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Foreword and Acknowledgements 
__________________________________________________________ 

 
 

This book has grown out of the long-lasting interaction among researchers with 
heterogeneous skills and sensibilities in the group which promoted WEHIA 
(Workshop on Economies with Heterogeneous Interacting Agents) at the 
University of Ancona in 1996. The success of that initiative has been amazing. 
Ten years ago we did not expect so many people from so many countries to be so 
eager to discuss their work. With the benefit of hindsight, we can now detect an 
underground need to compare methodologies, conceptual and analytical 
frameworks in an exciting new field. At present, WEHIA is a well established 
international forum for discussion and cross fertilization of ideas on social 
interaction of heterogeneous agents.  
Our starting point was (and still is) a deep dissatisfaction with the Representative 
Agent approach to macroeconomics and the companion idea that agents interact 
only through an anonymous market signal such as the price vector. In our 
opinion, there must be something wrong with a science which encounters 
embarrassing difficulties in explaining in a convincing way crucial phenomena 
such as the origin of money, the reasons for unemployment, the role of banks --  
to name only a few -- and recurs to calibration of the model parameters to fit the 
empirical evidence. Suffice it to note, en passant, that had this practice of scientific 
discovery been used by astronomers during the last five centuries, we would still 
believe in the Ptolemaic system as the guiding principle for spatial explorations.  
Going back to economics, if interactions and non-linearities are ruled out from 
the beginning of the analysis, there will be no substantial difference between 
microeconomics and macroeconomics. As any bright student easily recognizes, 
the only remaining difference is that micro is taught on Monday and Tuesday 
and macro on Thursday and Friday (well, Wednesday is devoted to 
econometrics).  

Economists have always been fond of the idea of the invisible hand governing 
the efficient allocation resources in a market economy. Alas, the Walrasian 
Auctioneer, i.e. the metaphor employed to model decentralized decision making, 
implies that equilibrium prices are determined through a centralized market 
clearing mechanism. The Walrasian approach abstracts from the way in which 
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real-world transactions take place. By construction, interactions among agents 
are ruled out with the only exception of the indirect interaction through a 
clearinghouse institution.  

After years of haunting with scientists exploring complex systems we are 
convinced that direct and/or indirect interaction among heterogeneous agents at 
the microeconomic level is a sufficient condition for macroeconomic regularities 
to emerge. Moreover, the interaction  of microeconomic behaviour based on rules 
of thumb of a multitude of dispersed individuals can develop into some form of 
aggregate rationality. The main idea which percolates through this book is that 
aggregate phenomena (i.e. the dynamics of gross domestic product, the general 
price level  etc.) cannot be inferred from the behavior of the Representative Agent 
in market  equilibrium continuously brought about by the implicit coordination 
of the Walrasian auctioneer.  

On the contrary, aggregate phenomena emerge spontaneously from the 
interactions of individuals struggling to coordinate their actions on markets: 
macroscopic regularities emerge from microscopic behaviour. In other words, 
aggregate “laws” are due to emergence rather than to microscopic rules. In turn, 
emergent macroeconomic  dynamics feeds back on microeconomic behavior through 
a downward causation process, in which economic and social structures affect 
the evolution of opportunities and preferences characterizing microeconomic 
units.  

Mainstream, axiomatic economics is right: the invisible hand is truly invisible. 
It continues to be out of sight simply because it is of a completely different nature 
than we were used to think so far or it has never been where it has been looked 
for.  

The list of people who deserve our thanks for the help they provided during 
the preparation of this book is very long.  We owe a huge intellectual debt to  
Alan Kirman, Joe Stiglitz, and to numerous participants of various WEHIA 
conferences, in primis Masanao Aoki and Thomas Lux, who have all been very 
inspiring. Special thanks to Beppe Grillo, a comedian with a penchant for  
economic analysis whose unorthodox view of the economy is surprisingly 
insightful. The vision outlined in this work has been refined in the course of 
stimulating conversations with many friends, in particular Bob Axtell, Xavier 
Gabaix and Matteo Marsili. It is  that all of them are still friends even after having 
paid attention to our thoughts on the issue at hand. Of course, we are deeply 
indebted to many co-authors we had the opportunity to work with during the 
last twenty years or so (Anna Agliari, Tiziana Assenza, Tomaso Aste, Stefano 
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Battiston, Carlo Bianchi, Gian Italo Bischi, Michele Catalano, Pasquale Cirillo, 
Fabio Clementi, Giovanna Devetag, Marco Gallegati, Corrado Di Guilmi , Tiziana 
Di Matteo, Giorgio Fagiolo, Anna Florio, Yoshi Fujiwara, Laura Gardini, Bruce 
Greenwald, Nozomi Kichiji, Roberto Leombruni, Riccarda Longaretti, Mauro 
Napoletano, Paul Ormerod, Barkley Rosser,Alberto Russo, Emiliano Santoro, 
Enrico Scalas, Wataru Souma, Roberto Tamborini, Pietro Vagliasindi). All of 
them should be considered accomplices for the outcome you have in front of you. 
We also thanks Simone Alfarano, Gian-Italo Bischi, Buz Brock, Bruno Contini, 
Guido Fioretti, Cars Hommes, Paolo Pin, Peter Richmond, Leigt Testfasion, 
Richard E. Wagner, for their comments to an early version of this book . 
Comments and suggestions from participants in many conferences and 
workshops held at several Institutes and Universities (Bank of France; Bank of 
Italy; Unicredit Bank, Milan; Econophysics meetings at Bali, Canberra, Oxford 
and Warsaw; ISI Foundation, Turin; Lorenz Center, Leiden; Santa Fe Institute; 
Universities of Bielefield, Durham, Lille, Marseille, Milano “Bicocca”, Milano 
“Cattolica”, Pisa, Rome “La Sapienza”, Sapporo, Seattle, Siena, Tokio “Chuo”, 
Trento, Udine) helped us very much. Finally, financial support from the MIUR 
(PRIN03 and FIRB02), the INFIM and the Università Cattolica di Milano, UPM 
and Trento is gratefully acknowledged. 

The material assembled in this book is the outcome of a long-lasting  
endeavor. Our kids often complained about the time it took away from playing 
with them, asking "when it will be finished?" or firmly stating that they "can't 
stand it any more". We hope these same thoughts will not come to the mind of 
the reader while going through the book. 

 
DDG, EG, MG, GG, AP 
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1 
Crucial issues 

__________________________________________________________ 
 
 

 
 
 
“Economists study the actions of individuals, but 

study them in relation to social rather than individual life” 
Principles of Economics, A. Marshall 

 
 
 
 
 

1.1 Introduction 
The conceptual divide between microeconomics and macroeconomics is 

usually associated in textbooks to the different viewpoints from which the 
economy is looked at. While the focus of microeconomists is the study of how 
individual consumers, workers and firms behave, macroeconomics deals with 
national totals and, in doing that, any distinction among different goods, markets 
and agents is simply ignored. The methodological device to accomplish such a 
task is aggregation, that is the process of summing up market outcomes of 
individual entities to obtain economy-wide totals. However, what 
macroeconomists typically fail to realize is that the correct procedure of 
aggregation is not a sum whenever there exists interaction of heterogeneous 
individuals. Aggregation is therefore a crucial step: it is when emergence enters 
the drama. With the term emergence we mean the becoming of complex structures 
arising from simple individual rules (Smith 1937, Hayek 1948, Schelling 1978). 
The physics taught us that to consider the whole as something more than its 
constitutive parts is a physical phenomena, not only a theory. Empirical 
evidence, as well as experimental tests, shows that aggregation generates 
regularities, i.e. quite simple and not hyper-rational individual rules when 

 1



aggregated becomes well shaped: regularities emerge from individual “chaos”. 
This book is a first, modest, step from the economics as an axiomatic discipline 
toward a falsiable science at micro, meso and macro level. It also tries to go into 
the details of economic interactions and their consequences for aggregate 
economic variables. By doing so, we suggest the agent based methodology  as a 
framework for sound microfoundations of macroeconomics1. According to us, 
mainstream economics by ignoring interaction and emergence, commits what in 
philosophy is called “fallacy of division”, i.e. to attribute properties to a different 
level than where the property is observed (game theory offers a good case in 
point with the concept of Nash equilibrium, by assuming that social regularities 
come from the agent level equilibrium.) 

In particular, we are interested in applying this perspective to what is 
probably the most important single problem in macroeconomics: the analysis of 
the business cycle. We will do it in a untraditional way which differs from both 
the mainstream analysis (the impulse-propagation approach) and the 
disequilibrium approach, analyzing the business cycle as the outcome of the 
complex interaction of firms and industries (a procedure reminiscent of 
Schumpeter 1939) in which small shock and endogenous elements coexist. In the 
physical jargon: individual behavior is at the root of the phenomenon, but when 
we aggregate or analyze the whole system a picture quite different from its 
constitutive elements emerge which allows to ignore the individual dynamics. In 
the following we will show that, even if this methodology is correct, we can keep 
track of the behavior of the aggregate and of the a very large quota of the 
individual firms at a very high confidence level.  

From the very beginning of the discipline, the recurrence of upturns and 
downturns of aggregate output has fascinated the profession. In the period of 
time which spans from the end of World War I to the eve of the 21st Century, 
theoretical explanations of the business cycle have been loosely inscribed in two 
main contending methodological approaches. On the one hand, there is the so-
called impulse-propagation or equilibrium approach, in which large exogenous 
stochastic perturbations are superimposed to a system of linear (or suitably 
linearized) deterministic difference/differential equations describing the 

                                                      
1 For an other very interesting approach, discussing the social interaction framework to 

derive the evolution of macrovariables, see Brock-Durlauf (2005). 
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dynamic relationships between economic variables.2 Since, by assumption, the 
solution of the underlying deterministic system is unique and stable, expansions 
and contractions driven by random disturbances occur around a stable (general) 
equilibrium, while fluctuations themselves are stationary stochastic processes. 
There is nothing like a cycle, according to this definition but, rather, “recurrent 
fluctuations of output around trend and co-movements among other aggregative 
time series” (Kydland and Prescott, 1990). Interestingly enough, such an 
analytical device has been equally applied to explanations of the business cycle 
devised by competing schools of thought, suffice it here to cite the monetarist 
model of Lucas (1975), the real business cycle model of Kydland and Prescott 
(1982), or the New Keynesian model of Taylor (1980).   

At the other end of the methodological spectrum one can find the endogenous 
approach to business cycles. This class of models, of which the most prominent 
ones are those by Kaldor (1940) and Goodwin (1967), does not rely on some 
external shock to account for business cycle phenomena. Instead, cycles are 
conceived of as self-sustained oscillations, a result obtained by exploiting the 
disequilibrium and non-linear relationships among economic aggregates. From 
an empirical point of view, this approach resemblaces the old NBER view, 
according to which: “the business cycle […] consists of expansions occurring at 
about the same time in many economic activities, followed by similairly general 
recessions, contractions, and revivals which merge into the expansion phase of 
the next cyxle” (Burns and Mitchell, 1946). They add that the movement, 
although recurrent, is not periodic, lasting from 1 to 12 years, and it is not 
divisible into shorter cycles. 

