal series from coupled map lattices.
Consider a time-series of the form z′(x, t), where x = 1, 2, ...n and t = 1, 2....p denote the discretised
space and time, respectively. In this, the time-series at every spatial point is treated as a different
variable. We define the normalised variable as

z(x, t) =
z′(x, t) − 〈z′(x)〉

σ(x)
, (14)

where the brackets 〈.〉 represent temporal averages and σ(x) the standard deviation of z′ at position x.
Then, the equal-time cross-correlation matrix that represents the spatial correlations can be written
as

Sx,x′ = 〈z(x, t) z(x′, t)〉 , x, x′ = 1, 2, . . . , n . (15)

The correlation matrix is symmetric by construction. In addition, a large class of processes are
translationally invariant and the correlation matrix can contain that additional symmetry, too. We
will use this property for our correlation models in the context of coupled map lattice. In time-series
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analysis, the averages 〈.〉 have to be replaced by estimates obtained from finite samples. As usual, we
will use the maximum likelihood estimates, 〈a(t)〉 ≈ 1

p

∑p
t=1 a(t). These estimates contain statistical

uncertainties, which disappears for p → ∞. Ideally, one requires p ≫ n to have reasonably correct
correlation estimates. See arxiv:0704.1738 for details of parameters, etc.

Eigenvalue Density. The interpretation of the spectra of empirical correlation matrices should be done
carefully if one wants to be able to distinguish between system specific signatures and universal features.
The former express themselves in the smoothed level density, whereas the latter usually are represented
by the fluctuations on top of this smooth curve. In time-series analysis, the matrix elements are not only
prone to uncertainty such as measurement noise on the time-series data, but also statistical fluctuations
due to finite sample effects. When characterizing time series data in terms of random matrix theory, one
is not interested in these trivial sources of fluctuations which are present on every data set, but one would
like to identify the significant features which would be shared, in principle, by an “infinite” amount of data
without measurement noise. The eigenfunctions of the correlation matrices constructed from such empirical
time-series carry the information contained in the original time-series data in a “graded” manner and they
also provide a compact representation for it. Thus, by applying a random matrix theory based approach,
one tries to identify non-random components of the correlation matrix spectra as deviations from random
matrix theory predictions (89).

We will look at the eigenvalue density that has been studied in the context of applying random matrix
theory methods to time-series correlations. Let N (λ) be the integrated eigenvalue density which gives
the number of eigenvalues less than a given value λ. Then, the eigenvalue or level density is given by

ρ(λ) = dN (λ)
dλ . This can be obtained assuming random correlation matrix and is found to be in good

agreement with the empirical time-series data from stock market fluctuations. From RMT considerations,
the eigenvalue density for random correlations is given by

ρrmt(λ) =
Q

2πλ

√

(λmax − λ)(λ− λmin) , (16)

where Q = N/T is the ratio of number of variables to length of each time-series. Here, λmax and λmin

represent the maximum and minimum eigenvalues of the random correlation matrix respectively and are
given by λmax,min = 1+1/Q±2

√

1/Q. However, due to presence of correlations in the empirical correlation
matrix, this eigenvalue density is often violated for a certain number of dominant eigenvalues. They often
correspond to system specific information in the data. In Fig. 25 we show the eigenvalue density for S&P500
data and also for the chaotic data from coupled map lattice. Clearly, both curves are qualitatively different.
Thus, presence or absence of correlations in data is manifest in the spectrum of the corresponding correlation
matrices.
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Figure 25: The left panel shows spectral density for multivariate spatio-temporal time-series drawn from coupled map lattices
The right panel shows the eigenvalue density for the return time-series of the S&P500 stock market data (8938 time steps).
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Figure 26: Eigenvalue spectrum of the correlation matrices. Adapted from cond-mat/9810255.

3.2.2. Earlier estimates and studies using Random Matrix Theory

Laloux et al. (90) showed that results from the random matrix theory (RMT) were useful to understand
the statistical structure of the empirical correlation matrices appearing in the study of price fluctuations.
The empirical determination of a correlation matrix is a difficult task. If one considers N assets, the
correlation matrix contains N(N − 1)/2 mathematically independent elements, which must be determined
from N time-series of length T . If T is not very large compared to N , then generally the determination of
the covariances is noisy, and therefore the empirical correlation matrix is to a large extent random. The
smallest eigenvalues of the matrix are the most sensitive to this ‘noise’. But the eigenvectors corresponding to
these smallest eigenvalues determine the minimum risk portfolios in Markowitz theory. It is thus important
to distinguish “signal” from “noise” or, in other words, to extract the eigenvectors and eigenvalues of the
correlation matrix containing real information (those important for risk control), from those which do not
contain any useful information and are unstable in time. It is useful to compare the properties of an
empirical correlation matrix to a “null hypothesis”— a random matrix which arises for example from a
finite time-series of strictly uncorrelated assets. Deviations from the random matrix case might then suggest
the presence of true information. The main result of their study was the remarkable agreement between
the theoretical prediction (based on the assumption that the correlation matrix is random) and empirical
data concerning the density of eigenvalues (shown in Fig. 26) associated to the time-series of the different
stocks of the S&P 500 (or other stock markets). Cross-correlations in financial data were also studied
by Plerou et al. (91; 92). They analyzed cross-correlations between price fluctuations of different stocks
using methods of RMT. Using two large databases, they calculated cross-correlation matrices of returns
constructed from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994–95, (ii) 30-min returns of
881 US stocks for the 2-yr period 1996–97, and (iii) 1-day returns of 422 US stocks for the 35-yr period
1962–96. They also tested the statistics of the eigenvalues λi of cross-correlation matrices against a “null
hypothesis”. They found that a majority of the eigenvalues of the cross-correlation matrices were within the
RMT bounds, [λmin, λmax], as defined above, for the eigenvalues of random correlation matrices. They also
tested the eigenvalues of the cross-correlation matrices within the RMT bound for universal properties of
random matrices and found good agreement with the results for the Gaussian orthogonal ensemble (GOE)
of random matrices — implying a large degree of randomness in the measured cross-correlation coefficients.
Furthermore, they found that the distribution of eigenvector components for the eigenvectors corresponding
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to the eigenvalues outside the RMT bound displayed systematic deviations from the RMT prediction and
that these “deviating eigenvectors” were stable in time. They analyzed the components of the deviating
eigenvectors and found that the largest eigenvalue corresponded to an influence common to all stocks. Their
analysis of the remaining deviating eigenvectors showed distinct groups, whose identities corresponded to
conventionally-identified business sectors.

3.3. Analyses of correlations and economic taxonomy

3.3.1. Models and theoretical studies of financial correlations

Podobnik et al. (93) studied how the presence of correlations in physical variables contributes to the
form of probability distributions. They investigated a process with correlations in the variance generated
by a Gaussian or a truncated Levy distribution. For both Gaussian and truncated Levy distributions, they
found that due to the correlations in the variance, the process “dynamically” generated power-law tails in
the distributions, whose exponents could be controlled through the way the correlations in the variance were
introduced. For a truncated Levy distribution, the process could extend a truncated distribution beyond the
truncation cutoff, leading to a crossover between a Levy stable power law and their “dynamically-generated”
power law. It was also shown that the process could explain the crossover behavior observed in the S&P
500 stock index.

Jae Dong Noh (94) proposed a model for correlations in stock markets in which the markets were
composed of several groups, within which the stock price fluctuations were correlated. The spectral properties
of empirical correlation matrices (91; 90) were studied in relation to this model and the connection between
the spectral properties of the empirical correlation matrix and the structure of correlations in stock markets
was established.

The correlation structure of extreme stock returns were studied by Cizeau et al. (95). It has been
commonly believed that the correlations between stock returns increased in high volatility periods. They
investigated how much of these correlations could be explained within a simple non-Gaussian one-factor
description with time independent correlations. Using surrogate data with the true market return as the
dominant factor, it was shown that most of these correlations, measured by a variety of different indicators,
could be accounted for. In particular, their one-factor model could explain the level and asymmetry of
empirical exceeding correlations. However, more subtle effects required an extension of the one factor
model, where the variance and skewness of the residuals also depended on the market return.

Burda et al. (96) provided a statistical analysis of three S & P 500 covariances with evidence for raw tail
distributions. They studied the stability of these tails against reshuffling for the S&P 500 data and showed
that the covariance with the strongest tails was robust, with a spectral density in remarkable agreement with
random Levy matrix theory. They also studied the inverse participation ratio for the three covariances. The
strong localization observed at both ends of the spectral density was analogous to the localization exhibited
in the random Levy matrix ensemble. They showed that the stocks with the largest scattering were the
least susceptible to correlations and were the likely candidates for the localized states.

3.3.2. Analyses of correlations and economic taxonomy

Mantegna introduced a method (97) for finding a hierarchical arrangement of stocks traded in financial
market, through studying the clustering of companies by using correlations of asset returns. With an
appropriate metric, based on the earlier explained correlation matrix coefficients ρij ’s computed between
all pairs of stocks i and j in Eq. 13, of the portfolio by considering the synchronous time evolution of
the difference of the logarithm of daily stock price, a fully connected graph was defined in which the
nodes are companies, or stocks, and the “distances” between them were obtained from the corresponding
correlation coefficients. The minimum spanning tree (MST) was generated from the graph by selecting the
most important correlations and it was used to identify clusters of companies. The hierarchical tree of the
sub-dominant ultrametric space associated with the graph provided information useful to investigate the
number and nature of the common economic factors affecting the time evolution of logarithm of price of
well defined groups of stocks. Several other attempts have been made to obtain clustering from the huge
correlation matrix.
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Figure 27: The hierarchical structure of clusters of the S&P 500 companies in the ferromagnetic case. In the boxes the number
of the elements of the cluster are indicated. The clusters consisting of single companies are not indicated. Adapted from L.
Kullmann, J. Kertesz, and R. N. Mantegna, arXiv.org:cond-mat/0002238.

Bonanno et al. (98) studied the high-frequency cross-correlation existing between pairs of stocks traded
in a financial market in a set of 100 stocks traded in US equity markets. A hierarchical organization of
the investigated stocks was obtained by determining a metric distance between stocks and by investigating
the properties of the sub-dominant ultrametric associated with it. A clear modification of the hierarchical
organization of the set of stocks investigated was detected when the time horizon used to determine stock
returns was changed. The hierarchical location of stocks of the energy sector was investigated as a function
of the time horizon. The hierarchical structure explored by the minimum spanning tree also seemed to give
information about the influential power of the companies.

It also turned out that the hierarchical structure of the financial market could be identified in accordance
with the results obtained by an independent clustering method, based on Potts super-paramagnetic transi-
tions as studied by Kullmann et al. (99), where the spins correspond to companies and the interactions are
functions of the correlation coefficients determined from the time dependence of the companies’ individual
stock prices. The method is a generalization of the clustering algorithm by Domany et. al. to the case of
anti-ferromagnetic interactions corresponding to anti-correlations. For the Dow Jones Industrial Average,
no anti-correlations were observed in the investigated time period and the previous results obtained by dif-
ferent tools were well reproduced. For the S&P 500, where anti-correlations occur, repulsion between stocks
modified the cluster structure of the N = 443 companies studied, as shown in Fig. 3.3.2. The efficiency of
the method is represented by the fact that the figure matches well with the corresponding result obtained
by the minimal spanning tree method, including the specific composition of the clusters. For example, at
the lowest level of the hierarchy (highest temperature in the super-paramagnetic phase) the different indus-
trial branches can be clearly identified: Oil, electricity, gold mining, etc. companies build separate clusters.
The network of influence was recently investigated by means of a time-dependent correlation method by
Kullmann et al. (99). They studied the correlations as the function of the time shift between pairs of stock
return time series of tick-by-tick data of the NYSE. They investigated whether any “pulling effect” between
stocks existed or not, i.e., whether at any given time, the return value of one stock influenced that of another
stock at a different time or not. They found that, in general, two types of mechanisms generated significant
correlation between any two given stocks. One was some kind of external effect (say, economic or political
news) that influenced both stock prices simultaneously, and the change for both prices appeared at the same
time, such that the maximum of the correlation was at zero time shift. The second effect was that, one of
the companies had an influence on the other company indicating that one company’s operation depended on
the other, so that the price change of the influenced stock appeared latter because it required some time to
react on the price change of the first stock displaying a “pulling effect”. A weak but significant effect with
the real data set was found, showing that in many cases the maximum correlation was at non-zero time shift
indicating directions of influence between the companies, and the characteristic time was of the order of a
few minutes, which was compatible with efficient market hypothesis. In the pulling effect, they found that
in general, more important companies (which were traded more) pulled the relatively smaller companies.

The time dependent properties of the minimum spanning tree (introduced by Mantegna), called a ‘dy-
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namic asset tree’, were studied by Onnela et al. (100). The nodes of the tree were identified with stocks and
the distance between them was a unique function of the corresponding element of the correlation matrix.
By using the concept of a central vertex, chosen as the most strongly connected node of the tree, the mean
occupation layer was defined which was an important characteristic of the tree. During crashes the strong
global correlation in the market manifested itself by a low value of the mean occupation layer. The tree
seemed to have a scale free structure where the scaling exponent of the degree distribution was different
for ‘business as usual’ and ‘crash’ periods. The basic structure of the tree topology was very robust with
respect to time. Let us discuss in more details how the dynamic asset tree was applied to studies of economic
taxonomy.