Of course, both approaches are not free from limits and inconsistencies. In 
spite of the equilibrium approach having nowadays became the workhorse of 
modern macroeconomics, for example, their users still find enormous difficulties 
in explaining why small shocks produce large fluctuations. A well-known 
argument in multi-sector real business cycle models (see e.g. Long and Plosser, 
1983) is that as the number of sectors or industries considered in the analysis 
becomes large, aggregate volatility must tend to zero very quickly. This result, 
which follows directly from the Law of Large Numbers (LLN), rests on the 
hypothesis that each sector is periodically buffeted with idiosyncratic, identically 
and independently distributed shocks to Total Factor Productivity (TFP). As 

                                                      
2 The idea of explaining the mathematical nature of business fluctuations in terms of a 

combination of deterministic and stochastic components can be traced back to the work of Frisch 
(1933) and Slutzky (1937).  
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negative and positive shocks tend to cancel out, in an economy consisting of N 
sectors – each one of approximately size 1/N  of GDP – aggregate volatility must 
converge to zero at a rate 2

1
N  (Lucas, 1981). Furthermore, under rather general 

conditions, such a curse of dimensionality is so compelling to offset any shock-
propagation effects due to factor demand linkages among industries (Dupor, 
1999). Hence, for a multi-sector neoclassical business cycle model to be able to 
replicate aggregate fluctuations with a degree of volatility in line with that 
observed in real data, one has necessarily to appeal to aggregate shocks (but the 
empirical evidence strongly rejects this hypothesis: …). 

The disequilibrium approach, in turn, shares with its competing mate the 
major limitation of being completely time reversible. In such a case, the Laplace 
demon would be able to predict the future (or to re-construct the history) of a 
system by simply knowing the exact actual conditions. If such a hypothesis is 
accepted, then historical time is out of the game and reversibility (or time reversal 
symmetry, as the physicists define it) follows directly.  

However, it seems to us that the most severe drawback of both approaches, 
and in turn of modern theorizing about macroeconomic fluctuations (growth 
theory, aggregate consumption, aggregate investment, and so on) as a whole, 
relates to the unsolved issue of the exact relationship between statements at the 
microeconomic level in terms of behavioral rules and aggregate categories, like 
income, expenditure or savings. The two issues at stake are, on the one hand, 
how to address the remarkable and persistent heterogeneity among individual 
economic entities, and, on the other hand, the fact that in real-world situations 
agents do not take their decisions in isolation but are influenced by the network 
of social affiliations whom they belong to   

 
 
1.2 Aggregate among Peers – if you please 
Mainstream economics is based on reductionism, i.e. the practice of scientific 

discovery at the root of classical physics. On the one hand, the ceteris paribus 
method developed by Marshall reflects the idea of a physical world which can be 
suitably described by a dynamical system capturing some features of nature in 
isolation, and an environment which affects the object of study only by means of 
perturbations. On the other hand, economists generally accept that structures at 
an aggregate level can be deduced and predicted just by looking at the individual 
components of the system. The key principle which has guided neoclassical 
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economics since its inception is the restricted idea of equilibrium as developed in 
rational mechanics (Mirowski, 1989), in particular in its static version attributed 
to Archimedes (McCauley, 2004). As should become clear, such a methodology of 
scientific advancement is likely to be successful in economics only if: a) the 
functional relationships among variables are linear, and b) there is no direct 
interaction among economic units. 

If one “translates” these 2 conditions into economic terms, she actually 
assumes a very particular nature of the economic system: i) all the n-agents are 
connected to a single coordinating  individual, an auctioneer or a planner; ii) all 
the information is freely mediated by this guy. In the most extreme case, any 
individual strategy is excluded and agents have to be uniform. Small departures 
from perfect information open up the chance of having direct links, thus 
changing the economic network and therefore violating conditions a-b). 
Refusal of conditions a) and b) are the two minimum requirements to define a 
complex system. What characterizes complex system is the notion of emergence, 
that is the spontaneous formation of self-organized structures at different layers 
of a hierarchical system configuration (Crutchfield, 1994). 

Since economies are complex systems and non-linearities are pervasive, 
mainstream economics generally adopts the trick of linearizing functional 
relationships. Moreover agents are supposed to be all alike and not to interact. 
Therefore, any economic system can be conceptualized as consisting of several 
identical and isolated components, each one being a copy of a Representative 
Agent (RA). The aggregate solution can thus be obtained by means of a simple 
summation of the choices made by each optimizing agent.  

The RA device, of course, is a way of avoiding the problem of aggregation by 
eliminating heterogeneity. But heterogeneity is still there. If the macroeconomist 
takes it seriously, he/she has to derive aggregate quantities and their 
relationships from the analysis of the micro-behaviour of different agents. This is 
exactly the key point of the aggregation problem: starting from the micro-equations 
describing/representing the (optimal) choices of the economic units, what can we 
say about the macro-equations? Do they have the same functional form of the 
micro-equations (the analogy principle)? If not, how to derive the macro-theory?    

The aggregation problem in macroeconomics has a long history. Since 
Gorman (1953) it is well known that the conditions for exact aggregation are 
stringent and almost never satisfied. Stoker has gone so far as to propose a 
methodology for stochastic aggregation. Aoki has put forward a combinatorial 
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method. These efforts are welcome but the science (or the art?) of aggregation is 
still in its infancy.  

 
 
1.3 Robinson Crusoe meets Friday 
A distinctive feature of the (nowadays mainstream) neoclassical school of 

thought is the chase for sound microfoundations for macroeconomic analysis, as 
a methodological overtaking of the Keynesian approach centred on aggregate 
categories. Conceptually, a description of how this endeavour has been 
substantiated in theoretical modelling requires two steps. The first one consists in 
assuming that all “[…] relative prices are determined by the solution of a system of 
Walrasian equation” (Friedman, 1968, p.3), in order to apply such a framework 
with brute force to a macroeconomic problem. No attention is paid to the well-
known fact that the Walrasian general equilibrium model does not guarantee 
either the stability or the uniqueness of the general equilibrium itself (Kirman, 
1989) or to who does change the price in a perfect competition setting (Arrow, 
1959). The second step derives consequently from the first one, and we find no 
better way to express it than to recur to the following quotation from  Plosser 
(1989, p.55): 

 
“How does one think about the competitive equilibrium prices and 

quantities that are implied by this framework? The first step is to recognize 
that all individuals are alike, thus it is easy to imagine a representative 
agent, Robinson Crusoe, and ask how his optimal choices of consumption, 
work effort and investment evolve over time. […] (W)e can interpret the 
utility maximizing choices of consumption, investment and work effort by 
Robinson Crusoe as the per capita outcomes of a competitive economy”. 

 
No caveats! The simplifying hypothesis of a RA might be far too simplifying , 

but it is instrumental for greed, rationality and equilibrium to be the only 
necessary and sufficient conditions for scientific macroeconomic theory. Standard 
economics is not falsifable since it became an axiomatic discipline.  

Admittedly, some dissenting voices urging towards an analysis of how social 
relations affect the allocation of resources resounded loudly from the start even 
in the rooms of the neoclassical citadel (e.g., Leibenstein, 1950; Arrow, 1971; 
Pollack, 1975). They went almost completely unheard, however, until the 
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upsurge in the early 1990s of a brand new body of work aimed at understanding 
and modeling the social context of economic decisions, usually labeled new social 
economics or social interaction economics (Durlauf and Young, 2001). 

The key idea consists in recognizing that the social relations in which 
individual economic agents are embedded can have a large impact on economic 
decisions. In fact, the social context impacts on individual economic decisions 
through several mechanisms. First, social norms, cultural processes and 
economic institutions may influence motivations, values, tastes and, ultimately, 
make preferences endogenous (Bowles, 1998). Second, even if we admit that 
individuals are endowed with exogenously-given preferences, the pervasiveness 
of information asymmetries in real-world economies implies that economic 
agents voluntarily share values, notions of acceptable behavior and socially-
based enforcement mechanisms in order to reduce uncertainty and favor 
coordination (Denzau and North, 1994). Third, the welfare of individuals may 
depend on some social characteristics like honor, popularity, stigma or status 
(Cole et al., 1992). Finally, interactions not mediated by enforceable contracts may 
occur because of pure technological externalities in network industries (Shy, 
2001) or indirect effects transmitted through prices (pecuniary externalities) in 
non-competitive markets (Blanchard and Kyiotaki, 1987), which may lead to 
coordination failures due to strategic complementarities (Cooper, 1999).       

A useful operational classification of the channels through which the actions 
of one agent may affect those of other agents within a reference group is given by 
Manski (2000), who distinguish among: i) constraint interactions: the decision to 
buy or sell by one agent influences the price of the good, thus affecting the 
feasible choice set of other individuals; ii) expectations interactions: asymmetric 
information on markets means that one agent forming expectations of the future 
course of relevant variables may try to augment his/her information set by 
observing the actions chosen by others (observational learning), under the 
assumption that this could reveal private information; iii) preference interactions: 
the preference ordering over the choice set of one agent depends directly on the 
actions chosen by other agents. 

Models of social interactions are generally able to produce several interesting 
properties, such as multiple equilibria, when the social component of utility (e.g., 
the social pressure to conform to the average education level) is higher than the 
private one (e.g., private expected return to education) (Brock and Durlauf, 2001); 
non-ergodicity due to the path-dependency feature of the statistical equilibrium 
and phase transition, that is the passage from a state of multiplicity of equilibria to 
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one of uniqueness, at a critical threshold ratio between private and social utility 
(Durlauf, 1993); a tendency toward equilibrium stratification in social and/or 
spatial dimension (Benabou, 1996; Glaeser et al., 1996) ; and finally the existence 
of a social multiplier of behaviors (Glaeser et al., 2002). 

The stage is now complete for presenting the main message in this book: 
heterogeneity matters, interactions amplify its role in shaping aggregate 
responses and the economic regularities emerge from the interaction of 
heterogeneous agents. Interaction and adjustment involve dynamics at the 
individual level and, as Axtell (2001) shows, is not a fixed point (it is complex). 
Macroscopic regularities emerge from the interactions of the agents: 
micoequilibrium is sufficient to have macroequilbrium, but it is not necessary at 
agent based level, where there are fluctuations, continuous  adaptation and 
adjustement to one another: here is the room for computation, or the agent based 
modeling we develop in chapter 3. 

 
1.4 Complexity 
Complexity is a complex word: It has a lot of heterogeneous interacting 

meanings. For simplicity, we can focus on two (among many) ways in which the 
qualifier “complex” has shown up in economics. In the literature of the ‘80s, it 
has been associated with dynamics: The expression complex dynamics has been 
often used as a synonym of chaos or chaotic dynamics. As such it has been 
essentially applied to the evolution over time of macro variables. Chaotic motion, 
in fact, is characterized by the simultaneous properties of local instability and 
global stability that is so attractive for business cycle theorists. Since Goodwin 
and the introduction of limit cycles in macroeconomics, in fact, the idea of the 
macroeconomy being locally repelled by an unstable state and globally 
converging to a cycle has been an intriguing feature of macrodynamics.  