Financial Correlation matrix and constructing Asset Trees. Two different sets of financial data were used:
The first set from the Standard & Poor’s 500 index (S&P500) of the New York Stock Exchange (NYSE)
from July 2, 1962 to December 31, 1997 containing 8939 daily closing values, and the second set from the
split-adjusted daily closure prices for a total of N = 477 stocks traded at the New York Stock Exchange
(NYSE) over the period of 20 years, from 02-Jan-1980 to 31-Dec-1999 were used. This amounted a total
of 5056 price quotes per stock, indexed by time variable τ = 1, 2, . . . , 5056. For analysis and smoothing
purposes, the data was divided time-wise into M windows t = 1, 2, ..., M of width T , where T corresponded
to the number of daily returns included in the window. Note that several consecutive windows overlap with
each other, the extent of which is dictated by the window step length parameter δT , which describes the
displacement of the window and is also measured in trading days. The choice of window width is a trade-off
between too noisy and too smoothed data for small and large window widths, respectively. The results
presented here were calculated from monthly stepped four-year windows, i.e. δT = 250/12 ≈ 21 days and
T = 1000 days. A large scale of different values for both parameters were explored, and the cited values
were found optimal (101). With these choices, the overall number of windows is M = 195.

The earlier definition of correlation matrix, given by Eq. 13 is used. These correlation coefficients form
an N ×N correlation matrix Ct, which serves as the basis for trees discussed below.

An asset tree is then constructed according to the methodology by Mantegna (97). For the purpose of
constructing asset trees, a distance is defined between a pair of stocks. This distance is associated with the
edge connecting the stocks and it is expected to reflect the level at which the stocks are correlated. A simple

non-linear transformation dt
ij =

√

2(1 − ρt
ij) is used to obtain distances with the property 2 ≥ dij ≥ 0,

forming an N × N symmetric distance matrix Dt. So, if dij = 0, the stock price changes are completely
correlated; if dij = 2, the stock price changes are completely anti-uncorrelated. The trees for different time
windows are not independent of each other, but form a series through time. Consequently, this multitude
of trees is interpreted as a sequence of evolutionary steps of a single dynamic asset tree. An additional
hypothesis is required about the topology of the metric space: the ultrametricity hypothesis. In practice, it
leads to determining the minimum spanning tree (MST) of the distances, denoted Tt. The spanning tree
is a simply connected acyclic (no cycles) graph that connects all N nodes (stocks) with N − 1 edges such
that the sum of all edge weights,

∑

dt
ij
∈Tt dt

ij , is minimum. We refer to the minimum spanning tree at time

t by the notation Tt = (V,Et), where V is a set of vertices and Et is a corresponding set of unordered pairs
of vertices, or edges. Since the spanning tree criterion requires all N nodes to be always present, the set of
vertices V is time independent, which is why the time superscript has been dropped from notation. The set
of edges Et, however, does depend on time, as it is expected that edge lengths in the matrix Dt evolve over
time, and thus different edges get selected in the tree at different times.

Market characterization. We plot the distribution of (i) distance elements dt
ij contained in the distance

matrix Dt (Fig. 28), (ii) distance elements dij contained in the asset (minimum spanning) tree Tt (Fig. 29).
In both plots, but most prominently in Fig. 28, there appears to be a discontinuity in the distribution
between roughly 1986 and 1990. The part that has been cut out, pushed to the left and made flatter, is
a manifestation of Black Monday (October 19, 1987), and its length along the time axis is related to the
choice of window width T (102; 100). Also, note that in the distribution of tree edges in Fig. 29 most edges
included in the tree seem to come from the area to the right of the value 1.1 in Fig. 28, and the largest
distance element is dmax = 1.3549.
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Figure 28: Distribution of all N(N − 1)/2 distance elements dij contained in the distance matrix D
t as a function of time.

1. Tree occupation and central vertex
Let us focus on characterizing the spread of nodes on the tree, by introducing the quantity of mean
occupation layer

l(t, vc) =
1

N

N
∑

i=1

lev(vt
i) , (17)

where lev(vi) denotes the level of vertex vi. The levels, not to be confused with the distances dij

between nodes, are measured in natural numbers in relation to the central vertex vc, whose level is
taken to be zero. Here the mean occupation layer indicates the layer on which the mass of the tree,
on average, is conceived to be located. The central vertex is considered to be the parent of all other
nodes in the tree, and is also known as the root of the tree. It is used as the reference point in the
tree, against which the locations of all other nodes are relative. Thus all other nodes in the tree are
children of the central vertex. Although there is an arbitrariness in the choice of the central vertex,
it is proposed that the vertex is central, in the sense that any change in its price strongly affects the
course of events in the market on the whole. Three alternative definitions for the central vertex were
proposed in the studies, all yielding similar and, in most cases, identical outcomes. The idea is to
find the node that is most strongly connected to its nearest neighbors. For example, according to one
definition, the central node is the one with the highest vertex degree, i.e. the number of edges which
are incident with (neighbor of) the vertex. Also, one may have either (i) static (fixed at all times)
or (ii) dynamic (updated at each time step) central vertex, but again the results do not seem to vary
significantly. The study of the variation of the topological properties and nature of the trees, with
time were done.

2. Economic taxonomy
Mantegna’s idea of linking stocks in an ultrametric space was motivated a posteriori by the property
of such a space to provide a meaningful economic taxonomy (103). Mantegna examined the meaning-
fulness of the taxonomy, by comparing the grouping of stocks in the tree with a third party reference
grouping of stocks e.g. by their industry classifications (97). In this case, the reference was provided
by Forbes [www forbes com ], which uses its own classification system, assigning each stock with a
sector (higher level) and industry (lower level) category. In order to visualize the grouping of stocks,
a sample asset tree is constructed for a smaller dataset (shown in Fig. 30), which consists of 116 S&P
500 stocks, extending from the beginning of 1982 to the end of 2000, resulting in a total of 4787 price
quotes per stock (? ). The window width was set at T = 1000, and the shown sample tree is located
time-wise at t = t∗, corresponding to 1.1.1998. The stocks in this dataset fall into 12 sectors, which are
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Basic Materials, Capital Goods, Conglomerates, Consumer/Cyclical, Consumer/Non-Cyclical, Energy,
Financial, Healthcare, Services, Technology, Transportation and Utilities. The sectors are indicated in
the tree (see Fig. 30) with different markers, while the industry classifications are omitted for reasons
of clarity. The term sector is used exclusively to refer to the given third party classification system of
stocks. The term branch refers to a subset of the tree, to all the nodes that share the specified common
parent. In addition to the parent, it is needed to have a reference point to indicate the generational
direction (i.e. who is who’s parent) in order for a branch to be well defined. Without this reference
there is absolutely no way to determine where one branch ends and the other begins. In this case, the
reference is the central node. There are some branches in the tree, in which most of the stocks belong
to just one sector, indicating that the branch is fairly homogeneous with respect to business sectors.
This finding is in accordance with those of Mantegna (97) , although there are branches that are fairly
heterogeneous, such as the one extending directly downwards from the central vertex (see Fig. 30).
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Figure 29: Distribution of the (N − 1) distance elements dij contained in the asset (minimum spanning) tree T
t as a function

of time.

Figure 30: Snapshot of a dynamic asset tree connecting the examined 116 stocks of the S&P 500 index. The tree was produced
using four-year window width and it is centered on January 1, 1998. Business sectors are indicated according to Forbes [www
forbes com]. In this tree, General Electric (GE) was used as the central vertex and eight layers can be identified.
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Part IV

Agent-based Modeling

1. Agent-based modeling of order books

1.1. Introduction

Although known – at least partly – for a long time (in his 1963 paper (52), Mandelbrot gives a reference
for a paper dealing with non-normality of price time series in 1915, followed by several in the 1920’s),
“stylized facts” have often been left aside when modeling financial markets. They were even often refered
to as “anomalous” characteristics as if observations failed to comply with theory.

Much has been done these past fifteen years in order to address this challenge and provide new models
that can reproduce these facts. These recent developments have been built on top of early attempts at
modeling mechanisms of financial markets with agents. Stigler (104) investigating some rules of the SEC
(Security Exchange Commission), or Garman (72) investigating double-auction microstructure belong to
those historical works.

It seems that the first modern attempts at that type of models were made in the field of behavioral
finance. Agent-based models in financial economics are built with numerous agents who can exchange shares
of stocks according to exogenously defined utility functions reflecting their preferences and risk aversions.
(105) provides a recent review of that type of model. Although achieving some of their goals, these models
suffer from many drawbacks: first, they are very complex, and it would be a very difficult task to try to
identify the role of their numerous parameters and the types of dependance to these parameters; second,
the chosen utility functions do not reflect what is observed on the mechanisms of a financial market.

A sensible change in modelisation appears with much simpler models implementing only well-identified
and presumably realistic“behavior”: (106) uses noise traders that are subject to “herding”, i.e. form random
clusters of traders sharing the same view on the market. The idea is used in (107) as well. A complementary
approach is to characterize traders as fundamentalists, chartists or noise traders. (108) propose an agent-
based model in which these types of traders interact. In all these models, the price variation directly results
from the excess demand: at each time step, all agents submit orders and the resulting price is computed.
Therefore, everything is cleared at each time step and there is no structure of order book to keep track of
orders.

One big step is made with models really taking into account limit orders and keeping them in an order
book once submitted and not executed. (109) build an agent-based model where all traders submit orders
depending on the three elements identified in (108): chartists, fundamentalists, noise. Orders submitted
are then stored in a persistent order book. In fact, one of the first simple models with this feature was
proposed in (110). In this model, orders are particles moving along a price line, and each collision is a
transaction. Due to numerous caveats in this model, the authors propose in the same paper an extension
wiht fundamentalist and noise traders in the spirit of the models previously evoked. (111) goes further in
the modeling of trading mechanisms by taking into account fixed limit orders and market orders that trigger
transactions. The order book is here really simulated. This model was analytically solved using a mean-field
approximation in (112).

Following this trend of modeling, the – more or less – rational agents composing models in economics tends
to vanish and be replaced by the notion of flows: orders are not submitted any more buy an agent following
a strategic behavior, but are viewed as an arriving flows whose properties are to be determined by empirical
observations on market mechanisms. Thus, the modeling of order books calls for more “stylized facts”, i.e.
empirical properties that could be observed on a large number of order-driven markets. (66) is a thorough
empirical study of the order flows in the Paris Bourse a few years after its complete computerization. Market
orders, limit orders, time of arrivals and placement are studied. (70) and (71) provides statistical features on
the order book itself. These empirical studies are the fundation for Zero-Intelligence models, where “stylized
facts” are expected to be reproduced by the properties of the order flows and the structure of order book
itself, without considering exogenous “rationality”. (68) propose a simple model of order flows: limit orders
are deposited in the order book and can be removed if not executed, in a simple deposition-evaporation
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process. (70) use this type of model with empirical distribution as inputs. As of today, the most complete
empirical model is to our knowledge (81), where order placement and cancellation models are proposed and
fitted on empirical data. Finally, new challenges arise as scientists try to identify simple mechanisms that
allow an agent-based model to reproduce non-trivial behaviours: herding behaviour in(106), dynamic price
placement in (113), threshold behaviour in (114), etc.

In this paper we review some of these models. This survey is of course far from exhaustive, and we have
just selected models that we feel are representative of a specific trend of modeling.

1.2. Early order-driven market modeling: Market microstructure and policy issues

The pioneering works in simulation of financial markets were aimed to study market regulations. The
very first one, (104), tries to investigate the effect of regulations of the SEC on American stock markets,
using empirical data from the 20’s and the 50’s. Twenty years later, at the start of the computerization of
financial markets, (115) implements a simulator in order to test the feasibility of automated market making.
This section gives a few details on those early models.

1.2.1. Controversy in regulations issues: Stigler (1964)

Presentation of the model. To our knowledge, the first attempt to simulate a financial market is done by
(104). This paper is a biting and controversial reaction to the Report of the Special Study of the Securities
Markets of the SEC ((116)), whose aim was to “study the adequacy of rules of the exchange and that the
New York stock exchange undertakes to regulate its members in all of their activities” ((117)). According to
the author this study lacks rigorous tests when investigating the effects of regulation on financial markets.
Stating that “demand and supply are [...] erratic flows with sequences of bids and asks dependent upon
the random circumstances of individual traders”, Stigler proposes a simple simulation model to investigate
the evolution of the market. In this model, contrained by simulation capability in 1964, price is constrained
within L = 10 ticks. (Limit) orders are randomly drawn, in trade time, as follows: they can be bid (resp.ask)
orders with probability 1/2 (resp. 1/2), and their price level is uniformly distributed on the price grid. Each
time an order crosses the opposite best quote, it is a market order. All orders are of size one. Orders not
executed N = 25 time steps after their submission are cancelled. Thus, N is the maximum number of orders
available in the order book.

Results. In the original paper, a run of a hundred trades is manually computed using tables of random
numbers. Of course, no particular results concerning the “stylized facts” of financial time series is expected
at that time. However, let us mention that in his review of some order book models, (118) makes simulations
of a similar model, with parameters L = 5000 and N = 5000. It appears that price returns are not gaussian,
and that their distribution exhibits power law with exponent −0.3 (far from empirical data). As expected,
the limitation L is responsible for a sharp cut-off of the tails of this distribution.