Limit cycles, however, are “too regular”. Chaotic dynamical structures are 
even more appropriate for business cycle analysis because of the deterministic 
unpredictability of the time series they generate. There are plenty of models in 
this line of research (a pioneer in this field is R. Day, see, e.g. Day, 1994). Most of 
these models are aggregative in nature: By construction, they do not deal with 
the microeconomic components or determinants of macrovariables. In any case 
there is not much reflection in this literature on the relationship between 
individual and macroeconomic behaviour. Attention is paid mainly to the 
“irregular” (complex) – i.e. aperiodic and asymmetric – dynamics of the time 
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series generated by sometimes very simple non linear mathematical structures, 
which are observationally equivalent to those generated by a linear structure 
continuously affected by stochastic disturbances. 

This line of research is still active but somehow less thriving. There are many  
reasons for this. First: Results are not robust for deterministic systems3. Very 
small changes in the parameters yield huge qualitative changes in the properties 
of the dynamics generated by these models. Second: even though chaotic regions 
may have positive Lebesgue measure in the parameter space, complex dynamics 
occur often for particular, generally small, intervals of the parameters of interest. 
Third: From the empirical point of view, it is extremely difficult to find traces of 
complex deterministic dynamics in the macroeconomic time series. The 
econometric tests developed to suit this purpose, such as the BDS test,  are only 
capable to discern non-linearity in the structure of the economy but do not detect 
the particular type of non-linearity which is necessary for chaotic dynamics4.  

With the passing of time, the meaning has slowly shifted so that the qualifier 
complex is now usually associated with the working of economic structures with 
heterogeneous interacting agents. The so-called science of complexity, which has 
grown out of the joint efforts of hard and soft scientists in the ‘80s and ‘90s, in 
fact, claims that there are common properties of complex systems which are the 
object of study in many different fields such as the cell, the brain, language, the 
capitalist market economy. The focus therefore has moved from the macro to the 
micro level. Macroeconomic variables can be reconstructed by summing up 
individual magnitudes (bottom up procedure). Complex structures consisting of 
heterogeneous interacting agents generate complex dynamics also of the 
macrovariables (a case in point is the model of chapter 3).  

Complex economic structures are usually associated with adaptive agents so 
that they are often referred to in the literature as Complex Adaptive Systems. The 
pre-analytic vision of a complex market economy, in fact, is centered upon agents 
endowed with limited information and computational capability (bounded 
rationality) so that they adopt rules of thumb (instead of optimization 
procedures) and are naturally led to interact with other agents to access 
information, learn and imitate. In this sense, complexity goes hand in hand with 

                                                      
3 If we add noise to the system then there may be “robust features” determined by the 

underlying invarian measure such as the autocorrelation pattern of noisy chaotic time 
series (as an example see Hommes, 1996).   

4 In case of “chaos plus noise” a recent literature do not reject the possibility of chaos 
buffered by small dunamic noise (see Hommes-Manzan, 2006).  

 9



evolutionary dynamics and direct interaction among agents. Complex structures, 
however, can emerge even when agents are rational, i.e. they maximize an 
objective function subject to constraints and interaction is only indirect (once 
again a case in  point is the model in chapter 3).  

Sometimes complexity applied to economics overlaps with econophysics. The 
underlying methodological assumption of econophysics is that, even if 
economics is a social science and has to deal with incentives and human 
decisions the aggregate behaviour can be described by models of statistical 
physics. Collective behaviour is the outcome of the interaction of many 
heterogeneous individuals in ways which recall the interaction of particles in 
statistical mechanics. Recent works in econonophysics has focused mainly on 
three issues: the analysis of the time series of Stock prices, exchange rates and 
goods prices; the evolution over time of the distribution of firms’size, individual 
wealth and income; the exploration of economic phenomena by means of 
networks. In this book we contribute to the second strand of literature.  

 

1.5 Outline of the book 
 
In this book we explore the consequences of heterogeneity of firms’size and 

degree of financial fragility in a financial accelerator model along the lines of 
Greenwald and Stiglitz (1993). The presence of imperfect information has several 
important consequences in the modeling strategy. First of all, agents have to be 
heterogeneous, since the access to different informative sets discriminate among 
them. Then, agents are ex-post bounded rational, since their constrained 
information prevent them to be in a Pareto efficient, even if sub-optimal, 
equilibrium position (Greenwald and Stiglitz, 1990). Finally, if agents are 
heterogeneous they interact outside the price system while time becomes 
important since future is uncertain. A decision to produce today will affect the 
future because of debt commitment (which depends on the firm’s past decision 
as well from the behavior of the other firms) is a crucial issue for the future 
profits. A financially fragile framework should encompass it.  

Before going into the detail of the model, in chapters 2 and 3 we present and 
discuss the empirical evidence on the evolution over time of the distribution of 
relevant industrial variables. In particular, we explore the link between the 
distributions of firms’size and rate of growth, showing that the power law 
distribution of firms’size is at the root of the tent distribution (approximately a 
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Laplace) of the growth rates. Our main claim is that the evolution over time of 
these distributions is of central importance not only in industrial organization 
but also in business cycle analysis.  

In chapter 4 we present the model. In our approach, the origin of fluctuations 
can be traced back to the everchanging configuration of the network of 
heterogeneous firms. A major role in shaping dynamics is played by financial 
variables. In the absence of forward markets, the structure of sequential timing in 
our economy implies that agents have to rely on credit to bridge the gap between 
decision and realization. Highly leveraged – i.e. financially fragile – firms, are 
exposed to the risk of default. When bankruptcies occur, non performing loans 
affect the net worth of the banking system, which reacts reducing the supply of 
credit. Shrinking credit supply makes interest rates go up for each and every firm 
increasing the risk of bankruptcy economywide. A snowball effect consisting in 
an avalanche of bankruptcies can follow.  

Chapter 5 is devoted to the discussion of further issues in this line of research. 
It concludes the book but is not a conclusion at all. The research project we 
would like to carry out is still in its inflacy. The present book cover a non 
negligible but still short distance in what we think is the right direction. 
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2 
Stylized facts of industrial dynamics:  

The distribution of firms’ size  
__________________________________________________________ 

 
 

2.1 Introduction 
Economists interested in business cycle and growth theory have long been 

trained to the use of stylized facts as a practical guide in implementing their 
research agenda, as the pioneering accounts of Burns and Mitchell (1946) and 
Kaldor (1963) testify. The advent of the neo-classical counter-revolution in the 
late 1960s, rooted in what Robert Solow dubbed the holy trinity of Rationality, 
Equilibrium and Greed, has somehow inverted the logic of scientific discovery in 
economics. The first step in nowadays orthodox macroeconomics consists in 
building a model of microeconomic behavior based on axiomatic descriptions of 
preferences and technology. Afterwards, the model is solved via the 
representative agent and taken to the data. Alas, as shown inter alia in Caballero 
(1992) and Kirman (1992), the falsifiability of the model may be fatally prevented 
due to a fallacy of composition, that is the presumption that what is true of each 
single part of a whole is necessarily true of the whole as well. In particular, the 
straight application of a microeconomic rationale to aggregate data can be 
seriously misleading whenever the probabilistic forces at work as the number of 
entities grow large, i.e. the Central Limit Theorem, the Law of Large Number or 
any of their extensions, are not properly taken into account.  

A proper methodology to tackle these issues consists of two pillars. First, 
empirical laws at a macroeconomic level should be expressed in terms of 
statistical distributions, such as the distribution of people according to their 
income or wealth, or the distribution of firms according to their size or growth 
rate (Steindl, 1965). A great deal of useful information and several additional 
questions waiting for a scientific explanation can be derived by looking at such 
empirical distributions and their invariant, or long-term, character as the 
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cumulated responses of individual entities concerning their choices of labor 
supply, investment demand, pricing, and so on. Second, suitable modeling 
strategies should be adopted, that is explanatory methodologies capable to 
combine a proper analysis of the behavioral characteristics of individual agents 
and the aggregate properties of social and economic structures (Sunder, 2005). 

Anecdotic and econometric evidence largely confirm the coexistence of firms 
and households characterized by non negligible and persistent heterogeneity 
along several dimensions (Haltiwanger, 1997; Diaz-Gimenez et al., 1997). For 
example, it is well known at least since Gibrat (1931) that the size distribution of 
firms is right skewed for several different countries and historical periods (De 
Wit, 2005). A more recent stylized fact on firm dynamics concerns the 
distribution of firms’ growth rates, which appears to be a Laplace (double-
exponential) (Stanley et al., 1997; Bottazzi et al., 2002). Finally, earnings, income 
and wealth are well-known to be highly concentrated over households, 
regardless of the measure of concentration, i.e. the Gini coefficient, the coefficient 
of variation or the inter-quartile ratio (Diaz-Gimenez, 1997). What is missing is an 
analysis of the interrelationships between heterogeneity, its change and 
macroeconomic dynamics both in terms of business fluctuations and long-run 
growth. 

In what follows we will add some new evidence on the shape of the 
distribution of heterogeneous firms and households, making use of several 
databases. In particular, we will focus on four issues: i) the shape of the long-run 
firms’ size and growth rate distribution (Sections 2.2-2.); ii) the distribution of 
firms as they exit the market (chapter 3);  iii) the heterogeneity of productivity 
over firms, and of income over households; iv) the distributional features of 
business cycle phases. The last point is a first attempt to close the gap between 
micro and macro emphasized above. 
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2.2 Pareto, Gibrat, Laplace: the statistical analysis of industrial 
dynamics 

The distribution of firms’size is empirically well approximated by a Zipf or 
power law. A well known object mainly in physics and biology, the power law 
distribution has been originally derived more than a hundred years ago by 
Vilfredo Pareto, who argued that the distribution of personal incomes above a 
certain threshold follows a heavy-tailed distribution (Pareto, 1897). This fact 
baffled scholars since the Central Limit Theorem implies that the income 
distribution should be lognormal under the reasonable assumption that the rates 
of growth of income brackets are only moderately correlated.  

A similar conundrum recurred again about 30 years later in industrial 
economics, due to the pioneering work of Gibrat  who put forward the Law of 
Proportional Effects or Gibrat's Law (Gibrat, 1931). According to Gibrat’s law in 
weak form, the growth rate of each firm is independent of its size. If the law of 
proportional effect is true, the distribution of firms’ size will be right skewed. 
Gibrat went even further, arguing that, if the rates of growth are only moderately 
correlated, such distribution will be a member of the log-normal family (Gibrat's 
law in strong form).  

In a nutshell, the size (measured by output, the capital stock or the number of 
employed workers) of the i-th firm KiT  in period T is defined as 

, where g( iTiTiT gKK += − 11 )

                                                     

iT is the rate of growth. Taking the log of both sides 
and solving back recursively from time 0 size Ki0, it is straightforward to obtain1 

. Assuming that the growth rates are identically 

independently distributed, the distribution of the log of firms’ size tends 
asymptotically – i.e. for t approaching infinity – to the lognormal distribution.  
The reason is that under the central limit theorems assumptions one would 

expect that   tends to be normal. 

0
1

loglog i

T

t
itiT KgK +≅ ∑

=

∑
=

T

t
itg

1

Recent research has shed several doubts, however, both on the true nature of 
this stylized fact, and on its explanation. From a theoretical perspective, for 
example, it has been argued that stories based on pure random processes have 

 
1 Taking the logarithm on both side san using the fact that log(1+g) is equal to g+o(g) when g is 
small. 
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too little economic content to be acceptable (Sutton, 1999). The empirical 
literature, on its part, has shown that attempts to make generalizations on the 
shape of size distributions for firms have generally failed (Schmalensee, 1989).  

As a matter of example, in recent work Robert L. Axtell (2001) disputes the 
finding of log-normality for the size distribution of U.S. firms reported in Stanley 
et al. (1995), claiming that correct results should be expected only after 
recognizing the right proxy for firm sizes, and after adopting a sufficiently large 
sample. In particular, he finds that a Zipf or power law (or Pareto) distribution 
returns a very good fit to the empirical one, and that the scaling exponent is 
strikingly close to 1 over time, a result which is partly consistent with early 
findings reported in Ijiri and Simon (1977).2 Moreover, Stanley et al. (1996) and 
Amaral et al. (1997) have found that the growth rate of firms’ output follows, 
instead of a normal distribution, a Laplace distribution. 

To explain these facts, the literature has followed two lines of research. The 
first one is a-theoretical and focuses only on the statistical properties of the link 
between the distribution of the state variable (firms’ size) and that of the rates of 
change. For instance, Reed (2001) shows that independent rates of change do not 
generate a lognormal distribution of firms’ size if the time of observation of 
firms’ variables is not deterministic but is itself a random variable following 
approximately an exponential distribution. In this case, even if Gibrat’s law holds 
at the individual level, firms’ variables will converge to a double Pareto 
distribution. 

The second line of research – to which the model described in the following 
chapter belongs - stresses the importance of non-price interactions among firms 
hit by multiplicative shocks, hence building on the framework put forward by 
Herbert Simon and his co-authors during the 1950s and 60s (Ijiri and Simon, 
1977). As a matter of example, Bottazzi and Secchi (2003) obtain a Laplace 
distribution of firms’ growth rates within Simon's model, just relaxing the 
assumption of independence of firms’ growth rates. 

In principle these results can induce the reader to reject the strong version of 
Gibrat’s law. After all, this law claims that the distribution of the levels (firms’ 

                                                      
2 To be precise, Zipf’s law is the discrete counterpart of the Pareto continuous distribution (power 
law). It links  the probability to observe the dimension of a social or natural phenomenon 
(firms’size, cities, earthquakes, words in a text, etc.) with rank greater than, say, κ  to the 
complementary cumulative frequency. In case of firms’ size the scale parameter is equal to 1. In 
words: the probability that  the i-th firm has size Kit greater of equal to a certain level k is equal to 
1/k. In symbols: ( ) 1Pr −∝≥ κκitK . 
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size) is lognormal while the empirical analysis points to Zipf’s law and the 
distribution of growth rates seems to be Laplace. As a matter of fact, things are 
not that simple. The idea according to which Gibrat’s law has to be fully 
discarded is wrong, since in the recent literature a weak version seems to hold, in 
which growth rates seem to be independent at least in mean. In fact, Lee et al. 
(1998) show that the variance of growth rates depends negatively on firm’s size. 
The implications of the strong version of Gibrat’s law are not necessarily true in 
the weak version. Fujiwara et al. (2003) have shown, in fact, that if the 
distribution is characterized by time-reversal symmetry – i.e. the joint probability 
distribution of two consecutive years is symmetric in its arguments P12(x1,x2) = 
P12(x2,x1) – the weak version of Gibrat’s law can yield a power law of firms’ size. 
Hence power law and Gibrat’s law (weak version) are not necessarily 
inconsistent. 

Critics to the scaling empirical evidence can be found in Quandt (1966) and 
Kwoka (1982) since they found systematic departures from the power law 
distribution at the sector level. A recent work shows that these findings (power 
law at the aggregate level and a plethora of distributions at the sector one) are 
consistent if firms’ growth  is characterized by common components (Axtell et al., 
2006).     
 
2.3 Unconditional firms’size distribution for pooled 
international data  

Axtell (2001) puts forward the testable conjecture that the Zipf distribution 
may be the best fit if the empirical distribution of firms’size not only in the U.S. 
but also in other countries and calls for new evidence to be gathered and 
explored by means of alternative data-sets.  
The evidence available so far on Axtell's conjecture is mixed.3 Thus, it seems 
worthwhile to further extend the empirical analysis on cross-country samples, in 
order to test Axtell's null hypothesis of a Zipf distribution for firms’ size outside 
the U.S., against the alternatives of a power law with scaling exponent different 
from 1 on the one hand, or of a log-normal distribution, on the other hand.  First 
of all we analyze company account data extracted from the commercially 
available Datastream International (DI) data-set, which reports annual time series 

                                                      
3 See, for example, Takayasu and Okuyama (1998), Voit (2000) and Knudsen (2001). 
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of company accounts for a sample of quoted companies. We focus on non-
financial firms located in the G7 countries over the 1987--2000 time span.  

For the sake of pooling consistency, several selection criteria have been 
applied sequentially to obtain the final sample used for estimation. First, we 
removed from the sample firms with missing data points. Second, in order to 
control for the impact of major mergers and acquisitions, we excluded firms 
whose capital stock had changed by a factor of two or more from any one year to 
the next. Third, to avoid biased estimates due to outliers we removed firms with 
data points outside a conventional three standard deviations confidence band for 
any of the variables of interest. 

Thus, the resulting panel is unbalanced both because there is a different 
number of  observations for different firms, and because these observations may 
correspond to different points in time. The number of firms is 126 for Canada 
(1099 observations), 178 for France (1415 observations), 176 for Germany (1378 
observations), 84 for Italy (460 observations), 748 for Japan (7416 observations), 
376 for UK (3467 observations) and 682 for USA (6829 observations). 

The variables we employed are total sales, y, total capital employed, k, and total 
debt, d. The last variable is not a conventional size variable. It seems however to 
be generally highly correlated with firms' dimension, so that we used it as an 
additional proxy for size. In order to pool all the countries together, we 
standardized all the variables by dividing them for their mean, so that one 
obtains quantities which are independent of the different account standards 
adopted in the G7 countries.   

Roughly speaking, a discrete random variable Z is said to follow a Pareto-
Levy (also known as Rank-Size or power law) distribution, if its complementary 
cumulative distribution function takes the form: 
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with zi ≥ z0. The scaling exponent α > 0 is also known as the shape parameter, 
while z0 (the minimum size) is the scale parameter. On a log-log space, this 
distribution yields a downward sloping straight line with slope −α. The special 
case α = 1 is known as Zipf's Law. 
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In panels a) to c) of Fig. 2.1, we present the log-log plot of the frequency 
distribution of firms’ size4 for firms' real sales, total capital and debt, respectively. 
The interpolating line, which informs us on the goodness of fit of a Power Law 
distribution, has been determined by means of the following  OLS regression: 

 
       ln(f(Si)) = a - (α + 1) ln(Si),       (2.2) 

        
where Si stands for firms’ size, and f(Si) is the correspondent frequency, with i = 
y, k, d.  

The point estimates of α are equal to 0.96 (34.53) for sales, to 1.16 (46.27) for 
capital, and to 1.14 (35.32) for debt, where figures in brackets represent t-values5. 
The goodness of fit is in any case truly remarkable, with values for adjusted R2 
equal to 0.979, 0.988 and 0.978, respectively.  

Notice that only when the size is measured by total sales our findings are fully 
consistent with those in Axtell (2001) for the U.S., where size is measured in turn 
as the number of employees per firm. In fact, in this case the null hypothesis that 
the size distribution is Zipf, that is that the "true" α is 1, could not be rejected as 
the estimate returns a value which lays in a one standard deviation confidence 
band. If size is measured by means of capital or debt, instead, the distribution 
appears to be less even-sized than predicted by the Zipf Law. 

 
 

2.4 The size distribution of firms conditional on the business 
cycle 
As argued extensively in Brock (1999), the good linear fit of a distribution in the 
log-log space should be interpreted with great care, since these distributions are 
unconditional objects and many conditional data generating processes (DGPs) 
are consistent with them. Thus, in order to refine the evidence in a way which 
could be suitably used to discipline theory we condition the processes under 
scrutiny on business cycle episodes. 
 
 
 
                                                      
4 The graph are computed using simple histograms. In order to avoid the bias caused by the small 
number of observations in the right tail, only frequencies bigger than 0.05% are displayed.  
5 Of course, t-values are referred to the "reduced form" parameter (α + 1). 
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Fig. 2.1. Zipf plots of total sales (y), total capital employed (k) and total loan capital (d). 
The two dashed lines identify the 95% confidence interval for predictions.  

 
a) Total sales 

b) Total capital 

 
c) Total debt 
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In other terms, we are interested in assessing whether the statistical models 
driving firms’ growth change from upturns to downturns or, in other terms, 
whether firms long-run growth processes are influenced by short-run 
fluctuations.  
 
Tab. 2.1. Percentage ratio ri (i = y, d, k) of the estimated conditional mean of variable i in 
recoveries to the estimated conditional mean of the same variable in recessions and 
percentage ratio rσ(i)  of the standard deviation of variable i in recoveries to the standard 
deviation of the same variable in recessions.  
 

 

Country ry rσ (y) rd rσ (d) rk rσ (k) 

Canada -4.3 -12.6 1.7 -0.5 -10.9 -26.7 
France 18.2* 29.6** 27.1* 61.2** 26.2** 57.6** 

Germany 10.5 16.3** 11.5 4.7 9.1 10.7** 
Italy 13.6 14.3* 19.2 22.1** 14.9 14.8* 

Japan 1.0 2.3 -6.2 -2.3 -2.1 0.4 
UK 17.3* 18.2** 43.4** 56.1** 28.9* 109.1** 

USA 28.1** 27.3** 26.0* 32.4** 30.1** 42.5** 

Joint test 18.66** 220.36** 20.215** 543.25** 20.451** 1128.3** 
* denotes rejection of the null of no difference between expansion and 
recession vs. the alternative of bigger values in expansion, at the 5% 
significance level. 
** denotes rejection of the null of no difference between expansion and 
recession vs. the alternative of bigger values in expansion, at the 1% 
significance level. 

 
To analyze this issue, we applied the Hodrick-Prescott (HP) filter6 to the time 

series of the industrial production index for each country in order to detect 
country-specific recessions and recoveries. Recessions (recoveries) are then 
defined as the period between a peak (trough) and a trough (peak) in de-trended 
industrial production, where a peak is the year before the de-trended index 
turned negative, and a trough as the year before it turned positive. Tab. 2.1 

                                                      
6 From a technical viewpoint, the HP is a low-pass filter. Hence, the cyclical component is obtained 
by subtracting from the raw series the filtered one. The smoothing parameter λ has been tuned at 
the value 100 for annual data. See Hodrick and Prescott (1997). 
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reports the ratio – which we label ry -- of the estimated conditional mean of y 
calculated for recoveries to the estimated conditional mean of the same variable 
for recessions. The labels rd and rk are self-explaining.  Moreover, in the same 
table we report the ratio – which we label rσ (y) -- of the standard deviation of y 
for recoveries to the standard deviation of the same variable for recessions. The 
labels rσ (d) and rσ (k) are self-explaining. In other words, what these numbers 
say is how big are the above mentioned descriptive statistics in expansions 
relative to the magnitude they assume in recessions.  