1.2.2. Microstructure of the double auction: Garman (1976)

Presentation of the model. (72) provides an early study of the double auction market with a point of view
that doesn’t ignore temporal structure, and really defines order flows. Price is discrete and constrained to
be within {p1, pL}. Buy and sell orders are assumed to be submitted according to two Poisson processes of
intensities λ and µ. Each time an order crosses the best opposite quote, it is a market order. All quantities
are asssumed to be equal to one. With its fixed contrained prices, (72) also defines the state of the order
book at a given time as the vector (ni)i=1,...,L of awaiting orders (negative quantity for bid orders, positive
for ask orders).

Results. The aim of (72) is to provide an empirical study of the market microstructure. The main result of
their Poisson model is to support the idea that negative correlation of consecutive price changes is linked the
microstructure of the double auction exchange. The author points out that analytical solution of this simple
Poisson model is not easy and provide Monte Carlo simulation. In its conclusion, the paper ask a visionary
question: “Several topics for future investigations are suggested. For example, does the auction-market
model imply the characteristic leptokurtosis seen in empirical security price changes ?”
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1.2.3. Investigating clearing prices mechanisms: Hakansson, Beja and Kale (1985)

Presentation of the model. (115) consists of N agents trading S different securities. Let us point out already
that it is the first model we know of to tackle (in theory at least) multidimensionality. Price p of securities is
discrete on grid of ticks: p = pk, k ∈ N. The simulation in this model has two steps. First, traders generate
randomly their demand function (a set of limit and market orders) by adding to their previous demand a
random shift following a geometric random walk with a drift. Short positions are allowed. The condition
that demand decreases with the price is ensured, so that the aggregated demand function q̄(p) is decreasing
with price as well. The second step of the simulation is then to choose a price of execution. The demand
being decreasing, the “equilibrium” price of the Walrasian auction is somewhere in the interval [pk; pk + 1]
where k = max{k|q̄(pk) > 0}. Once the price is chosen, the market is cleared and traders informed of the
results.

Results. The aim of the model is to study different mechanisms to choose the clearing price. Many rules are
investigated: chosing pk or pk + 1; minimize price changes; minimize market maker costs; etc. Simulations
are here used to compare different types of policies for an automated market maker. Although no attention
is paid to time series, this model is an interesting early work in agent-based models with many agents.

1.2.4. Introducing zero-intelligence agents: Gode and Sunder (1993)

Presentation of the model. To our knowledge, (119) is the first paper to introduce the expression “zero-
intelligence” in order to describe non-strategic behavior of traders. It is applied to traders that submit
random orders in a double auction market. The expression has since been widely used in agent-based
modeling (see more recent models described in this review). In this model, the price is an integer p ∈
{1, . . . , L}, L = 200. Each trader is either a seller or a buyer. At the start of a trading period, trader i is
given an allowed quantity qi to buy or sell and a reference price pR

i . This price is a limit price above which
(resp. below which) a buyer (resp. seller) will loose money. These indications qi and pR

i ensure that the
model has an increasing supply function and a decreasing demand function that are in line with neoclassic
(Walrasian) economic theory, and hence imply the existence of an equilibrium price.

Two types of zero-intelligence traders are studied. First are unconstrained zero-intelligence traders.
These agents can submit random order at random prices, within the allowed price range {1, . . . , L}. Second
are constrained zero-intelligence traders. These agents submit random orders as well, but with the constraint
that they cannot cross their reference price pR

i given: constrained zero-intelligence traders are not allowed
to buy or sell at loss. Each time a transaction occurs, all pending orders are cancelled.

Results. The aim of the authors is to show that double auction markets exhibit an intrinsic “allocative
efficiency” (ratio between the total profit earned by the traders divided by the maximum possible profit)
even with zero-intelligence traders. In particular, in their experiment, it appears that price series resulting
from actions by unconstrained zero-intelligence traders are highly volatile, while prices series in a market
of constrained agents exhibits convergence towards an equilibrium price, similar to the one obtain when
(“rational”) human traders operate on the same market.

These results have been criticized in (120). This paper shows with details that the observed convergence
of the simulated price towards the theoretical equilibrium price is an artifact of the model. More precisely,
the choice of traders’ demand carry a lot of constraints that alone explain the observed results. Convergence
towards an equilibrium price might not appear in all situations.

1.2.5. Partial conclusion on early models

Much modern works owe a lot to those four contributions. Let us mention one big difference between
these papers. In the last two papers (115) and (119), variations of the price are computed by aggregating
demand of traders and finding an intersection between supply and demand function, therefore assuming
some sort of “Walrasian” auction mechanism. Paradoxically, the two older contribution are much more in
line with recent Econophysics developments, where prices are defined by the “meeting” of individual orders.
The next subsection describes these models.
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1.3. Early order-driven market modeling in Econophysics

Starting in the mid-90’s, physicists have propose order book models direclty inspired from Physics, where
the analogy “order = particle” is emphasized. Three main contributions are presented here.

1.3.1. The order book as a reaction-diffusion model: Bak,Paczuski and Shubik (1997)

Presentation of the model. A very simple model directly taken from Physics is presented in (110). The
authors consider a market with N noise traders able to exchange one share of stock at a time. Price p(t)
at time t is constrained to be an integer (i.e. price is quoted in number of ticks) with a upper bound p̄:
∀t, p(t) ∈ {0, . . . , p̄}. Simulation is initiated at time 0 with half of the agents asking for one share of stock
(buy orders, bid) with price:

pj
b(0) ∈ {0, p̄/2}, j = 1, . . . , N/2, (18)

and the other half offering one share of stock (sell orders, ask) with price:

pj
s(0) ∈ {p̄/2, p̄}, j = 1, . . . , N/2. (19)

At each time step t, agents revise their offer by exactly one tick, with equal probability to go up or down.
Therefore, at time t, each seller (resp. buyer) agent chooses his new price as:

pj
s(t+ 1) = pj

s(t) ± 1 (resp. pj
b(t+ 1) = pj

b(t) ± 1 ). (20)

A transaction occurs when there exists (i, j) ∈ {1, . . . , N/2}2 such that pi
b(t+ 1) = pj

s(t+ 1). In such a case
the orders are removed and the transaction price is recorded as the new price p(t). Once a transaction has
been recorded, two orders are placed at the extreme positions on the grid: pi

b(t+ 1) = 0 and pj
s(t+ 1) = p̄.

As a consequence, the number of orders in the order book remains constant and equal to the number of
agents.

Results. As pointed out by the authors, this process of simulation is similar the reaction-diffusion model
A+B → ∅ in Physics. In such a model, two types of particles are inserted at each side of a pipe of length
p̄ and move randomly with steps of size 1. Each time two particles collide, they’re annihilated and two new
particles are inserted. The analogy is summarized in table 1. Following this analogy, it thus can be showed
that the variation ∆p(t) of the price p(t) verifies :

∆p(t) ∼ t1/4(ln(
t

t0
))1/2. (21)

Thus, at long time scales, the series of price increments simulated in this model exhibit a Hurst exponent
H = 1/4. As for the stylized fact H ≈ 0.7, this sub-diffusive behavior appears to be a step in the wrong
direction compared to the random walk H = 1/2. Moreover, (118) points out that no fat tails are observed
in the distribution of the returns of the model, but rather fits the empirical distribution with an exponential
decay. Many more drawbacks of the model could be mentioned, the main one being that “moving” orders
is highly unrealistic as for modeling an order book.

Table 1: Analogy between the A + B → ∅ reaction model and the order book in Bak,Paczuski and Shubik (110).

Physics (110)

Particles Orders
Finite Pipe Order book
Collision Transaction

However, we feel that such a model is very interesting because of its simplicity and its representation of
an order-driven market. The authors have attempted to build many extension of this simple framework, in
order to reproduce “stylized facts”, adding fundamental traders, strategies, trends, etc. These extensions
are not of interest for us in this review: as in (108), they make the model highly complex and prevent any
understanding of the mechanisms at stake.
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1.3.2. Introducing market orders: Maslov (2000)

Presentation of the model. In (111), the author keeps the zero-intelligence structure of the (110) model but
adds more realistic features in the order placement and evolution of the market. First, limit orders are
submitted and stored in the model, without moving. Second, limit orders are submitted around the best
quotes. Third, market orders are submitted to trigger transactions.

More precisely, at each time step, a trader is chosen to perform an action. In contrast to previous models,
the number of traders is not fixed, but one trader enters the market at each time step. This trader can
either submit a limit order with probability ql or submit a market order with probability 1 − ql. Once this
choice is made, the order is a buy or sell order with equal probability. All orders have a one unit volume.

As usual, we denote p(t) the current price. In case the submitted order at time step t+ 1 is a limit ask
(resp. bid) order, it is placed in the book at price p(t) + ∆ (resp. p(t) − ∆), ∆ being a random variable
uniformly distributed in ]0; ∆M = 4]. In case the submitted order at time step t+ 1 is a market order, one
order at the opposite best quote is removed and the price p(t+ 1) is recorded.

In order to prevent the number of orders in the order book from large increase, two mechanisms are
proposed by the author: either keeping a fixed maximum number of orders (new limit orders are the
discarded), or removing them after a fixed lifetime if they haven’t been executed.

Results. Let us first note that (112) propose an analytical study of the model thanks to a mean-field
approximation (See below section 1.5).

As for numerical simulations, results show that this model exhibits non-gaussian heavy-tailed distribu-
tions. For a time scale δt = 1, the author fit the tails distribution with a power law with exponent 3.0, i.e.
reasonable compared to empirical value. However, the Hurst exponent of the price series is still H = 1/4
with this model.

This model brings very interesting innovations in order book simulation: order book with (fixed) limit
orders, market orders, necessity to cancel orders waiting too long in the order book. These features are of
prime importance and open a new trend in order book modelling.

1.3.3. The order book as a deposition-evaporation process: Challet and Stinchcombe (2001)

Presentation of the model. (68) continue the work of (110) and (111) with expliciting the analogy between
dynamics of an order book and an infinite one dimensional grid where particles of two types (ask and bid)
are subject ot three types of events: deposition (limit orders), annihilation (market orders) and evaporation
(cancellation). Note that annihilation occurs when a particle is deposited on a site occupied by a particle
of another type. The analogy is summarized in table 2.

Therefore, the model goes as follows. At each time step, a bid (resp. ask) order is deposited with
probability λ at a price n(t) drawn according to a Gaussian distribution centered on the best ask a(t) (resp.
best bid b(t)) and with variance depending linearly on the spread s(t) = a(t) − b(t): σ(t) = Ks(t) + C. If
n(t) > a(t) (resp. n(t) < b(t)), then it is a market order: annihilation takes place and the price is recorded.
Otherwise, it is a limit order and it is stored in the book. Finally, each limit order stored in the book has a
probability δ to be canceled (evaporation).

Table 2: Analogy between the deposition-evaporation process and the order book in (68).

Physics (68)

Particles Orders
Infinite lattice Order book

Deposition Limit orders submission
Evaporation Limit orders cancelation
Annihilation Transaction
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Results. The series of price returns simulated with this model exhibit a Hurst exponent H = 1/4 for short
time scales, and that tends to H = 1/2 for larger time scales. This behavior might be the consequence of
the random evaporation process (which was not modeled in (111), where H = 1/4 for large time scales).
Although some modifications of the process (more than one order per time step) seem to shorten the sub-
diffusive region, it il clear that no over-diffusive behavior is observed.

1.4. Empirical zero-intelligence models

The three models presented in the previous section 1.3 have successively isolated essential mechanisms
that are to be used when simulating a “realistic” market: one order is the smallest entity of the modelisation;
the submission of one order is the time dimension (i.e. we use event time, not an exogenous time defined by
market clearing and “tatonnement” on exogenous supply and demand functions), see section 1.2; submission
of market orders (as such in Maslov (111), as “crossing limit orders” in Challet and Stinchcombe (68)) and
cancellation of orders are taken into account.

On the one hand, one may try to describe these mechanisms using a small number of parameters,
using Poisson process with constant rates for order flows, constant volumes, etc. This might lead to some
analytically tractable models, as will be described in section 1.5. On the other hand, one may try to fit
more complex empirical distributions to market data without analytical concern. (81) propose as of today
the most complete empirical zero-intelligence agent-based model fitted on market data.

1.4.1. Calibrating a zero-intelligence model on the market: Mike and Farmer (2008)

Presentation of the model. (81) is the first model to propose an advanced calibration on the market data as
for order placement and cancellation methods. As for volume and time of arrivals, assumptions of previous
models still hold: all orders have the same volume, discrete event time is used for simulation, i.e. one order
is submitted per time step.

As in (68), there is no distinction between market and limit orders. At each time step, one trading order
is simulated: an ask (resp. bid) trading order is randomly placed at n(t) = a(t)+ δa (resp. n(t) = b(t)+ δb)
according to a Student distribution with scale and degrees of freedom calibrated on market data. If an ask
(resp. bid) order satisfies δa < −s(t) = b(t)− a(t) (resp.δb > s(t) = a(t)− b(t)), then it is a buy (resp. sell)
market order and a transaction occurs at price a(t) (resp. b(t).

During a time step, several cancellations of orders may occur. The authors propose an empirical distri-
bution for cancellation based on three components for a given order :

• the position in the order book, measured as the ratio y(t) = ∆(t)
∆(0) where ∆(t) is the distance of the

order from the opposite best quote at time t,

• the order book imbalance, measured by the indicatorNimb(t) = Na(t)
Na(t)+Nb(t)

(resp. Nimb(t) = Nb(t)
Na(t)+Nb(t)

)

for ask (resp. bid) orders, where Na(t) and Nb(t) are the number of orders at ask and bid in the book
at time t,

• the total number N(t) = Na(t) +Nb(t) of orders in the book.

Their empirical study leads them to assume that the cancellation probability has an exponential depen-
dance on y(t), a linear one in Nimb and finally decreases approximately as 1/Nt(t) as for the total number of
orders. Thus, the probability P (C|y(t), Nimb(t), Nt(t)) to cancel an ask order at time t is formally written :

P (C|y(t), Nimb(t), Nt(t)) = A(1 − e−y(t))(Nimb(t) +B)
1

Nt(t)
, (22)

where the constants A and B are to be fitted on market data.
Finally, the author mimick the observed long memory of order signs by simulating a fractional Brownian

motion. The autocovariance function Γ(t) of the increments of such a process exhibits a slow decay :

Γ(k) ∼ H(2H − 1)t2H−2 (23)

and it is therefore easy to reproduce exponent β of the decay of the empirical autocorrelation function of
order signs observed on the market with H = 1 − β/2.
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Results. Let us first note that when dealing with empirical parameters in the simulations, the stability of
the order book is far from ensured. Thus, the author require that there is at least two orders in each side
of the book.

This being said, the results of this empirical model are quite satisfying as for return and spread distribu-
tion. The distribution of returns exhibit fat tails which are in agreement with empirical data. The spread
distribution is also very well reproduced, both quantitatively and qualitatively. As their empirical model
has been built on the data of only one stock, the authors test their model on 24 other data sets of stocks on
the same market and find for half of them a good agreement between empirical and simulated properties.
However, the bad results of the other half suggest that such a model is still far from being “universal”.

We feel that the main drawback of the model is the way order signs are simulated. As noted by
the authors, using an exogenous fractional Brownian motion leads to correlated price returns, which is
in contradiction with empirical stylized facts. We also find that at long time scales it leads to an dramatic
increase of volatility. As we have seen in section 1.2.2, the correlation of trade signs can be at least partly
seen as an artifact of exection strategies. Therefore this element is one of the numerous that should be
taken into account when “programming” the agents of the model. In order to do so, we have to leave the
“zero-intelligence” world and see how heterogeneous agent based modeling might help to reproduce non-
trivial behaviors. Prior to this development below in 1.6, we briefly review some analytical works on the
“zero-intelligence” models.

1.5. Attempts at analytical treatment of zero-intelligence models

In this section are presented some analytical results obtained on zero-intelligence models where processes
are kept sufficiently simple so that a mean-field approximation may be derived ((112)) or probabilities
conditionaly to the state of the order book may be computed ((121)).

1.5.1. Mean-field theory: Slanina (2001)

(112) proposes an analytical treatment of the model introduced by (111) and reviewed above. Let us
briefly described the formalism used. The main hypothesis is the following: on each side of the current price
level, the density of limit orders is uniform and constant (and ρ+ on the ask side, ρ− on the bid side). In that
sense, this is a “mean-field” approximation since the individual position of a limit order is not taken into
account. Assuming we are in a stable state, the arrival of a market order of size s on the ask (resp. bid) side
will make the price change by x+ = s/ρ+ (resp. x− = s/ρ−). It is then observed that the transformations
of the vector X = (x+, x−) occuring at each event (new limit order, new buy market order, new sell market
order) are linear transformation that can easily and explicitly be written. Therefore, an equation satisfied
by the probability distribution of X can be obtained. Finally, assuming further simplifications (such as
ρ+ = ρ−), one can solve this equation for a tail exponent and find that P (x) ≡ x−2 for large x.

This analytical result is slightly different from the one obtained by simulation in (111). However, the
numerous approximations make the comparison difficult. The main point here is that some sort of mean-field
approximation is natural if we assume the existence of a stationary state of the order book, and thus may
help handling order book models.

Note that (122) also propose some sort of mean-field approximation for zero-intelligence models. In a
similar model (but including cancellation process), mean field theory and dimensional analysis produces
interesting results. For example, it is easy to see that the book depth (i.e. number of orders) Ne(p) at a
price p far away from the best quotes is given by Ne(p) = λ/δ, where λ is the rate of arrival of limit orders
per unit of time and per unit of price, and δ the probability for an order to be cancelled per unit of time.
Indeed, far from the best quotes no market orders occurs, so that if a steady-state exists, the number of
limit orders par time step λ must be balanced by the number of cancellation δNe(p) per unit of time, hence
the result.

1.5.2. Computing probabilities conditionaly on the state of the order book: Cont, Stoikov and Talreja (2008)

(121) is an original attempt at analytical treatments of limit order books. In their model, the price
is contrained to be on a grid {1, . . . , N}. The state of the order book can then be described by a vector
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X(t) = (X1(t), . . . , XN(t)) where |Xi(t)| is the quantity offered in the order book at price i. Conventionaly,
Xi(t), i = 1, . . . , N is positive on the ask side and negative on the bid side. As usual, limit orders arrive at
level i at a constant rate λi, and market orders arrive at a constant rate µ. Finally, at level i, each order
can be cancelled at a rate θi.

Using this setting, (121) show that each event (limit order, market order, cancellation) transforms the
vector X in a simple linear way. Therefore, it is shown that under reasonable conditions, X is an ergodic
Markov chain, and thuis admits a stationary state. The original idea is then to use this formalism to compute
conditional probabilities on the processes. More precisely, it is shown that using Laplace transform, one
may explicitly compute the probability of the an increase of the mid price conditionaly on the current state
of the order book.

This original contribution could allow explicit evaluation of strategies and open new perspectives in high-
frequency trading. However, it is based on a simple model that does not reproduce empirical observations
such as volatility clustering. Complex models trying to include market interactions will not fit into these
analytical frameworks. We review some of these models in the next section.

1.6. Towards non-trivial behaviors: modeling market interactions

In all the models we have reviewed until now, flows of orders are treated as independant processes.
Under some (strong) modeling constraints, we can see the order book as a Markov chain and look for
analytical results ((121)). In any case, even if the process is empirically detailed and not trivial ((81)), we
work with the assumption that orders are independant and identically distributed. This very strong (and
false) hypothesis is similar to the “representative agent” hypothesis in Economics: orders being successively
and independantly submitted, we may not expect anything but regular behaviors. Following the work of
economists such as Kirman ((123; 124; 125)), one has to translate the heterogenous property of the markets
into the agent-based models. Agents are not identical, and not independant.

In this section we present some toy models implementing mechanisms that aim at bringing heterogeneity:
herding behavior on markets in (106), heterogenous agents in (108), dynamic order submission in (113),
threshold behaviour (114).

1.6.1. Herding behaviour: Cont-Bouchaud (2000)

Presentation of the model. The model presented in (106) considers a market with N agents trading a given
stock with price p(t). At each time step, agents choose to buy or sell one unit of stock, i.e. their demand is
φi(t) = ±1, i = 1, . . . , N with probability a or are idle with probability 1− 2a. The price change is assumed

to be linearly linked with the excess demand D(t) =
∑N

i=1 φi(t) with a factor λ measuring the liquidity of
the market :

p(t+ 1) = p(t) +
1

λ

N
∑

i=1

φi(t). (24)

λ can also be interpreted as a market depth, i.e. the excess demand needed to move the price by one unit.
In order to evaluate the distribution of stock returns from Eq.(24), we need to know the joint distribution

of the individual demands (φi(t))1≤i≤N . As pointed out by the authors, if the distribution of the demand
φi is independent and identically distributed with finite variance, then the Central Limit Theorem stands
and the distribution of the price variation ∆p(t) = p(t + 1) − p(t) will converge to a Gaussian distribution
as N goes to infinity.

The idea of the model is to model the diffusion of the information among traders by randomly linking
their demand through clusters. At each time step, agents i and j can be linked with probability pij = p = c

N ,
c being a parameter measuring the degree of clustering among agents. Therefore, an agent is linked to an
average number of (N − 1)p other traders. Once clusters are determined, the demand are forced to be
identical among all members of a given cluster. Denoting nc(t) the number of cluster at a given time step
t, Wk the size of the k-th cluster, k = 1, . . . , nc(t) and φk = ±1 its investement decision, the price variation
is then straightforwardly written :

∆p(t) =
1

λ

nc(t)
∑

k=1

Wkφk. (25)
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Results. This modeling is a direct application to the field of finance of the random graph framework as
studied in (126). (127) previously suggested it in economics. Using these previous theoretical works, and
assuming that the size of a cluster Wk and the decision taken by its members φk(t) are independent, the
author are able to show that the distribution of the price variation at time t is the sum of nc(t) independent
identically distributed random variables with heavy-tailed distributions :

∆p(t) =
1

λ

nc(t)
∑

k=1

Xk, (26)

where the density f(x) of Xk = Wkφk is decaying as :

f(x) ∼|x|→∞
A

|x|5/2
e

−(c−1)|x|
W0 . (27)

Thus, this simple toy model exhibits fat tails in the distribution of prices variations, with a decay
reasonably close to empirical data. Therefore, (106) show that taking into account a naive mechanism of
communication between agents (herding behavior) is able to drive the model out of the Gaussian convergence
and produce non-trivial shapes of distributions of price returns.

1.6.2. Heterogenous agents: Lux and Marchesi (2000)

Presentation of the model. (108) propose model very much in line with agent-based models in behavioral
finance, but where trading rules are kept simple enough so that they can be identified with a presumably
realistic behavior of agents. This model considers a market with N agents that can be part of two distinct
groups of traders: nf traders are “fundamentalists”, who share an exogenous idea pf of the value of the
current price p; and nc traders are “chartists”, who make assumptions on the price evolution based on the
observed trend (mobile average). The total number of agents is constant, so that nf + nc = N at any time.

At each time step, the price can be moved up or down with a fixed jump size of ±0.01 (a tick). The
probability to go up or down is directly linked to the excess demand ED through a coefficient β. The
demand of each group of agents is determined as follows :

• Each fundamentalist trades a volume Vf accordingly (through a coefficient γ) to the deviation of the
current price p from the perceived fundamental value pf : Vf = γ(pf − p).

• Each chartist trades a constant volume Vc. Denoting n+ the number of optimistic (buyer) chartists
and n− the number of pessimistic (seller) chartists, the excess demand by the whole group of chartists
is written (n+ − n−)Vc.

Finally, assuming that there exists some noise traders on the market with random demand µ, the global
excess demand is written :

ED = (n+ − n−)Vc + nfγ(pf − p) + µ. (28)

The probability that the price goes up (resp. down) is then defined to be the positive (resp. negative) part
of βED.

As in (106), the authors expect non-trivial features of the price series to results from herding behavior
and transitions between groups of traders. Refering to Kirman’s work as well, a mimicking behavior among
chartists is thus proposed. The nc chartists can change their view on the market (optimistic, pessimistic),
their decision being based on a clustering process modelized buy an opinion index x = n+−n−

nc
representing

the weight of the majority. The probabilities π+ and π− to switch from one group to another are formally
written :

π± = v
nc

N
e±U U = α1x+ α2p/v, (29)

where v is a constant, and α1 and α2 reflect respectively the weight of the majority’s opinion and the weight
of the observed price in the chartists’ decision.

Finally, transitions between fundamentalists and chartists are also allowed, decided by comparison of
expected returns. We do not reproduce here the explicit probabilities of transitions of the model (see (108)
for details), as this would need to introduce more parameters that are not useful for the purpose of our
review. They are formally similar to π± with of course a different function U .
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Results. The authors present both theoretical and empirical results. First, they are able to derive approx-
imate differential equation in continuous time governing mean values of the model, thus derive stationary
solution for these mean values. Second, they provide simulation results and show that the distribution of
returns generated by their model have excess kurtosis. Using a Hill estimator, they fit a power law to the
fat tails of the distribution and observe exponents grossly ranging from 1.9 to 4.6. The authors also check
hints for volatility clustering: absolute returns and squared returns exhibit a slow decay of autocorrelation,
while raw returns do not.

So it appears that such a model can grossly fit some “stylized facts”. However, the number of parameters
involved, as well as the complicated rules of transition between agents makes clear identification of sources
of phenomenas and calibration to market data difficult, if not impossible.

1.6.3. Dynamic placement of limit orders: Preis (2007)

Presentation of the model. (113) studies a model similar to (68) and (122) and adds a link between order
placement and market trend as an attempt to obtain an over-diffusive behavior in the price series. Doing
so, it is in line with some extensions of the previous models we’ve already mentioned.

The simulation process goes similarly to the one (68) with deposition, annihiliation and evaporation
events. Price p(t) is stored as an integer (number of ticks). Every oder has a volume of one unit of stock.
As in previous presentations, a(t) (resp. b(t)) is the best ask (resp. best bid) at time t.

First, at each time step, N liquidity providers submit limit orders at rate λ, i.e. on average λN limit
orders are inserted in the order book per time step. The price of a new limit ask (resp. bid) orders is
n(t) = b(t) + ∆ (resp. n(t) = a(t)−∆) where ∆ is a random variable with an exponential distribution with
parameter α. Second, N liquidity takers submit market orders at rate µ, with an equal probability q = 1/2
to buy or sell. Finally, each order staying in the order book is canceled with probability δ.