All the countries, with the exceptions of Canada (for sales and capital) and 
Japan (for debt and capital), present a common pattern: both the mean and the 
standard deviation of firms’ size are bigger during expansions.7 This effect is 
particularly important in the U.K. and the U.S. In the former country both the 
mean and the standard deviation of d increase of about 50% on average during 
expansions, while the standard deviation of k doubles. In the U.S the huge 
increase in total sales during expansions suggests the presence of some kind of 
leverage effect. Overall, these figures suggest that there are significant changes in 
firms’ distribution during the different phases of the business cycle. Indeed, as 
reported in the last row of Tab. 2.1 a χ2 test distributed with 7 degrees of freedom 
rejects the null of no differences at the 1% significance level for the mean of each 
variable and its standard deviation.  

 
Tab. 2.2 Estimated scaling parameters and goodness of fit for linear log-log regressions. 
Numbers into brackets are t-values. 

 

Expansions Recessions  

α ⎯R2 α ⎯R2

y 0.97 
(28.25) 

0.971 0.81 
(30.90) 

0.972 

k 1.18 
(31.82) 

0.984 1.04 
(27.43) 

0.965 

d 0.84 
(34.00) 

0.982 0.73 
(23.58) 

0.970 

 
 
                                                      
7 As a matter of fact, the ratios for Canada and Japan result always statistically non-significant. 
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In spite of this variability, it is particularly interesting to note from panels a) to 
c) of Fig. 2.2 that a Power Law scaling behavior emerges as an invariant feature of 
the size distribution of firms, regardless of the proxy used to measure size or of 
the phase of the business cycle used to condition the distribution.  

 
Fig. 2.2. Zipf plots of total sales (panel a), of total capital employed (panel b) and of loan 
capital (panel c), conditioned on expansions (E) and recessions (R). 
 
a) Total sales distribution during expansions and contractions 

 
b) Total capital distributions during expansions and contractions 

 
c) Total debt distribution during expansions and contractions 

 

23 



Point estimates are reported in Tab. 2.2, from which it is clear that the linear fit 
is very good, but that only in two cases the conjecture of a Zipf distribution can 
not be rejected, namely for total sales during expansions and for total capital 
employed during recessions. Furthermore, the scaling exponent for the 
unconditional distribution seem to be a weighted average of the conditioned 
scaling exponents in expansions and recessions when firms’ size is proxied by 
total sales and total capital, but not when size is measured by total debt.   

A final related feature deserves to be stressed. While the variability in means 
and standard deviations associated with business cycle fluctuations does not 
seem to affect the shape of the size distributions, which obey to a Power Law 
both in expansions and in recessions, the scaling exponents are systematically 
lower during downturns in comparison to upturns. This means that on average 
firms are more evenly distributed during expansions than during recessions.   

 

2.5. The size distribution shift over the business cycle: … 
The study of the shape and the stability of the size distribution in countries 

other than the U.S. is here extended by moving from pooled data for very large 
firms, to samples of medium to large firms at a national level. The source for our 
data is the Bureau van Dijk's Amadeus commercial dataset, which contains 
descriptive and balance-sheet data of about 260,000 firms of 45 European 
countries for the years 1992-2001. 

For every firm, juridical, historical and descriptive data are reported (as e.g. 
year of inclusion, participations, mergers and acquisitions, names of the board 
directors, news, etc.). Furthermore, Amadeus reports the current values of 
stocktaking, of balance-sheets (BS), profit and loss accounts (P/L) and financial 
ratios. The amount and the completeness of available data differ from country to 
country. To be included in the data set, firms must satisfy at least one of these 
three-dimensional criteria: 

• for UK, France, Germany, Italy, Russian Federation and Ukraine, 
o operating revenue greater or equal to 15 million euro; 
o total assets greater or equal to 30 million euro; 
o number of employees greater or equal to 150;  

• for all other countries,  
o operating revenue greater or equal to 10 million euro;  
o total assets greater or equal to 20 million euro;  
o number of employees greater or equal to 100. 
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Fig. 2.3. Cumulative distribution of firm’s size : (a) France (2001), total assets higher 
than 30 million euros; (b) France (2001), sales higher than 15 million euros; (c) UK 
(2001) number of employees in excess of 150 persons.  
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The plots reported in Fig. 2.3 are a representative sample of our findings, 
showing that the size distribution follows a power-law in the range of 
observation regardless of the proxy we take to measure firms’ size. Evidence is 
reported for the cumulative distributions of total assets (a) and sales (b) in 
France, and number of employees in UK (c).8 The power-law fit for s ≥ s0, where 
s0 denotes the threshold mentioned above, yields the following values of α; (a) 
0.886±0.005, (b) 0.896±0.011, (c) 0.995 ± 0.013 (standard error at 99% significance 
level). The power-law fit is quite good for firms spanning nearly three orders of 
magnitude.  

Fig. 2.4 reports the annual change of the size distribution Pareto indices for 
four countries, namely Italy, Spain, France and UK. The degree of variability of 
the size distribution over the business cycle seems to be country-dependent. 
 
Fig. 2.4. Annual change of Pareto indices for Italy, Spain, France and UK from 1993 to 
2001.  

 
 
Fig. 2.5 extends the evidence for the country where the variability is higher, 

                                                      
8 The number of data points are 8313, 15776 and 15055, respectively. 

 25



that is Italy, by plotting the time series of the (log of the) scale (dashed line) and 
the shape (continuous line) parameters of the size distribution. Estimates have 
been obtained by OLS linear fitting on a log-log space. After getting rid of finite 
sample biases, each regression explains more than 98% of the total variance.  

 
Figure 2.5. Estimates of the scale parameter (dashed line, left axis) and of the shape parameter 
(continuous line, right axis) for the Italian firms, Italy 1992-2001. 
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All the series display a significant variability, and changes of the scale and 
shape parameters are strongly correlated in each case. Notice also that the size 
distribution measured by different proxies do not tend to move together. The size 
distribution defined in terms of the number of employees shifts inward and 
presents a decreasing slope during the recession of the early 1990s,9 while both 
the minimum size and the exponent of the power law increase during the long 
expansion of the 1994-2000 period. Movements in the opposite direction are 
displayed by the size distribution proxied by value added and total assets. 

As said before, these results should be interpreted in the light of previous, 
apparently conflicting, empirical and theoretical work. Amaral et al. (1997), for 
instance, present evidence on the probability density of firms’ size as measured 
by sales for a sample of U.S. firms from 1974 to 1993, showing that the 
distribution is remarkably stable over the whole period. Matter of factly Amaral 
and his co-authors recognize that "[…] there is no existing theoretical reason to expect 
that the size distribution of firms could remain stable as the economy grows, as the 
composition of output changes, and as factors that economists would expect to affect 
firms’ size (like computer technology) evolve" (Amaral et al., 1997, p.624). Stability of 
the size distribution, however,  is precisely the outcome one should expect 
according to Axtell (2001). Making use of a random growth process with a lower 
reflecting barrier studied by Malcai et al. (1999), he calculates  theoretical power 
law  exponents for  the U.S.  size distribution  measured by the number of 
employees in each year from 1988 to 1996. It turns out that the hypothesis of a 
Zipf Law can not be rejected at any standard significance level, the same finding 
he has obtained empirically for 1997 using more than 5 millions data points from 
the Census Bureau. It must be incidentally noticed, however, that Axtell's 
calculations − and therefore his conclusions about the stability over time of the 
Zipf Law − are biased towards an acceptance of the null of the Zipf Law due to 
the way the smallest size of the system's components is specified.10  

                                                      
9 According to the business cycle chronology calculated by the Economic Cycle Research Institute, 
Italy experienced a peak in February 1992 and a trough in October 1993. Gallegati and Stanca 
(1998), using annual data, calculate turning points to be in 1990 (peak) and 1993 (trough). It is 
generally accepted that the following expansion has lengthen at least until the first quarter of 2001.  
10 The reason lies in the fact that in Axtell’s calculation, the minimum size s0 has been assumed 
fixed and equal to 1. From the argument reported in Blank and Solomon (2000), who discuss a 
paper by Gabaix (1999) who makes use of the same assumption, it emerges that the formula (4) in 
Axtell (2001)implicitly returns the Pareto exponent α if and only if the minimum size is assumed to 
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Our main points, however, go well beyond this technical drawback. In the 
following section we shall argue that:  

a) Provided that the Pareto distribution represents an attractor for the 
distribution dynamics regardless of the proxy one uses to measure firms' 
size, there are indeed theoretical reasons to expect its position and shape to 
fluctuate over time. Furthermore, even small fluctuations can have 
important effects;  

b) There are also compelling theoretical reasons to expect the fluctuations of 
the size distribution to diverge as we measure firms' size by recurring to 
different proxies. Furthermore, such differences represent a key for 
understanding the nature of the business cycle. 

Analytically, let the cumulative distribution of firms' size at time t be given by 
Ft(x). Time is assumed to be discrete. We can now follow Quah (1993) in 
associating to each Ft a probability measure λt, such that 

( ]( ) ( ) ℜ∈∀=∞− xxFx tt   ,,λ . Given that we are working with counter-cumulative 
distributions, we introduce a complementary measure µ, such that µt = 1 − λt = 1 
− Ft. The dynamics of the counter-cumulative size distribution is then given by 
the stochastic difference equation: 

 
( ttt V )εµµ ,1−=        (2.3) 

 
where ε is a disturbance, while the operator V maps the Cartesian product of 
probability measures with disturbances to probability measures. The empirical 
evidence discussed above suggests that the invariant size distribution is Pareto so 
that, for sufficiently large intervals (s2 – s1) and h, we impose that: 
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sbe a constant fraction c of the current average of firms’ size , so that one should posit 

( )tscs =0 , which clearly varies in time.  
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while at the same time asking whether do there exist theoretical reasons to expect 
the operator V to fluctuate around its mean as business cycle phases alternate. 

 

2.6 does it make any sense? 
Despite some work on Pareto distributions' dynamics in the last decade by 

physicists (see among the others Conti et al., 1998; Joh et al., 1999; Eng et al., 2002; 
Czirok et al., 1996; Powers, 1998), economists have largely neglected such an 
issue. Notable exceptions are Brakman et al. (1999), who report a n-shape time 
series for the scaling exponent of Dutch city sizes distribution over more than 
four centuries, and Mizuno et al. (2003), who find that the cumulative distribution 
of Japanese company's income shifts year by year during the 1970-1999 period, 
while the scaling exponent of the right tail obeys Zipf Law.11 In what follows we 
further elaborate on this issue, with particular regards to fluctuations of the size 
distribution over the business cycle.  

Shifts of the size distribution on a log-log space are related to a change of the 
system's minimum size (z0 in equation (2.1)), which in turn reflects a change of 
the minimum efficient scale (MES) of operating firms. There are many theoretical 
reasons to expect the MES to change over the business cycle. Furthermore, 
changes of the MES over the cycle depends on the proxy we use to measure the 
operating scale (i.e., the size).  

Consider for instance a diffused technical innovation process. While at the 
aggregate level we observe an increase in total factor productivity, at a 
microeconomic level we expect a shift of the size distribution by added value, 
while size distributions by employment and capital should remain stable, or 
decreasing. In turn, if the technology remains constant in the presence of a 
product innovation or an increase in demand, than we expect a shit of the value 
added Pareto distribution, while the size distribution should remain stable if the 
firms' size is measured by inputs. Finally, if there is a labor saving innovation one 
expects that the employees distribution shifts towards south-west more than the 
capital one.  