Note that this formalism allows for a direct computation of the average number order of orders Ne in
the order book if an equilibrium exists :

Ne = Nλ

(

1

δ
− 1

)

− µ

δ
. (30)

Results. As expected, this zero-intelligence framework does not produce fat tails in the distribution of (log-
) returns nor an overdiffusive Hurst exponent. As in the previous similar models, the authors observe a
underdiffusive behavior for short time scales, and a Hurst exponent H = 1/2 for larger time scales.

However, an interesting result appears when extending the basic model with random demand perturba-
tion and dynamic limit order placement depth. The author propose that the probability q for a buy/sell
market order evolves at each time step according to a feedback random walk:

q(t+ 1) =

{

q(t) − ∆q with probability q(t),
q(t) + ∆q with probability 1− q(t),

(31)

where δq is a constant (feedback random walk).
This stochastic pertubation alone is not sufficient to produce non-trivial Hurst exponent. Thus, it is

then combined with a dynamic placement order depth, i.e.the author propose that the parameter α vary
during the simulation as follows:

α(t) = α(0) (1 + C|q(t) − 1/2|) (32)

This equation formalizes the assumption that in a market with an observed trend in prices, liquidity providers
expect larger variations and submit limit orders at a wider depth in the order book. Although the assumption
behind such a mechanism may not be empirically confirmed (e.g. the assumed symetry) and should be further
discussed, it is interesting enough that it directly provides fat tails in the log-return distributions and an
over-diffusive Hurst exponent H ≈ 0.6 − 0.7 for medium time-scales.
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1.6.4. Volatility clustering with a threshold behavior: Cont (2007)

Let us conclude this part with a model focusing primarily on reproducing the stylized fact of volatility
clustering, while most of the previous models we have reviewed were mostly focused on fat tails of log
returns. (114) proposes a model with a rather simple mechanism to create volatility clustering. The idea
is that volatility clustering characterizes several regimes of volatility (quite periods vs bursts of activity).
Instead of implementing an exogenous change of regime, the author defines the following trading rules.

Presentation of the model. At each period, an agent i ∈ {1, . . . , N} can issue a buy or a sell order: φi(t) =
±1. Information is represented by a series of i.i.d Gaussian random variables. (ǫt). This public information
ǫt is a forecast for the value rt+1 of the return of the stock. Each agent i ∈ {1, . . . , N} decides whether to
follow this information according to a threshold θi > 0 representing its sensibility to the public information:

φi(t) =







1 if ǫi(t) > θi(t)
0 if |ǫi(t)| < θi(t)

−1 if ǫi(t) < −θi(t)
(33)

The, once every choice is made, the price evolves according to the excess demand D(t)D(t) =
∑N

i=1 φi(t),
in a way similar to (106).

A the end of each time step t, threshold are asynchronously updated. Each aget has a probability s to
update its theshold θi(t). In such a case, the new threshold θi(t+1) is defined to be the absolute value |rt|of
the return just observed. In short:

θi(t+ 1) = 1{ui(t)<s}|rt| + 1{ui(t)>s}θi(t). (34)

Results. The author shows that the time series simulated with such a model do exhibit some realistics facts
on volatility. In particular, long range correlations of absolute returns is observed. The strength of this
model is that it directly links the state of the market with the decision of the trader. Such a feedback
mechanism is essential in order to obtain non trivial characteristics. The main drawback of the model
presented in (114) is that its simplicity prevents it to be fully calibrated on empirical data. However, this
simple mechanism could be used in a more elaborate agent-based model in order to reproduce the empirical
evidence of volatility clustering.
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2. Agent-based modeling for wealth distributions: Kinetic theory models

2.1. General remarks

The distributions of money, wealth or income, i.e., how such quantities are shared among the population
of a given country and among different countries, is a topic which has been studied by economists for a
long time. The relevance of the topic to us is twofold: From the point of view of the science of Complex
Systems, wealth distributions represent a unique example of a quantitative outcome of a collective behavior
which can be directly compared with the predictions of theoretical models and numerical experiments. Also,
there is a basic interest in wealth distributions from the social point of view, in particular in their degree of
(in)equality. To this aim, the Gini coefficient (or the Gini index, if expressed as a percentage), developed
by the Italian statistician Corrado Gini, represents a concept commonly employed to measure inequality of
wealth distributions or, more in general, how uneven a given distribution is. For a cumulative distribution
function F (y), that is piecewise differentiable, has a finite mean µ, and is zero for y < 0, the Gini coefficient
is defined as

G = 1 − 1

µ

∫ ∞

0

dy (1 − F (y))2 =
1

µ

∫ ∞

0

dy F (y)(1 − F (y)) . (35)

It can also be interpreted statistically as half the relative mean difference. Thus the Gini coefficient is a
number between 0 and 1, where 0 corresponds with perfect equality (where everyone has the same income)
and 1 corresponds with perfect inequality (where one person has all the income, and everyone else has zero
income). Some values of G for some countries are listed in Table 3.

Table 3: Gini indices of some countries (from Human Development Indicators of the United Nations Human Development
Report 2004, pp.50-53, available at http://hdr.undp.org/en/reports/global/2004/)

Denmark 24.7
Japan 24.9
Sweden 25.0
Norway 25.8

Germany 28.3
India 32.5
France 32.7

Australia 35.2
UK 36.0
USA 40.8

Hong Kong 43.4
China 44.7
Russia 45.6
Mexico 54.6
Chile 57.1
Brazil 59.1

South Africa 59.3
Botswana 63.0
Namibia 70.7

Let us start by considering the basic economic quantities: money, wealth and income.

2.2. Money, wealth and income

A common definition of money suggests that money is the “Commodity accepted by general consent
as medium of economics exchange” (29). In fact, money circulates from one economic agent (which can
represent an individual, firm, country, etc.) to another, thus facilitating trade. It is “something which all
other goods or services are traded for” (for details see Ref. (128)). Throughout history various commodities
have been used as money, for these cases termed as “commodity money”, which include e.g. rare seashells
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or beads, and cattle (such as cow in India). Recently, “commodity money” has been replaced by other forms
referred to as “fiat money”, which have gradually become the most common ones, such as metal coins and
paper notes. Nowadays, other forms of money, such as electronic money, have become the most frequent
form used to carry out transactions. In any case the most relevant points about money employed are its
basic functions, which according to standard economic theory are

• to serve as a medium of exchange, which is universally accepted in trade for goods and services;

• to act as a measure of value, making possible the determination of the prices and the calculation of
costs, or profit and loss;

• to serve as a standard of deferred payments, i.e., a tool for the payment of debt or the unit in which
loans are made and future transactions are fixed;

• to serve as a means of storing wealth not immediately required for use.

A related feature relevant for the present investigation is that money is the medium in which prices or
values of all commodities as well as costs, profits, and transactions can be determined or expressed. Wealth
is usually understood as things that have economic utility (monetary value or value of exchange), or material
goods or property; it also represents the abundance of objects of value (or riches) and the state of having
accumulated these objects; for our purpose, it is important to bear in mind that wealth can be measured in
terms of money. Also income, defined as “The amount of money or its equivalent received during a period
of time in exchange for labor or services, from the sale of goods or property, or as profit from financial
investments” (see www.answers.com), is also a quantity which can be measured in terms of money (per unit
time).

2.3. Modeling wealth distributions

It was first observed by Pareto (35) that in an economy the higher end of the distribution of income
f(w) follows a power-law,

f(x) ∼ x−1−α , (36)

with α, now known as the Pareto exponent, estimated by Pareto to be α ≈ 3/2. For the last hundred years
the value of α ∼ 3/2 seems to have changed little in time and across the various capitalist economies.

In 1931, Gibrat (129) clarified that Pareto’s law is valid only for the high income range, whereas for
the middle income range he suggested that the income distribution is described by a log-normal probability
density

f(x) ∼ 1

x
√

2πσ2
exp

{

− log2(x/x0)

2σ2

}

, (37)

where log(x0) = 〈log(x)〉 is the mean value of the logarithmic variable and σ2 = 〈[log(x) − log(x0)]
2〉 the

corresponding variance. The factor β = 1/
√

2σ2, also know an as Gibrat index, measures the equity of the
distribution.

More recent empirical studies on income distribution have been carried out by physicists, e.g. those by
Dragulescu and Yakovenko for UK and US (130; 131), and Fujiwara et al. for Japan (132), for an overview
see Refs. (133). The distributions obtained have been shown to follow either the Gibbs or power-law types,
depending on the range of wealth, as shown in Fig. 31.

One of the current challenges is to write down the “microscopic equation” which governs the dynamics
of the evolution of wealth distributions, possibly predicting the observed shape of wealth distributions,
including the exponential law at intermediate values of wealth as well as the century-old Pareto law. To
this aim, several studies have been made to investigate the characteristics of the real income distribution
and provide theoretical models or explanations, for a review see Refs. (134; 135; 133).

The model of Gibrat (129) mentioned above and other models formulated in terms of a Langevin equation
for a single wealth variable, subjected to multiplicative noise (19; 136; 137; 138), can lead to equilibrium
wealth distributions with a power law tail, since they converge toward a log-normal distribution. However,
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Figure 31: Income distributions in the US (left)and Japan (right). Reproduced and adapted from arXiv:cond-mat/0302147.

the fit of real wealth distributions does not turn out to be as good as that obtained using e.g. a Γ- or a
β-distribution, in particular due to too large asymptotic variances (139).

Other models describe the wealth dynamics as a wealth flow due to exchanges between (pairs of) basic
units. In this respect, such models are basically different from the class of models formulated in terms of
a Langevin equation for a single wealth variable. For example, Levy and Solomon studied the generalized
Lotka-Volterra equations in relation to power-law wealth distribution (140; 141). Ispolatov et al. (142)
studied random exchange models of wealth distributions. Other models describing wealth exchange have
been formulated using matrix theory (143), the master equation (144; 145; 146), the Boltzmann equation
approach (145; 147; 148; 149; 150; 151; 152), or Markov chains (153; 154; 155).

In the two following sections we consider in greater detail a class of models usually referred to as kinetic
wealth exchange models (KWEM), formulated through finite time difference stochastic equations (139; 156;
157; 158; 145; 159; 160; 161; 162; 163; 164; 165; 166). From the studies carried out using wealth-exchange
models, it emerges that it is possible to use them to predict power law distributions. However, a general
understanding of the dependence of the shape of the equilibrium distribution on the underlying mechanisms
and parameters is still missing.

2.4. Homogeneous kinetic wealth exchange models

Here and in the next section we consider KWEMs, which are statistical models of closed economy, in
which N agents exchange a quantity x, defined as wealth in some models and as money in others. As
explained above, money can be interpreted as the unity of measure for all the goods that constitute the
agents’ wealth, so that it is possible, in order to avoid confusion, to use only the term wealth.

In these models the states of agents are defined in terms of the wealth variables {xn}, n = 1, 2, . . . , N .
The evolution of the system is carried out according to a trading rule between agents which, for obtaining
the final equilibrium distribution, can be interpreted as the actual time evolution of the agent states as well
as a Monte Carlo optimization. The algorhythm is based on a simple update rule performed at each time
step t, when two agents i and j are extracted randomly and an amount of wealth ∆x is exchanged,

x′i = xi − ∆x ,

x′j = xj + ∆x . (38)

Notice that the quantity x is conserved during single transactions, x′i + x′j = xi + xj , where xi = xi(t) and
xj = xj(t) are the agent wealths before, whereas x′i = xi(t + 1) and x′j = xj(t + 1) are the final ones after
the transaction. Several rules have been studied for the model defined by Eqs. (38). We refer to the ∆x
there defined in illustrating the various models.
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2.4.1. Exchange models without saving

In a first version of the model, considered in early works by Bennati (167; 168; 169) as well as by
Dragulescu and Yakovenko (145), the money difference ∆x in Eqs. (38) is assumed to have a constant value,

∆x = ∆x0 . (39)

This rule, together with the constraint that transactions can take place only if x′i > 0 and x′j > 0, provides
an equilibrium exponential distribution, see the curve for λ = 0 in Fig. 32.

A unidirectional model had previously been considered by Angle (139), in which ∆x is set as a random
fraction of the wealth of one of the two agents,

∆x = ǫxi or ∆x = ǫxj . (40)

Here ǫ is a random number uniformly distributed between 0 and 1 and the flow direction (from i to j or
vice versa) depends on the wealths of the two agents, see Ref. (139).

Various other trading rules were studied by Dragulescu and Yakovenko (145), choosing ∆x as a random
fraction of the average money between the two agents, ∆x = ǫ(xi + xj)/2, or of the average money of the
whole system, ∆x = ǫ〈x〉.

In the reshuffling model, which can be obtained as a particular case from the model with saving intro-
duced in Ref. (158) for a saving parameter λ = 0 (see below), the wealths of the two agents are reshuffled
randomly,

x′i = ǫ(xi + xj) ,

x′j = (1 − ǫ)(xi + xj) . (41)

In this case the ∆x appearing in the trading rule (38) is given by

∆x = (1 − ǫ)xi − ǫxj . (42)

All the models mentioned here, as well as some more complicated models (145), lead to a robust equi-
librium Boltzmann distribution,

f(x) = β exp(−βx) , (43)

with the effective temperature of the system equal to the average wealth, β−1 = 〈x〉. This result is largely
independent of the details of the models, e.g. the multi-agent nature of the interaction, the initial conditions,
and the random or consecutive order of extraction of the interacting agents. The Boltzmann distribution
is sometimes referred to as an “unfair distribution”, since it is characterized by a majority of poor agents
and a few rich agents (sue to the exponential tail). The exponential distribution is characterized by a Gini
coefficient of 0.5.