According to this approach, one should look at the various distributions not in 
isolation, but in terms of their relative movements. Meaningfully, relative 
movements of employment and capital with respect to the value added can be 

                                                      
11 Mizuno et al. (2003) prove this last result only by means of visual inspection: no 
calculations of the scaling exponents are explicitly reported.  
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immediately translated into changes of productivity, although these movements 
should be appropriately disentangled to be fully appreciated. Fig. 2.6 reports the 
relation between labor productivity (roughly measured as the ratio of added 
value to employment) and firms' size by total assets for Italy between 1996 and 
2001, while Fig. 2.7 reports the labor productivity probability density plot on a 
log-log space.  

 
 

Fig. 2.6. Labor productivity versus corporate firms’ size, Italy 1998-2001.  
 

 
 
Three facts clearly emerges from the data. First, there is not clear correlation 

between labor productivity and firms’ size. From the viewpoint of business cycle 
analysis, the choice of the proxy one uses to measure firms’ size is far from 
neutral. Second, labor productivity is Pareto distributed.12 In other words, labor 
productivity shares the same distributive features of the size distribution. Third, 
the distribution of the labor productivity shifts over time. As a first order 
approximation, a unifying explanation to these facts can be given along 
Schumpeterian lines. The typical cyclical dynamics should have the following 
structure: firms follow a directed technical change path by accumulating capital 

                                                      
12 More on this in Section 2.4. 
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that allows the production of the same output using less quantities of labor as 
input. The growth of firms’ size implied by labor-saving innovations generates a 
wage increase, due to a positive wage-firm size relationship and, consequently, a 
shift towards south-west of the firms’ size power law distribution in a log-log 
space. After the wage level has reached its peak, the capital accumulation re-start 
to grow, while wages diminish and the power law shifts towards north-east.   

 
 

Fig. 2.7. Shift of the istribution of labor productivity for corporate firms. Italy 1996-2001. 
  

 
 
Size distribution may also shifts because of firms’ demography. In particular, a 

major cause of exit is due to bankruptcy, which is likely to affect firms at 
different scale of operation, as recent examples in U.S. and Italy has taught. 
Nevertheless, a large amount of empirical evidence has shown that smaller firms 
are in general more financially fragile (Fazzari et al., 1988).  

 

2.7 Power laws' changes in slope 
The evidence reported in Fig. 2.4 highlights that movements of the size 
distribution over time are not confined to shifts on a log-log plane, but also the 
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slope of the rank-size representation − that is, the scaling exponent of the Pareto-
distributed size distribution − fluctuates. 

This fact has important implications for a proper understanding of the 
industry and macroeconomic dynamics from a structure-conduct-performance 
(SCP) perspective. In fact, fluctuations of the scaling exponent of the size 
distribution immediately translate into fluctuations of the well-known 
Hirschman-Herfindahl Index (HHI) of industry concentration (Naldi, 2003): the 
lower the estimated scaling exponent α from the empirical size distribution, the 
higher the degree of concentration of the supply side of the economy. Under the 
simplifying assumptions of an economy composed of firms playing a 
homogeneous Cournot game and of a constant elasticity of demand, fluctuations 
of the HHI may in turn be associated to fluctuations of the weighted average of 
the firms' price-cost margins (Cowling and Waterson, 1976), that is fluctuations 
of markups and profits. 

The possibility of slope changes conditioned to business cycle phases for a 
power law distributed size distribution can be easily proved, depending on the 
generative process under scrutiny. For instance, let the process generating 
industry dynamics be given by a simple random multiplicative process: 
 

( ) ( ) ( )tkttk iii λ=+1        (2.5) 
 
where ki (t) is the size of firm i (measured by its capital stock) at time t, and λi (t) is 
a random variable with distribution Λ(λ,σ 2). The total number of firms N 
increases according to a proportionality rule (at each t, the number of new-born 
firms ∆N , each one with size kmin, is proportional to the increase of the economy-
wide capital stock K), while firms which shrink below a minimum size (once 
again kmin) go out of business. Blank and Solomon (2000) show that the dynamics 
of this model converges towards a power law distribution, whose scaling 
exponent is implicitly defined by the following condition: 
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It seems plausible to expect that the quantity F, which is the inverse of the 

weight of entrants' contribution to total capital accumulation, changes with the 
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business cycle. In particular, F is likely to increase during recessions (when the 
number of entrants generally shrinks) and to decrease during expansions. If this 
assumption is correct, this simple model implies that the scaling exponent of the 
size distribution fluctuates over the business cycle, to assume lower values 
during recessions and higher values during expansions, as in real data.  

 

2.8 A mean/variance relationship for the size distribution 
Another distributional empirical regularity regarding the size distribution relates 
to the emergence of a scaling relationship between average sizes and cross-
sectional volatility of firms, very much in line with a concept – the Taylor’s 
power law (TPL) - firstly associated to biological systems. (Taylor, 1961; Taylor et 
al., 1978). 

The TPL is defined as a species-specific relationship between the temporal or 
spatial variance of populations ( )S2σ and their mean abundance S . Such a 
relationship turns out to be a power law with scaling exponent β 
 

( ) βσ SS ∝2 ,       
 (2.7) 
 
with (2.7) holding for more than 400 species in taxa ranging from protists to 
vertebrates over different ecological systems (Taylor and Woiwod, 1982).  

The intriguing trait of the TPL does not reside in the scaling relationship per 
se, but in the values assumed by empirical estimates of the scaling exponent β. In 
fact, from a time series perspective ( ) 22 SS ∝σ  is precisely what one would 
expect as soon as populations’ dynamics are modelled as homogeneous, 
independent random processes endowed with finite mean and variance.13 Thus, 
an estimated slope lower (higher) than 2 signals that the per capita variability 
tends to decrease (increase) as the mean population abundance increases. From a 
spatial perspective, if there exists an equal probability of an organism to occupy a 
given point in space, populations should be composed of many independent 
elements leading to a Poisson distribution, which is characterized by a variance-
                                                      
13 Let X be a random variable with finite mean µ  and variance σ2, and k a constant. Then, the mean 
and the variance of kX are kµ and k2σ2, respectively. On a log-log plot, the relationship between kµ 
and k2σ2 is a line with a slope of 2. 
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mean ratio equal to 1. It follows that estimates of β higher (lower) than 1 indicate 
spatial clustering (over-dispersion).  

In their seminal contributions, Taylor and his co-authors reported estimates 
for β for various arthropods ranging from 0.7 to 3.08, but for the majority of 
species the scaling exponent lies between 1 and 2, a result largely confirmed both 
in ecological studies (e.g. Anderson et al., 1982; Keitt and Stanley, 1998) and 
epidemiology (Keeling and Grenfell, 1999). Such an evidence signals that the 
pattern of spatio-temporal distribution of natural populations is generally 
characterized by a significant degree of aggregation,14 but at the same time 
abundant populations tend to be relatively less variable.15 Keeling (2000) and 
Kilpatrick and Ives (2003) provide probabilistic models based on negative 
interactions among species and spatial heterogeneity aimed at explaining this 
empirical regularity . 

As firms can be plausibly grouped in well defined sectors of activity – or, 
extending the biological metaphor, species -  it seems natural to start applying the 
TPL approach in economics from here. Hence, firms belonging to a certain sector 
i at year t may be considered as a single population. The relevant characteristic 
subject to measurement we choose is the members’ size, so that we can calculate 
the mean µi(t) and variance σi2(t) of time t firms’ size belonging to sector i.   

The data we employ have been retrieved from the dataset Amadeus. For the 
sake of exposition, we select three countries, namely France, Italy and Spain, 
which could be considered representative of different behaviours in the relevant 
parameter’s space. Firm data cover 18 primary, manufacturing and service 
industries according to the two digit Nace Rev.1 classification from year 1996 
through 2001.16 For each country in our sample, we check for the existence of a 
                                                      
14 In other words, upon finding one organism/individual there is an increased probability of 
finding another. In epidemiology, a natural interpretation is given in terms of contagion. 
15 That is, larger populations display a relatively lower probability of extinction.  
16 The nomenclature of the industries (Nace code inside brackets) employed is: 1) Agriculture (A); 
2) Manufacture of food products, beverages and tobacco (DA); 3) Manufacture of textiles and textile 
products (DB); 4) Manufacture of leather and leather products (DC); 5) Manufacture of wood and 
wood products (DD); 6) Manufacture of pulp, paper and paper products, publishing and printing 
(DE); 7) Manufacture of coke, refined petroleum products and nuclear fuel (DF); 8) Manufacture of 
chemicals, chemical products and man-made fibres (DG); 9) Manufacture of rubber and plastic 
products (DH); 10) Manufacture of other non-metallic mineral products (DI); 11) Manufacture of 
basic metals and fabricated metal products (DJ); 12) Manufacture of machinery and equipment 
n.e.c. (DK); 13) Manufacture of electrical and optical equipment (DL); 14) Manufacture of transport 
equipment (DM); 15) Manufacturing n.e.c. (DN); 16) Electricity, gas and water supply (E); 17) 
Construction (F); 18) Wholesale and retail trade (G).   
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scaling relationship between the mean and the variance of firms’ size by 
considering three alternative measures, i.e. total assets, value added and the 
number of employees. Hence, for each size measurement we have 108 
observations. Results of scatter plots are presented in Fig. 2.8. 

 
Fig. 2.8. Firms’ size variance-mean plots for three European countries. Each point 
represents the time t (t = 1996, 2001) pair log(variance)–log(mean) for firms’ size 
belonging to sector i (i =1,…,18 as defined in footnote 6), with sizes measured by total 
assets (circles), value added (squares) and number of employees (triangles), respectively. 
If the power law (1) holds, data are organized on a linear relationship with positive slope.   
 

a) France                            b) Italy           c) Spain 
                                                                             
 

From (2.7), it is immediate to note that if the TPL holds the relationship 
between the log variance and the log mean is linear:  
 
        (2.8) µβσ logloglog 2 += a
 
with a being a scale parameter. Interestingly enough, for all three countries, and 
for all the three alternative size measurements as well, a linear relationship 
emerges neatly. In other terms, besides being typical of natural populations, the 
TPL seems to characterize the relationship between the mean and the dispersion 
around it of firms’ size.  
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Table 2.3. OLS estimation results of the TPL parameters, as derived from equation (2) in 
the text. Numbers in parenthesis are standard errors. For each equation, the total number 
of observations is 108. 
 