Note that despite the Boltzmann distribution is robust respect to the variation of some parameters, the
way it depends on the details of the trading rule is subtle. Sometimes little modfication in the trading rule
can also lead to drastic changes in the resulting distribution. For instance, in the model studied in Ref. (159),
the equilibrium distribution can have a very different shape. In that toy model it is assumed that both the
economic agents i and j invest the same amount xmin, which is taken as the minimum wealth between the
two agents, xmin = min{xi, xj}. The wealths after the trade are x′i = xi + ∆x and x′j = xj − ∆x, where
∆x = (2ǫ− 1)xmin. We note that once an agent has lost all his wealth, he is unable to trade because xmin

has become zero. Thus, a trader is effectively driven out of the market once he loses all his wealth. In this
way, after a sufficient number of transactions only one trader survives in the market with the entire amount
of wealth, whereas the rest of the traders have zero wealth. In this toy model, only one agent has the entire
money of the market and the rest of the traders have zero money, which corresponds to a distribution with
Gini coefficient equal to unity.

Now, a situation is said to be Pareto-optimal “if by reallocation you cannot make someone better off
without making someone else worse off”. In Pareto’s own words:
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Figure 32: Probability density for wealth x. The curve for λ = 0 is the Boltzmann function f(x) = 〈x〉−1 exp(−x/〈x〉) for the
basic model of Sec. 2.4.1. The other curves correspond to a global saving propensity λ > 0, see Sec. 2.4.2.

“We will say that the members of a collectivity enjoy maximum ophelimity in a certain position
when it is impossible to find a way of moving from that position very slightly in such a manner
that the ophelimity enjoyed by each of the individuals of that collectivity increases or decreases.
That is to say, any small displacement in departing from that position necessarily has the effect
of increasing the ophelimity which certain individuals enjoy, and decreasing that which others
enjoy, of being agreeable to some, and disagreeable to others.”

— Vilfredo Pareto, Manual of Political Economy (1906), p.261.

However, as the Nobel Laureate Amartya Sen notes, an economy can be Pareto-optimal, yet still “perfectly
disgusting” by any ethical standards (Sen, A.K., 1970, Collective Choice and Social Welfare, San Fransisco,
Holden Day, also London: Oliver and Boyd (reprinted Amsterdam: North-Holland)). It is important to
note that Pareto-optimality, is merely a descriptive term, a property of an “allocation”, and there are no
ethical propositions about the desirability of such allocations inherent within that notion. Thus, in other
words there is nothing inherent in Pareto-optimality that implies the maximization of social welfare.

This simple toy model thus also produces a Pareto-optimal state (it will be impossible to raise the well-
being of anyone except the winner, i.e., the agent with all the money, and vice versa ) but the situation is
economically undesirable as far as social welfare is concerned!

2.4.2. Exchange models with saving.

As a generalization and more realistic version of the basic exchange models without saving, a saving
criterion can be introduced. As early as 1983, motivated by the surplus theory, John Angle introduced a
unidirectional model of wealth exchange, in which only a fraction of wealth smaller than one can pass from
one agent to the other, with a ∆x = ǫZxi or (−ωZxj), where the variable Z is determined by the agent
wealths in a way depending on the version of the model (170; 139). Angle also introduced a model where a
minimum constant fraction 1−ω is saved before the transaction (156) by the agent whose wealth decreases,
with a trading rule defined by an exchanged wealth amount

∆x = ωǫxi or − ωǫxj , (44)

where the direction of the transaction (from the i-th or j-th agent) is determined by the relative difference
between the agent wealths.

A saving parameter 0 < λ < 1 representing the fraction of wealth saved and not reshuffled, similarly
to (1 − ω) of the Angle model, was introduced in the model introduced in Ref. (158). In this model (CC)
wealth flows simultaneously toward and from each agent during a single transaction, the dynamics being
defined by the equations

x′i = λxi + ǫ(1 − λ)(xi + xj) ,

x′j = λxj + (1 − ǫ)(1 − λ)(xi + xj) , (45)
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Figure 33: Effective dimension Dλ and temperature T as a function of the saving parameter λ.

Table 4: Analogy between kinetic the theory of gases and the kinetic exchange model of wealth

Kinetic model Economy model
variable K (kinetic energy) x (wealth)
units N particles N agents
interaction collisions trades
dimension integer D real number Dλ

temperature definition kBT = 2〈K〉/D Tλ = 2〈x〉/Dλ

reduced variable ξ = K/kBT ξ = x/Tλ

equilibrium distribution f(ξ) = γD/2(ξ) f(ξ) = γDλ/2(ξ)

or, equivalently, by a ∆x in (38) given by

∆x = (1 − λ)[(1 − ǫ)xi − ǫxj ] . (46)

All these models lead to an equilibrium distribution qualitatively different from the purely exponential
distribution of models without saving. In fact, there is now a mode xm > 0, in agreement with real data
of wealth and income distributions(131; 146; 171; 172; 173; 174). Furthermore, the limit for small x is
zero, i.e. P (x → 0) → 0, see the example in Fig. 32. The functional form of such a distributions has
been conjectured to be a Gamma distribution, on the base of the excellent fitting provided to numerical
data (170; 139; 156; 175; 176; 177),

f(x) = n〈x〉−1γn(nx/〈x〉) =
1

Γ(n)

n

〈x〉

(

nx

〈x〉

)n−1

exp

(

− nx

〈x〉

)

, (47)

n(λ) ≡ Dλ = 1 +
3λ

1 − λ
. (48)

where γn(ξ) is the standard Γ-distribution. The analogy between models is more than qualitative. For
instance, it has been found (177) that the only difference between the equilibrium solution above and that of
the symmetrical model of Angle is in the effective dimension, which in the Angle model is nA(λ) = n(λ)/2,
where n is given in Eq. (48).

The ubiquitous presence of Γ-functions in the solutions of kinetic models (see also below heterogeneous
models) suggests a close analogy with kinetic theory of gases. In fact, interpreting Dλ = 2n as an effective
dimension, the variable x as kinetic energy, and introducing the effective temperature β−1 ≡ Tλ = 〈x〉/2Dλ

according to the equipartition theorem, Eqs. (47) and (48) define the canonical distribution βγn(βx) for
the kinetic energy of a gas in Dλ = 2n dimensions, see Ref. (176) for details. The analogy is illustrated in
Table 4 and the dependences of Dλ = 2n and of β−1 = Tλ on the saving parameter λ are shown in Fig. 33.
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Figure 34: Results for randomly assigned saving parameters. Reproduced and adapted from arXiv:cond-mat/0302147.

The exponential distribution is recovered as a special case, for n = 1. In the limit λ→ 1, i.e. for n→ ∞,
the distribution f(x) above tends to a Dirac δ-function, as shown in Ref. (176) and qualitatively illustrated
by the curves in Fig. 32. This shows that a large saving criterion leads to a final state in which economic
agents tend to have similar amounts of money and, in the limit of λ→ 1, exactly the same amount 〈x〉.

The equivalence between a kinetic wealth-exchange model with saving propensity λ ≥ 0 and an N -
particle system in a space with dimension Dλ ≥ 2 is suggested by simple considerations about the kinetics
of collision processes between two molecules. In one dimension, particles undergo head-on collisions in which
the whole amount of kinetic energy can be exchanged. In a larger number of dimensions the two particles
will not travel in general exactly along the same line, in opposite verses, and only a fraction of the energy
can be exchanged. It can be shown that during a binary elastic collision in D dimensions only a fraction
1/D of the total kinetic energy is exchanged on average for kinematic reasons, see Ref. (178) for details. The
same 1/D dependence is in fact obtained inverting Eq. (48), which provides for the fraction of exchanged
well 1 − λ = 6/(Dλ + 4).

2.5. Heterogeneous kinetic wealth exchange models

2.5.1. Formulation

The basic models considered above, giving equilibrium wealth distributions with an exponential tail,
interpolate well real data at small and intermediate values of wealth (170; 139; 179; 130; 131; 146; 171).
However, more realistic generalized models have been studied, in which agents are diversified by assigning
different values of the saving parameter. For instance, Angle studied a model with a trading rule where
diversified parameters {ωi} occurr,

∆x = ωiǫxi or − ωjǫxj , (49)

again with the direction of wealth flow determined by the wealths of agents i and j (156). Diversified
saving parameters were independently introduced in Refs. (161; 180) by generalizing the model introduced
in Ref. (158),

x′i = λixi + ǫ[(1 − λi)xi + (1 − λj)xj ] ,

x′j = λxj + (1 − ǫ)[(1 − λi)xi + (1 − λj)xj ] , (50)

corresponding to a
∆x = (1 − ǫ)(1 − λi)xi − ǫ(1 − λj)xj . (51)
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The surprising result is that if the parameters {λi} are suitably diversified, a power law appears in the
equilibrium wealth distribution, see Fig. 34. In particular if the λi are uniformly distributed in (0, 1) the
wealth distribution exhibits a robust power-law tail,

f(x) ∝ x−α−1 , (52)

with the Pareto exponent α = 1 largely independent of the details of the λ-distribution. This result is
supported by independent theoretical considerations based on different approaches, such as a mean field
theory approach (181) (see below for further details) or the Boltzmann equation(162; 182; 183; 148; 184).

2.5.2. Power-law distribution as an overlap of Gamma distributions

A remarkable feature of the equilibrium wealth distribution obtained from heterogeneous models, noticed
in Ref. (180), is that the individual wealth distribution fi(x) of the generic i-th agent with saving parameter
λi has a well defined mode and exponential tail, in spite of the resulting power-law tail of the marginal
distribution f(x) =

∑

i fi(x). In fact, it was found by numerical simulation that the marginal distribution
f(x) can be resolved as an overlap of individual Gamma distributions with λ-dependent parameters(185);
furthermore, the mode and the average value of the distributions fi(x) both diverge for λ → 1 as 〈x(λ)〉 ∼
1/(1−λ) (180; 185). This fact was justified theoretically by Mohanty (181). Consider the evolution equations
(50). In the mean field approximation one can consider that each agents i has an (average) wealth 〈xi〉 = yi

and replace the random number ǫ with its average value 〈ǫ〉 = 1/2. Indicating with yij the new wealth of
agent i, due to the interaction with agent j, from Eqs. (50) one obtains

yij = (1/2)(1 + λi)yi + (1/2)(1 − λj)yj . (53)

At equilibrium, for consistency, average over all the interaction must give back yi,

yi =
∑

j

yij/N . (54)

Then summing Eq. (53) over j and dividing by the number of agents N , one has

(1 − λi)yi = 〈(1 − λ)y〉 , (55)

where 〈(1 − λ)y〉 =
∑

j(1 − λj)yj/N . Since the right hand side is independent of i and this relation holds
for arbitrary distributions of λi, the solution is

yi =
C

1 − λi
, (56)

where C is a constant. Besides proving the dependence of yi = 〈xi〉 on λi, this relation also demonstrates
the existence of a power law tail in the equilibrium distribution. If in the continuous limit λ is distributed
in (0, 1) with a density φ(λ), (0 ≤ λ < 1), then using (56) the (average) wealthdistribution is given

f(y) = φ(λ)
dλ

dy
= φ(1 − C/x)

C

y2
. (57)

Figure 35 illustrates the phenomenon for a system of N = 1000 agents with random saving propensities
uniformly distributed between 0 and 1. The figure confirms the importance of agents with λ close to 1 for
producing a power-law probability distribution (180; 177).

However, when considering values of λ close enough to 1, the power law can break down at least for
two reasons. The first one, illustrated in Fig. 35-bottom right, is that the power-law can be resolved into
almost disjoint contributions representing the wealth distributions of single agents. This follows from the
finite number of agents used and the fact that the distance between the average values of the distributions
corresponding to two consecutive values of λ grows faster than the corresponding widths (185; 183). The
second reason is due to the finite cutoff λM, always present in a numerical simulation. However, to study this
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Figure 35: Wealth distribution in a system of 1000 agents with saving propensities uniformly distributed in the interval
0 < λ < 1. Top left: marginal distribution. Top right: marginal distribution (dotted line) and distributions of wealth of agents
with λ ∈ (j∆λ, (j + 1)∆λ), ∆λ = 0.1, j = 0, . . . , 9 (continuous lines). Bottom-left: the distribution of wealth of agents with
λ ∈ (0.9, 1) has been further resolved into contributions from subintervals λ ∈ (0.9+j∆λ, 0.9+(j +1)∆λ), ∆λ = 0.01. Bottom-
right: the partial distribution of wealth of agents with λ ∈ (0.99, 1) has been further resolved into those from subintervals
λ ∈ (0.99 + j∆λ, 0.99 + (j + 1)∆λ), ∆λ = 0.001.

effect, one has to consider a system with a number of agents large enough that it is not possible to resolve the
wealth distributions of single agents for the sub-intervals of λ considered. This was done in Ref. (186) using
a system with N = 105 agents with saving parameters distributed uniformly between 0 and λM. Results are
shown in Fig. 36, in which curves from left to right correspond to increasing values of the cutoff λM from
0.9 to 0.9997. The transition from an exponential to a power-law tail takes place continuously as the cut-off
λM is increased beyond a critical value λM ≈ 0.9 toward λM = 1, through the enlargement of the x-interval
in which the power-law is observed.