  Total assets Value added # of employees 

a 1.713 
(0.442) 

1.200 
(0.342) 

1.200 
(0.342) 

β 2.056 
(0.108) 

2.161 
(0.170) 

2.161 
(0.170) 

France 

⎯R2 0.903 0.815 0.815 

a -3.177 
(0.562) 

-3.427 
(0.475) 

-2.095 
(0.287) 

β 3.089 
(0.135) 

3.326 
(0.132) 

3.822 
(0.159) 

Italy 

⎯R2 0.929 0.941 0.936 

a 1.191 
(0.261) 

1.820 
(0.27) 

1.327 
(0.151) 

β 1.905 
(0.068) 

1.905 
(0.067) 

1.940 
(0.084) 

Spain 

⎯R2 0.952 0.953 0.931 
 

 
The linear specification (2.8) implies that its parameters can be consistently 

estimated by means of OLS. Regression results are reported in Table 2.3. All 
parameters are statistically significant at the 1% level, and the goodness of fit can 
be considered largely satisfactory in all cases. With regards to the scaling 
exponent β, two results deserve to be emphasized. First, for each country size 
measurements are quantitatively equivalent. Second, the slope of the TPL in its 
log-linear version differs substantially across countries. The estimated β turns out 
to be slightly below 2 for Spain, somewhat higher than 2 for France, and well 
above 3 for Italy.  
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3 
Stylized facts in industrial dynamics:  

Exit, productivity, income 
__________________________________________________________ 

 
 
 
3.1 Introduction 
3.2 The exit of firms 

In principle, a firm can go out of business as an independent unit for three 
reasons: i) voluntary exit, due for example to the prospective of unsustainable 
reduction of profitability; ii) merger with another firm or acquisition by another 
firm; iii) bankruptcy due to the inability of a firm to pay its financial obligations 
as they mature. 

Empirical studies on the determinants of firms’ exit have long noted that the 
probability of survival to events i) and iii) appears to increase with age and size, 
and that industry characteristics do not affect significantly the probability of 
survival (Siegfried and Evans, 1994; Caves, 1998). These results, which contrast 
with the prediction of the purely random-driven Gibrat’s law of proportional 
effect, are in fact fully consistent with existing behavioral accounts of the firm’s 
life cycle, including both passive learning models (Jovanovic, 1982; Hopenhayn, 
1992) and active learning (Ericson and Pakes, 1995) models.  

The strong positive dependence of the probability of survival on size reported 
in the empirical literature on firm dynamics leads naturally to ask whether very 
large corporations may actually fail. For instance, Marshall (1910) seems dubious 
on the eventual demise of large firms: “[…] vast joint stock companies […] often 
stagnate but do not readily die”. However, a cursory look at the available evidence 
seems to return a picture which is at odds with Marshall’s view. Hanna (1999), 
for example, constructs a data set listing the 100 largest industrial companies in 
the world in 1912. By 1995, only 52 of these firms survived in any independent 
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form. Furthermore, 24 out of the 52 survivors were smaller than they were in 
1912. All in all, very large firms do in fact die. The search for additional evidence  
in different datasets on the exit of firms may therefore be useful for addressing 
this and other interesting issues. This is precisely what we do in the following. 
  
 
3.2.1 Evidence on the extinction rate 
Scaling plot techniques have been recently applied to research on firms’ 
extinction rate. The main example is the paper by Cook and Ormerod (2003) 
(henceforth, CO), who present evidence of power law scaling for the demises of 
US firms. In particular, CO show that the exit rate approximately follows a power 
law distribution with exponent close to 2 by sector. Interestingly enough, this 
value is very much in line with the literature on the Raup-Sepkoski’s kill curve, 
according to which biological extinction events “[…] can be reasonably well fitted to 
a power law with exponent between 1 and 3” (Bak, 1997, p.165). In this Section we 
apply the same methodology to data retrieved from the OECD firm-level data 
project, regarding demises of firms in eight OECD countries in the period 1977-
1999. 1  

The dataset contains information on the frequency of firm demises on an 
annual basis, split into 40 different industrial sectors for each of the eight 
countries (see Bartelsman et al., 2003). Demises are then expressed in terms of 
frequencies, as we divide the total number of exits by the total number of 
operating firms. This gives rise to a total number of 5051 observations. We call 
each of these observations a group: each group specifies a particular industry in a 
particular year in a particular country.  

The correlation of extinction rates in the same sector across countries is quite 
high (0.6), while the temporal correlation and the correlations across sectors and 
countries are much lower (0.19 and 0.15, respectively). These figures suggest that 
the exit of firms is probably driven by sectoral shocks instead of country-specific 

                                                           
1 The countries in our sample are Denmark, Finland, France, Italy, Netherlands, Portugal, United 
Kingdom and United States. The data set covers varying time spans over the period 1980-1998, 
even if it mainly refers to the period 1989-94. Firm is individuated, adopting the Eurostat definition 
[20], as "[…] an organisational unit producing goods or services which benefits from a certain degree of 
autonomy in decision-making, especially for the allocation of its current resources". All single-person 
business were not considered. The industry classification follows the OECD Structural Analysis 
Database (STAN).  
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shocks, and that the overall state of the economy plays a minor role in 
determining demises. 

It must be noted that, while the data we employ have annual frequency, exits 
during a year occur on a daily basis. The statistical model we adopt as a 
benchmark for empirical analysis postulates that each observation of the sample 
is treated as the sum of 250 independent and identically distributed random 
variables (250 being the approximate number of working days per year). If our 
assumption is correct, according to the law of large numbers the distribution of 
firms’ exit will be Gaussian. As shown in Fig. 3.1, however, if any convergence to 
a Gaussian distribution occurs it seems to be extremely slow. More formal 
statistical analysis supports the conclusion one can attain by visual inspection. In 
fact, a Kolmogorov-Smirnov test rejects the null hypothesis of normality at the 
1% significance level. 
 

 
Fig.3.1. Absolute frequency of extinctions on total number of firms (mean= 0.1, s.d.= 0.07).   

 
 
Due to the significant kurtosis and the high weight on the right tail showed by 

the empirical distribution, as an alternative to the Gaussian we propose a 
truncated power law model with exponent r. To test the hypothesis of a power 
law distribution for daily occurrences, for each annual observation we register 
the occurrence of a random variable generated by the following probability 
distribution: 
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with i, j = 0,…, m, where m is the maximum of daily demises. Notice that a finite 
value for the parameter m allows us to set the variance of the distribution to a 
finite value. 

After obtaining a sample of 5051 simulated data-points, we plot them against 
the actual data. We perform alternative simulations for the two parameters r and 
m varying on a wide range. The highest correlation between simulated and actual 
data has been obtained for r = 2 and m = 400, with a correlation coefficient equal 
to 0.992 (Fig. 3.2). The Kolmogorov-Smirnov test confirms that the two samples 
come from the same distribution at the standard significance level. Although the 
central part of the theoretical distribution displays a remarkable good fit to the 
actual one, the tails tend somehow to overestimate the upper part and to 
underestimate the lower part of the distribution. 

 
Figure 3.2. Scatter plot of real data and data drawn from a truncated power law distribution. 
 

 
 
As a further test to check the robustness of the our results, in Fig.3.3 we report 

the Zipf plot of the absolute values of annual demises, weighted with their 
relative frequency, on their absolute frequency. Also in this case, the 
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interpolation line, which returns a R2 equal to 0.962, implies a decay coefficient 
very close to two (2.003). 
 
Figure 3.3. Zipf plot of pondered values of annual demises.. 
 

 
 

As an additional issue, we notice that exits due to bankruptcy and voluntary 
shut down are a major determinant of output and employment contraction or, in 
other terms, are likely to be somehow related to aggregate downturns. Note, in 
particular, that changes in the aggregate demise rate are not characterized by 
strong auto-correlation, while disaggregated data show a strong temporal 
dependence among the same size class. Thus, we test the hypothesis that demises 
of firms grouped by size are fitted by a Weibull distribution, that is the same 
distribution which seems to characterize the magnitude of business cycle phases.2  

The data set we examine reports the demises sorted by number of employees3 
for a total of 548 observations for 9 countries.4 Again, each observation represents 
a group, identified by year, country and size. Groups are then divided into five 
classes sorted by firm sizes.  

For any class, the Kolmogorov-Smirnov test rejects the hypothesis that the 
sample data are normally distributed at standard significance level. Even 

                                                           
2 See Section …. 
3 The firms are sorted in six classes by number of employees (less than 20, from 20 to 49, from 50 to 
99, from 100 to 499, more than 500). 
4 In this section we extend the analysis to also West Germany, which was not included in the 
previous section because of the absence of  data relative to the first dimensional class that may 
cause distortions in the aggregate (and thus in the percentage) of demises in that country.  
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restricting the sample to a merely 5 percent around the mean, results do not 
change. Thus, as an alternative we consider a Weibull distribution for the five 
classes of demises by sizes (in their absolute values). The Weibull cumulative 
distribution function takes the form: 

 
      ( ) ( )βαxxF −−≡ exp1                       (3.2) 
 
where α is the scale parameter and β is the characteristic shape parameter that 
quantifies the speed of decay of the distribution (Malavergne et al., 2003). Notice 
that if we rank n observations from the largest to the smallest and we indicate 
with xi the ith observation (x1 > x2 > … > xn), we obtain: 
 

( )ixF
n
i

−≡ 1 .        (3.3.) 

 
Substituting (3.2) in (3.3) and taking the natural logarithm yields: 
 

( ) ( )
αα

β nix lnln1
+−≡ .      (3.4) 

 

Finally, setting ( ) ϕ
α

≡
nln  and λ

α
≡

1 , we get: 

 
ϕλβ +−≡ )ln(ix ,       (3.5) 

 
that is the interpolation line on the semi-log plane, as we plot the variable x taken 
at exponent β against the natural logarithm of its rank. We may also identify an 

additional parameter 
β

α

1

0
1
⎟
⎠
⎞

⎜
⎝
⎛=x that represents a reference scale, from which all 

the moments can be determined. 
Estimates by OLS of equation (3.5) on the semi-log plane return a good fit for 

each class (R2 is more than 0.96 in every case), although the right tails are 
systematically overestimated, a result which may be due to finite size effects. 
Table 3.1 reports the results of the estimation. 
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Table 3.1. Parameter estimates for the Weibull model of firm demises by size. 
 

 Classes x0 β λ 
>0 7,0448 1,1469 4,9627 

>20 6,0498 1,2989 3,5243 
>50 4,36 1,164 3,0426 

>100 3,0555 0,9978 2,5552 
>500 2,022 0,787 1,9492 

 
 

Recall that if β = 1, the Weibull distribution coincides with the exponential. As 
β goes below 1 the distribution becomes flat while, for β > 1, observations are 
concentrated around their mode and the distribution may resemble the Gaussian. 
The trend of the shape parameter β as we move from small to large firms shows 
that the tail becomes flatter, a result confirmed also by the slope of the regression 
line.  

Another way to look at our results is in terms of the hazard function, that is 
the “memory” or persistence of the distribution (see Lancaster, 1992), that 
becomes null (the so-called lack of memory property) as β = 1, and positive 
(negative) if β greater (smaller) than 1. In our case, our parameter estimates 
suggest that the probability to record a number x + ξ of demises, once a number x 
has been already recorded, progressively diminishes as we focus on greater 
firms.  
 

3.2.2 Power law for bad debt 
In spite of the strong evidence supporting the hypothesis that bankruptcies are 
negatively correlated with size, large firms are far from immune from default, as 
already emphasized in section 3.2. The recent examples of Enron and Worldcom 
corroborate this claim. In fact, the available evidence (Platt, 1985) is clear-cut in 
suggesting that insolvencies occur at all scales, and that the proportion of failures 
varies significantly over time.  

To shed some light on the issue of the vulnerability of large companies to 
bankruptcy, we analyze the available evidence for bankruptcies in a sample of 
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European countries, namely Italy, Spain and France. Data are retrieved from the 
dataset AMADEUS from 1992 through 2001.  