2.5.3. Relaxation process

The relaxation time scale of a heterogeneous system has been studied in Ref. (187). The system is ob-
served to relax toward the same equilibrium wealth distribution from any given arbitrary initial distribution
of wealth. If time is measured by the number of transactions nt, the time scale is proportional to the number
of agents N , i.e. defining time t as the ratio t = nt/N between the number of trades and the total number
of agents N (corresponding to one Monte Carlo cycle or one sweep in molecular dynamics simulations)
the dynamics and the relaxation process become independent of N . The existence of a natural time scale
independent of the system size provides a foundation for using simulations of systems with finite N in order
to infer properties of systems with continuous saving propensity distributions and N → ∞.

Relaxation in systems with constant λ has already been studied in Ref. (158), where a systematic
increase of the relaxation time with λ, and eventually a divergence for λ → 1, was found. In fact, for
λ = 1 no exchanges occurs and the system is frozen. In a system with uniformly distributed λ, the wealth
distributions of each agent i with saving parameter λi relaxes toward different states with characteristic
shapes fi(x) (185; 183; 186) with different relaxation times τi (187). The differences in the relaxation
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Figure 36: Wealth distribution obtained for the uniform saving propensity distributions of 105 agents in the interval (0, λM).

process can be related to the different relative wealth exchange rates, that by direct inspection of the
evolution equations appear to be proportional to 1 − λi. Thus, in general, higher saving propensities are
expected to be associated to slower relaxation processes with a rate ∝ 1/(1 − λ).

It is also possible to obtain the relaxation time distribution. If the saving parameters are distributed in
(0, 1) with a density φ(λ), it follows from probability conservation that f̃(x̄)dx̄ = φ(λ)dλ, where x̄ ≡ 〈x〉λ
and f̃(x̄) the corresponding density of average wealth values. In the case of uniformly distributed saving
propensities, one obtains

f̃(x̄) = φ(λ)
dλ(x̄)

dx̄
= φ

(

1 − k

x̄

)

k

x̄2
, (58)

showing that a uniform saving propensity distribution leads to a power law f̃(x̄) ∼ 1/x̄2 in the (average)
wealth distribution. In a similar way it is possible to obtain the associated distribution of relaxation times
ψ(τ) for the global relaxation process from the relation τi ∝ 1/(1 − λi),

ψ(τ) = φ(λ)
dλ(τ)

dτ
∝ φ

(

1 − τ ′

τ

)

τ ′

τ2
, (59)

where τ ′ is a proportionality factor. Therefore ψ(τ) and f̃(x̄) are characterized by power law tails in τ and
x̄ respectively with the same Pareto exponent.

In conclusion, the role of the λ-cutoff is also related to the relaxation process. This means that the slowest
convergence rate is determined by the cutoff and is ∝ 1 − λM. In numerical simulations of heterogeneous
KWEMs, as well as in real wealth distributions, the cutoff is necessarily finite, so that the convergence is
fast (188). On the other hand, if considering a hypothetical wealth distribution with a power law extending
to infinite values of x, one cannot find a fast relaxation, due to the infinite time scale of the system, due to
the agents with λ = 1.

2.6. Microeconomic formulation of Kinetic theory models

Very recently, Chakrabarti and Chakrabarti have studied in a paper (arXiv:cond-mat/0905.3972) the
framework based on microeconomic theory from which the kinetic theory market models could be addressed.
They derived the moments of the CC model (158) and reproduced the exchange equations used in the CC
model (with fixed savings parameter). In their framework considered, the utility function deals with the
behavior of the agents in an exchange economy. The details are summarized below.

They considered an N -agent exchange economy, where each agent produces a single perishable commod-
ity. Each of these goods is different from all other goods and money exists in the economy to simply facilitate
transactions. These agents care for their future consumptions and hence they care about their savings in
the period considered as well. Each of these agents are endowed with an initial amount of money which is
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assumed to be unity for every agent for simplicity. At each time step t, two agents meet randomly to carry
out transactions according to their utility maximization principle. It is also assumed that the agents have
time dependent preference structure, i.e., the parameters of the utility function can vary over time.

Let agent 1 produces Q1 amount of commodity 1 only and agent 2 produces Q2 amount of commodity 2
only and the amounts of money in their possession at time t are m1(t) and m2(t) respectively. It is believed
that both of them are willing to trade and buy the other good by selling a fraction of their own productions
as well as with the money that they hold. In general, at each time step there would be a net transfer of
money from one agent to the other due to trade.

The utility functions as defined as follows: For agent 1, U1(x1, x2,m1) = xα1
1 xα2

2 mαm

1 and for agent 2,
U2(y1, y2,m2) = yα1

1 yα2
2 mαm

2 where the arguments in both of the utility functions are consumption of the
first (i.e. x1 and y1) and second good (i.e. x2 and y2) and amount of money in their possession respectively.
For simplicity, they assume that the utility functions are of the Cobb-Douglas form with the sum of the
powers normalized to 1 i.e. α1 + α2 + αm = 1.

Let the commodity prices to be determined in the market be denoted by p1 and p2. Now, the budget
constraints are as follows: For agent 1 the budget constraint is p1x1 +p2x2 +m1 ≤M1 +p1Q1 and similarly,
for agent 2 the constraint is p1y1 + p2y2 +m2 ≤M2 + p2Q2, which mean that the amount that agent 1 can
spend for consuming x1 and x2 added to the amount of money that he holds after trading at time t+ 1 (i.e.
m1) cannot exceed the amount of money that he has at time t (i.e. M1) added to what he earns by selling
the good he produces (i.e. Q1), and the same is true for agent 2.

Then the basic idea is that both of the agents try to maximize their respective utility subject to their
respective budget constraints and the invisible hand of the market that is the price mechanism works to
clear the market for both goods (i.e. total demand equals total supply for both goods at the equilibrium
prices), which means that agent 1’s problem is to maximize his utility subject to his budget constraint i.e.
maximize U1(x1, x2,m1) subject to p1.x1 + p2.x2 +m1 = M1 + p1.Q1. Similarly for agent 2, the problem is
to maximize U1(y1, y2,m2) subject to p1.y1 + p2.y2 + m2 = M2 + p2.Q2. Solving those two maximization
exercises by Lagrange multiplier and applying the condition that the market remains in equilibrium, the
competitive price vector (p̂1, p̂2) as p̂i = (αi/αm)(M1 +M2)/Qi for i = 1, 2 is found.

The outcomes of such a trading process are then:

1. At optimal prices (p̂1, p̂2), m1(t) +m2(t) = m1(t+ 1) +m2(t+ 1), i.e., demand matches supply in all
market at the market-determined price in equilibrium. Since money is also treated as a commodity in
this framework, its demand (i.e. the total amount of money held by the two persons after trade) must
be equal to what was supplied (i.e. the total amount of money held by them before trade).

2. If a restrictive assumption is made such that α1 in the utility function can vary randomly over time with
αm remaining constant. It readily follows that α2 also varies randomly over time with the restriction
that the sum of α1 and α2 is a constant (1-αm). Then in the money demand equations derived, if we
suppose αm is λ and α1/(α1 + α2) is ǫ, it is found that money evolution equations are

m1(t+ 1) = λm1(t) + ǫ(1 − λ)(m1(t) +m2(t))

m2(t+ 1) = λm2(t) + (1 − ǫ)(1 − λ)(m1(t) +m2(t)).

For a fixed value of λ, if α1 (or α2) is a random variable with uniform distribution over the domain
[0, 1− λ], then ǫ is also uniformly distributed over the domain [0, 1]. It may be noted that then λ (i.e.
αm in the utility function) is the savings propensity used in the CC model.

3. For the limiting value of αm in the utility function (i.e. αm → 0 which implies λ → 0), the money
transfer equation describing the random sharing of money without saving is obtained, which has been
used in the model of Dragulescu and Yakovenko.

It should also be mentioned that by fixing the average amount of money per agent to unity, they then
give a simple derivation why in the CC model the steady state distribution is approximately a Gamma
distribution.
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3. Agent-based modelling based on Games

3.1. El Farol Bar Problem

In 1994, Brian Arthur introduced the ‘El Farol Bar’ problem (189) as a paradigm of complex economic
systems: a population of agents have to decide whether to go to the bar opposite Santa Fe, every Thursday
night. The bar has limited number of seats and can entertain at most X% of the population. If less than
X% of the population go to the bar, the time spent in the bar is considered to be satisfying and it is better
to attend the bar rather than staying at home. On the other hand, if more than X% of the population go
to the bar, then it is too crowded and all the people in the bar would have an unsatisfying time and staying
at home is considered to be better choice than attending the bar. So in order to optimise its own utility
each agent has to try and predict what everybody else will do.

In particular Arthur was also interested in agents who have bounds on “rationality”:

• do not have perfect information about their environment, in general they will only acquire information
through interaction with the dynamically changing environment;

• do not have a perfect model of their environment;

• have limited computational power, so they can’t work out all the logical consequences of their knowl-
edge;

• have other resource limitations (e.g. memory).

Arthur modelled all this by randomly giving each agent a fixed menu of potentially suitable models to predict
the number who will go given past data (e.g. the same as two weeks ago, the average of the past few weeks,
etc). Each week each agent evaluates these models against the past data and chooses the one that was the
best predictor on this data and then uses this to predict the number who will go this time. It will go if
this prediction is less than X and not if it is more than X . Thus, in order to make decisions on whether
to attend the bar, all the individuals are equipped with certain number of “strategies”, which provide them
the predictions of the attendance in the bar next week, based on the attendance in the past few weeks. As
a result the number who go to the bar oscillates in an apparently random manner around the critical X%
mark.

3.2. Basic Minority game

The Minority Games (abbreviated, MGs) (190) refer to the multiagent models of financial markets with
the original formulation introduced by Challet and Zhang in 1997 (191), and all other variants (192; 193),
most of which share the principal features that the models are repeated games and agents are inductive in
nature. The original formulation of the Minority Game by Challet and Zhang (191) is sometimes referred
as the “Original Minority Game” or the “Basic Minority Game”.

The basic minority game consists of N (odd natural number) agents, who choose between one of the two
decisions at each round of the game, using their own simple inductive strategies. The two decisions could
be, for example, “buying” or “selling” commodities/assets, denoted by 0 or 1, at a given time t. An agent
wins the game if it is one of the members of the minority group, and thus at each round, the minority group
of agents win the game and rewards are given to those strategies that predict the winning side. All the
agents have access to finite amount of public information, which is a common bit-string “memory” of the
M most recent outcomes, composed of the winning sides in the past few rounds. Thus the agents are said
to exhibit “bounded rationality” (189).

Consider for example, memory M = 2; then there are P = 2M = 4 possible “history” bit strings: 00, 01,
10 and 11. A “strategy” consists of a response, i.e., 0 or 1, to each possible history bit strings; therefore, there

are G = 2P = 22M

= 16 possible strategies which constitute the “strategy space”. At the beginning of the
game, each agent randomly picks k strategies, and after the game, assigns one “virtual” point to a strategy
which would have predicted the correct outcome. The actual performance r of the player is measured by the
number of times the player wins, and the strategy, using which the player wins, gets a “real” point. Unlike
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Figure 37: Attendance fluctuation and performances of players in Basic Minority Game. Plots of (a) attendance and (b)
performance of the players for the basic minority game with N = 801; M = 6; k = 10 and T = 5000 (194).

most economics models which assume agents are “deductive” in nature, here a “trial-and-error” inductive
thinking approach is implicitly implemented in process of decision-making when agents make their choices
in the games. A record of the number of agents who have chosen a particular action, say, “selling” denoted
by 1, A1(t) as a function of time is kept (see Fig. 37). The fluctuations in the behaviour of A1(t) actually
indicate the system’s total utility. For example, we can have a situation where only one player is in the
minority and all the other players lose. The other extreme case is when (N−1)/2 players are in the minority
and (N + 1)/2 players lose. The total utility of the system is obviously greater for the latter case and from
this perspective, the latter situation is more desirable. Therefore, the system is more efficient when there
are smaller fluctuations around the mean than when the fluctuations are larger.

3.3. Evolutionary minority games

Challet generalized the basic minority game (191; 195) mentioned above to include the Darwinist
selection: the worst player is replaced by a new one after some time steps, the new player is a “clone”
of the best player, i.e. it inherits all the strategies but with corresponding virtual capitals reset to zero
(analogous to a new born baby, though having all the predispositions from the parents, does not inherit
their knowledge). To keep a certain diversity they introduced a mutation possibility in cloning. They allowed
one of the strategies of the best player to be replaced by a new one. Since strategies are not just recycled
among the players any more, the whole strategy phase space is available for selection. They expected this
population to be capable of “learning” since bad players are weeded out with time, and fighting is among
the so-to-speak the “best” players. Indeed in Fig. 38, they observed that the learning emerged in time.
Fluctuations are reduced and saturated, this implies the average gain for everybody is improved but never
reaches the ideal limit.

Li, Riolo and Savit (196; 197) studied the minority game in the presence of evolution. In particular,
they examined the behavior in games in which the dimension of the strategy space, m, is the same for all
agents and fixed for all time. We find that for all values of m, not too large, evolution results in a substantial
improvement in overall system performance. They also showed that after evolution, results obeyed a scaling
relation among games played with different values of m and different numbers of agents, analogous to that
found in the non-evolutionary, adaptive games. Best system performance still occurs, for a given number
of agents, at mc, the same value of the dimension of the strategy space as in the non-evolutionary case,
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Figure 38: Temporal attendance of A for the genetic approach showing a learning process. Reproduced from (191; 195)

but system performance is now nearly an order of magnitude better than the non-evolutionary result. For
m < mc, the system evolves to states in which average agent wealth is better than in the random choice
game, despite (and in some sense because of) the persistence of maladaptive behavior by some agents. As
m gets large, overall systems performance approaches that of the random choice game.

They continued the study of evolution in minority games by examining games (196; 197) in which agents
with poorly performing strategies can trade in their strategies for new ones from a different strategy space.
In the context of the games which meant allowing for strategies that use information from different numbers
of time lags, m. They found, in all the games, that after evolution, wealth per agent is high for agents with
strategies drawn from small strategy spaces (small m), and low for agents with strategies drawn from large
strategy spaces (large m). In the game played with N agents, wealth per agent as a function of m was very
nearly a step function. The transition is at m = mt, where mt ≃ mc −1, and mc is the critical value of m at
which N agents playing the game with a fixed strategy space (fixed m) have the best emergent coordination
and the best utilization of resources. They also found that overall system-wide utilization of resources is
independent of N . Furthermore, although overall system-wide utilization of resources after evolution varied
somewhat depending on some other aspects of the evolutionary dynamics, in the best cases, utilization of
resources was on the order of the best results achieved in evolutionary games with fixed strategy spaces.

3.4. Adaptive minority games

Sysi-Aho et al. (198; 199; 194; 200) presented a simple modification of the basic minority game where
the players modify their strategies periodically after every time interval τ , depending on their performances:
if a player finds that he is among the fraction n (where 0 < n < 1) who are the worst performing players, he
adapts himself and modifies his strategies. They proposed that the agents use hybridized one-point genetic
crossover mechanism (as shown in Fig. 39), inspired by genetic evolution in biology, to modify the strategies
and replace the bad strategies. They studied the performances of the agents under different conditions and
investigate how they adapt themselves in order to survive or be the best, by finding new strategies using
the highly effective mechanism. They also studied the measure of total utility of the system U(xt), which
is the number of players in the minority group; the total utility of the system is maximum Umax as the
highest number of players win is equal to (N − 1)/2. The system is more efficient when the deviations from
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Figure 40: Plot to show the time variations of the number of players A1 who choose action 1, with the parameters N = 1001,
m = 5, s = 10 and t = 4000 for (a) basic minority game and (b) adaptive game, where τ = 25 and n = 0.6. Reproduced from
(194).

the maximum total utility Umax are smaller, or in other words, the fluctuations in A1(t) around the mean
become smaller.

Interestingly, the fluctuations disappear totally and the system stabilizes to a state where the total utility
of the system is at maximum, since at each time step the highest number of players win the game (see Fig.
40). As expected, the behaviour depends on the parameter values for the system (194; 200). They used the
utility function to study the efficiency and dynamics of the game as shown in Fig. 41. If the parents are
chosen randomly from the pool of strategies then the mechanism represents a “one-point genetic crossover”
and if the parents are the best strategies then the mechanism represents a “hybridized genetic crossover”.
The children may replace parents or two worst strategies and accordingly four different interesting cases
arise: (a) one-point genetic crossover with parents “killed”, i.e. parents are replaced by the children, (b)
one-point genetic crossover with parents “saved”, i.e. the two worst strategies are replaced by the children
but the parents are retained, (c) hybridized genetic crossover with parents “killed” and (d) hybridized genetic
crossover with parents “saved”.

In order to determine which mechanism is the most efficient, we have made a comparative study of the
four cases, mentioned above. We plot the attendance as a function of time for the different mechanisms
in Fig. 42. In Fig. 43 we show the total utility of the system in each of the cases (a)-(d), where we have
plotted results of the average over 100 runs and each point in the utility curve represents a time average
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Figure 41: Plot to show the variation of total utility of the system with time for the basic minority game for N = 1001, m = 5,
s = 10, t = 5000, and adaptive game, for the same parameters but different values of τ and n. Each point represents a time
average of the total utility for separate bins of size 50 time-steps of the game. The maximum total utility (= (N − 1)/2) is
shown as a dashed line. The data for the basic minority game is shown in circles. The plus signs are for τ = 10 and n = 0.6;
the asterisk marks are for τ = 50 an n = 0.6; the cross marks for τ = 10 and n = 0.2 and triangles for τ = 50 and n = 0.2.
The ensemble average over 70 different samples was taken in each case. Reproduced from (194).
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Figure 42: Plots of the attendances by choosing parents randomly (a) and (b), and using the best parents in a player’s pool (c)
and (d). In (a) and (c) case parents are replaced by children and in (b) and (d) case children replace the two worst strategies.
Simulations have been done with N = 801, M = 6, k = 16, t = 40, n = 0.4 and T = 10000.
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Figure 43: Plots of the scaled utilities of the four different mechanisms in comparison with that of the basic minority game.
Each curve represents an ensemble average over 100 runs and each point in a curve is a time average over a bin of length 50
time-steps. In the inset, the quantity (1 − U) is plotted against scaled time in the double logarithmic scale. Simulations are
done with N = 801, M = 6, k = 16, t = 40, n = 0.4 and T = 20000. Reproduced from (194).

taken over a bin of length 50 time-steps. The simulation time is doubled from those in Fig. 42, in order to
expose the asymptotic behaviour better. On the basis of Figs. 42 and 43, we find that the case (d) is the
most efficient.

It should be noted that the mechanism of evolution of strategies is considerably different from earlier
attempts (201; 196; 197). This is because in this mechanism the strategies are changed by the agents
themselves and even though the strategy space evolves continuously, its size and dimensionality remain the
same.

The Hamming distance dH between two bit-strings is defined as the ratio of the number of uncommon
bits to the total length of the bit strings. It is a measure of the correlation between two strategies:

dH =







0 correlated
0.5 uncorrelated
1 anti-correlated

which can be plotted as the game evolves. In Fig. 44 (a) one can see the evolution of the average Hamming
distance of all the strategies of a player in a game, where the player adapts using one-point genetic crossover
and the two worst strategies are replaced by the children and the parents are also saved. It should be noted
that the Hamming distance can change only when the worst strategies are replaced by the children and
the parents are saved, where the bits in a strategy pool can change over time. Otherwise the bits in the
pool of strategies remain the same. We observe that the curves tend to move downwards from around 0.5
towards zero, which means that as the time evolves, the correlation amongst the strategies increases and the
strategies in the pool of a particular agent converges towards one strategy. The nature of the curves depend a
lot on the parameters of the game. In Fig. 44 (b) one can see the evolution of the average Hamming distance
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Figure 44: Plot of the average Hamming distance of all the strategies in a pool of a player with time, where the player adapts
using (a) one-point genetic crossover and (b) hybridized genetic crossover, and in both cases the two worst strategies are
replaced by the children and the parents are also saved. Each curve is an ensemble average over 20 runs. Reproduced from
(194).
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Figure 45: Plot of the performance of the players where after T = 3120 time-steps, six players begin to adapt and modify their
strategies: three using hybridized genetic crossover mechanism and the other three using one point genetic crossover, where
children replace the parents. Other players play the basic minority game all the time and do not adapt. The simulations are
done with N = 801, M = 8, k = 16, n = 0.3, t = 80, and T = 10000. Reproduced from (194).

of all the strategies of a player in the game, where the player adapts using hybridized genetic crossover and
the two worst strategies are replaced by the children and the parents are also saved. Here too, the strategies
in the pool of a particular agent converges towards one strategy, and at a faster rate than with the previous
mechanism. We observe that increasing memory M does not change dramatically the convergence rate, but
as we increase the number of strategies in the pools, the convergence slows down. In order to investigate
what happens in the level of an individual agent, we created a competitive surrounding– “test” situation
where after T = 3120 time-steps, six players begin to adapt and modify their strategies such that three
are using hybridized genetic crossover mechanism and the other three one point genetic crossover, where
children replace the parents. The rest of the players play the basic minority game. In this case it turns out
that in the end the best players are those who use the hybridized mechanism, second best are those using
the one-point mechanism, and the bad players those who do not adapt at all. In addition it turns out that
the competition amongst the players who adapt using the hybridized genetic crossover mechanism is severe.

Due to the simplicity of these models (198; 199; 194; 200), a lot of freedom is found in modifying the
models to make the situations more realistic and appliable to many real dynamical systems, and not only
financial markets. Many details in the model can be fine-tuned to imitate the real markets or behaviour
of other complex systems. Many other sophisticated models based on these games can be setup and im-
plemented, which show a great potential over the commonly adopted statistical techniques in analyses of
financial markets.

3.5. Some important remarks

For modeling purposes, Minority Games were meant to serve as a class of simple models which could
produce some of macroscopic features being observed in the real financial markets (193; 202), usually termed
as “stylized facts” which included the fat-tail price return distribution and volatility clustering (190; 192).
Inspite the initial furore (203; 204; 205) they have however failed to capture or reproduce most important
stylized facts. However, in the physicists’ community, the Minority Games became an interesting and
established class of complex disordered systems (202; 206), lending a large amount of deep physical insights
(207; 208). Since in the BMG model a Hamiltonian function can be defined and analytic solutions can be
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Figure 46: The simulation results of the variance in attendance σ2/N as a function of the control parameter α = 2M /N for
games with k = 2 strategies for each agent, ensemble averaged over 100 sample runs. Dotted line shows the value of volatility
in random choice limit. Solid line shows the critical value of α = αc ≈ 0.3374. Resolution of the curve can be improved to
shows σ2/N attains minimum at α ≈ αc. Reproduced from arxiv: 0811.1479.

developed in some regimes of the model, the model may be viewed with a more complete physical picture
(209). It is characterized by a clear two-phase structure with very different collective behaviours in the two
phases, as in many known conventional physical systems (208; 210).

Savit et al (208) first found that the macroscopic behaviour of the system does not depend independently
on the parameters N and M , but instead depends on the ratio

α ≡ 2M

N
=
P

N
(60)

which serves as the most important control parameter in the game. The variance in the attendance (see also
Ref. (199) or volatility σ2/N , for different values of N and M depend only on the ratio α. Fig. 46 shows a
plot of σ2/N against the control parameter α, where the data collapse of σ2/N for different values of N and
M is clearly evident. The dotted line in Fig. 46 corresponds to the “coin-toss” limit (random choice or pure
chance limit), in which agents play by simply making random decisions (by coin-tossing) at every rounds of
the game. This value of σ2/N in coin-toss limit can be obtained by simply assuming a binomial distribution
of the agents’ binary actions, with probability 0.5, where σ2/N = 0.5(1− 0.5) · 4 = 1. When α is small, the
value of σ2/N of the game is larger than the coin-toss limit which implies the collective behaviours of agents
are worse than the random choices. In the early literature, it was popularly called as the worse-than-random
regime. When α increases, the value of σ2/N decreases and enters a region where agents are performing
better than the random choices, which was popularly called as the better-than-random regime. The value
of σ2/N reaches a minimum value which is substantially smaller than the coin-toss limit. When α further
increases, the value of σ2/N increases again and approaches the coin-toss limit. This allowed one to identify
two phases in the Minority Game, as separated by the minimum value of σ2/N in the graph. The value
of α where the rescaled volatility attended its minimum was denoted by αc, which represented the phase
transition point; αc has been shown to have a value of 0.3374 . . . (for k = 2) by analytical calculations (209).

Besides these collective behaviours, physicists became also interested in the dynamics of the games
such as crowd-anticrowd movement of agents, periodic attractors, etc (211; 212; 213). In this way, the
Minority Games serve as a useful tool and provide a new direction for physicists in viewing and analyzing
the underlying dynamics of complex evolving systems such as the financial markets.
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Part V

Conclusions and outlook

Agent-based models of order books are a good example of interactions between ideas and methods usually
linked to Economics and Finance (microstructure of markets, agent interaction) and Physics (reaction-
diffusion processes, deposition-evaporation process, kinetic theory of gases). As of today, existing models
exhibit a trade-off between “realism” and calibration in its mechanisms and processes (empirical models
such as (81)), and explanatory power of simple observed behaviors ((106; 114) for example). In the first
case, some of the “stylized facts” may be reproduced, but using empirical processes that may not be linked
to any behaviour observed on the market. In the second case, these are only toy models that cannot be
calibrated on data. The mixing of many features, as in (108) and as is usually the case in behavioral finance,
leads to untractable models where the sensitivity to one parameter is hardly understandable.

Therefore, no empirical model can tackle properly empirical facts such as volatility clustering. Importing
toy model features explaining volatility clustering or market interactions in order book models is yet to be
done. Finally, let us also note that to our knowledge, no agent-based model of order books deals with the
multidimensional case. Implementing agents trading simultaneously several assets in a way that reproduces
empirical observations on correlation and dependance remains an open challenge.

We believe this type of modeling is crucial for future developments in finance. The financial crisis that
occurred in 2007-2008 is expected to create a shock in classic modelization in Economics and Finance. Many
scientists have expressed their views on this subject (e.g. (26; 27; 28)) and we believe as well that agent-based
models we have presented here will be at the core of future modelizations. As illustrations, let us mention
(214), which modelizes the interbank market and investigates systemic risk, (215), which investigates the
effects of use of leverage and margin calls on the stability of a market and (133), which provides a brief
overview of the study of wealth distributions and inequalities. No doubt these will be followed by many
other contributions.
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