 
Fig. 3.4. (a) Profile analysis of the average equity base of bankrupt firms in each of the year before 
bankruptcy. Data points are referred to mean values for 676 Italian, 1786 French and 750 Spanish 
firms went bankrupt during the 1992-2001 period. (b) Semi-log plot of the distribution of 
bankrupt firms by age.  
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First, we find that financial ratios are invariably a good predictor of firms 

failure, and therefore exit. In particular, the equity ratio, defined as the ratio of 
net worth (current assets minus current liabilities) to total assets, deteriorates 
almost monotonically as the date of bankruptcy approaches (Fig. 3.4(a)). The 
distribution of exits by age turns out to be exponential, signaling that the 
probability to fail is independent of time (Fig. 3.4(b)). Given that firms generally 
enter at a small scale, and that they grow over time through investments, this 
suggests that big and small firms should have a rather equal probability to go out 
of business.  
 
Fig. 3.5. (a) Zipf plot for the debt of bankrupt firms in Italy (217 firms), France (1166), and Spain 
(455) during 1999. (b) Zipf plot for European corporate long term debt defaults, from January 
1985 through May 2002.  
 
    (a)            (b) 
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As far as debt is concerned, it is interesting to note that the right tail of the 
distribution of debt of bankrupt firms scales down as a power law for all 
sampled countries (Fig. 3.5(a)), Q( B> b) ∼ b− α. In particular, the scaling exponents 
for the 60% right tails are α = −1.09 for Italy, α = −0.87 for France and α = −0.67 
for Spain. Furthermore, a quantitatively similar scaling exponent results also for 
data on defaulted debt collected from a different dataset, that is for the European 
corporate long term debt defaults occurred from January 1985 through May 2002, 
as reported by Moody’s (Fig. 3.5(b)). The bad debt of insolvent bond issuers is 
distributed as a power law with α = −0.92. All in all, the power law seems to be 
an invariant structural pattern for the bad debt of European companies. 

Indeed, our findings are strikingly close to the ones reported in Aoyama et al. 
(2000) and Fujiwara (2003) for Japanese bankrupt firms, with the bad debt for 
large failed firms (i.e. the right tail of the distribution) being estimated to scale 
down with an exponent α comprised between 0.91 and 1. This result strongly 
suggests that universality, as defined in statistical physics, seems to hold for the 
bad debt distribution. Any reasonable model of industrial dynamics should take 
this evidence into account. 
 
 
3.3 Productivity and income  

The research agenda which drives our empirical exploration consists in 
thinking about macroeconomic interconnections in terms of distribution 
functions and their dynamics. Paraphrasing Steindl (1965), a concrete example of 
such an approach deals with the relationships among the distributions of 
productivity and personal income. In a nutshell, the productivity of a firm is the 
key to its average profitability. Profits, in turn, are distributed among firms’ 
owners contributing to their personal income. This information, combined with 
the positive relationship displayed by data between firm’ size and the wage paid 
to employees on the one hand, and what we know about the size distribution of 
firms on the other one, determines the distribution of households’ income. 
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3.3.1 The distribution of productivity in France and Spain 
The recent availability of huge sets of longitudinal firm-level data has 

generated a number of studies on productivity.5 In this Section we consider two 
basic measures of productivity: labour and capital productivity. The productivity 
of labour is defined as the ratio of value added to the number of employees 
(where value added, defined according to standard balance sheet reporting, is 
the difference between total revenue and the cost of inputs excluding the cost of 
labour). Although elementary, this measure has the advantage of being 
accurately approximated from the available data.  

The productivity of capital is defined as the ratio of value added to the value 
of fixed assets (i.e. the capital stock). This measure of productivity has some 
drawbacks since the value of firms' assets changes continuously in time. The 
volatility of the Stock price, for instance, affects the market value of the capital 
stock. Usually the industrial organization literature recognizes that the 
productivity distribution is not normally distributed, and empirical fat tails with 
power law behavior are observed. 

Figures 3.6 to 3.9 show the log-log plot of the frequency distributions (Left) 
and the complementary cumulative distributions (Right) of labour productivity 
and capital productivity measured as ratios of total added value of the firms. In 
these figures the different data sets correspond to the years 1996 - 2001 for two 
different countries: France and Italy. The frequency distributions show a very 
clear non-Gaussian character: they are skewed with asymmetric tails and the 
productivity (Figures 3.6—3.9 (Left)) exhibits a leptokurtic peak around the mode 
with ‘fat tails’ (for large productivities) which show a rather linear behavior in a 
log-log scale. In these figures we also report, for comparison, the linear trend 
corresponding to power-law distributions (N(x) ∝ x-α with α = 2.7, 2.1, 3.8 and 
4.6, respectively).  

 
 
 
 
 
 
 

                                                           
5 See inter alia Hulten (2001) and Kruger (2003).  
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Fig. 3.6 Frequency distributions (Left) and complementary cumulative distributions (Right) for 
the labour productivity in Italy in the years 1996-2001. The theoretical behavior is for α = 2.7, m 
= 22, n = 11, σ = 10 and β = 3. The insert shows P> (x) v.s. x in log-normal scale. 

 
 
 
Fig. 3.7 Frequency distributions (Left) and complementary cumulative distributions (Right) for 
the labour productivity in France in the years 1996-2001. The theoretical behavior is for α = 2.1, 
m = 30, n = 4, σ = 20 and β = 1. The insert shows P> (x) v.s. x in log-normal scale. 

 
 
 
The complementary cumulative distributions (P> (x), being the probability to 
find a firm with productivity larger than x) also show a linear trend at large x (in 
log-log scale) implying a non-Gaussian character with the probability for large 
productivities well mimicked by a power-law behavior. The `fat tails' character of 
such distributions is highlighted in the inserts of Figures 3.6—3.9 (Right) where 
log-normal plots show that the decay of P> (x) with x is much slower than 
exponential. 
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Fig. 3.8. Frequency distributions (Left) and complementary cumulative distributions (Right) for 
the capital productivity in Italy in the years 1996-2001. The theoretical behavior is for β = 3.8, m 
= 0.04, n = 0.02, σ = 0.01 and β = 25. The insert shows P> (x) v.s. x in log-normal scale. 

 
 
Fig. 3.9. Frequency distributions (Left) and complementary cumulative distributions (Right) for 
the capital productivity in France in the years 1996-2001. The theoretical behavior is for α = 4.6, 
m = 0.06, n = 0.02, σ = 0.4 and β = 68. The insert shows P> (x) v.s. x in log-normal scale. 

 
 

3.3.2 Power law tails in the Italian personal income distribution 
The first appearance of the power law distribution in economics is due Vilfredo 
Pareto, who observed in his Course d’économie politique (1897) that a plot of the 
logarithm of the number of income-receiving units above a certain threshold 
against the logarithm of the income yields points close to a straight line. Recent 
empirical work seems to confirm the validity of Pareto (power) law. For example, 
Aoyama et al. (2000) show that the distribution of income and income tax of 
individuals in Japan for the year 1998 is very well fitted by a Pareto power-law 
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type distribution, even if it gradually deviates as the income approaches lower 
ranges.  

The applicability of Pareto distribution only to high incomes is actually 
acknowledged; therefore, other kinds of distributions have been proposed by 
researchers for the low-middle income range. According to Montroll and 
Shlesinger (1983), US personal income data for the years 1935-36 suggest a 
power-law distribution for the high-income range and a lognormal distribution 
for the rest; a similar shape is found by Souma (2001) investigating the Japanese 
income and income tax data for the high-income range over the 112 years 1887-
1998, and for the middle-income range over the 44 years 1955-98. Nirei and 
Souma (2004) confirm the power-law decay for top taxpayers in the US and Japan 
from 1960 to 1999, but find that the middle portion of the income distribution has 
rather an exponential form; the same is proposed by Drăgulescu and Yakovenko 
(2001) for the UK during the period 1994-99 and for the US in 1998. 

In this Section we look at the shape of the personal income distribution in Italy 
by using cross-sectional data samples from the population of Italian Households 
during the years 1977-2002. We use microdata from the Historical Archive (HA) 
of the Survey on Household Income and Wealth (SHIW) made publicly available 
by the Bank of Italy. All amounts are expressed in thousands of Italian Lire. Since 
we are comparing incomes across years, to get rid of inflation data are reported 
in 1976 prices using the Consumer Price Index (CPI) issued by the National 
Institute of Statistics. The average number of income-earners surveyed from the 
SHIW-HA is about 10,000. 
 
Fig. 3.10. Cumulative probability distribution of the Italian personal income in 1998.  
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Fig. 3.10 shows the profile of the personal income distribution for the year 
1998. On the horizontal axis we report the logarithm of income in thousands of 
Lire and on the vertical axis the logarithm of the cumulative probability.  

Two facts emerge from this figure. First, the central body of the distribution – 
matter of factly almost all of it, i.e. the distribution up to the 99th percentile -- 
follows a two-parameter lognormal distribution, whose probability density 
function is: 
 
 
          (3.6) ( ) ( ) 2

ln1 1, exp
22

x
f x

x
µ

µ σ
σσ π

⎧ ⎫−⎡ ⎤⎪ ⎪= −⎨ ⎬⎢ ⎥
⎣ ⎦⎩ ⎭⎪ ⎪ 

with 0 < x < ∞, µ and σ2 are the first two moments of the distribution. The value 

of the fraction 221 σβ = returns the so-called Gibrat index; if β is relatively 
low (i.e. if the variance is high), the personal income is unevenly distributed. 
From our dataset we obtain the following maximum-likelihood estimates: 6 µ̂  = 

3.48 (0.004) and σ̂  = 0.34 (0.006);7 the Gibrat index is  = 2.10. β̂
Second, about the top 1% of the distribution follows a Pareto distribution. This 

power law behaviour of the tail of the distribution is evident from Fig. 3.11, 
where the red solid line is the best-fit interpolating function. We extract the 
power law slope by running a simple OLS regression, obtaining a point estimate 
of  α̂1ˆ +=s  = 2.76 (0.002). Given this value for s, our estimate of x0 (the income-
level below which the Pareto distribution would not apply) is 17,141 thousand 
Lire. The fit of the linear regression is extremely good, as one can appreciate by 
noting that the value of the R2 index is 0.99.  

The pattern of the distribution of personal income consisting of a lognormal 
for most of the distribution and a power law for the tail seems to hold over the 
entire time span, as one can easily realize from Fig. 3.12, which reports the shape 
of the income distribution for all the years. The corresponding estimated 
parameters for the lognormal and Pareto distributions are given in Table 3.2. The 
table also shows the values of the Gibrat index. Note, however, that the scaling 
exponent of the power law and the curvature of the lognormal fit change from 
year to year.  

 
                                                           
6 We excluded from the sample used for estimation the top 1.4% of the distribution, which we 
considered an outlier, and about the bottom 0.8%, which corresponds to non-positive entries. 
7 The number in parentheses represents the standard error. 
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Fig. 3.11.The fit to the power distribution for the year 1998.      
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Fig.3.12. Time development of the Italian personal income distribution over the years 1977-2002. 
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In order to quantify the fluctuations of income distribution from year to year, 
we start by noticing that the origin of these fluctuations are probably related to 
changes in the growth rate of the gross domestic product (GDP). To evaluate this 
conjecture, we study the fluctuations in the growth rates of GDP and personal 
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incomes (PI), and try to show that similar mechanisms may be responsible for the 
observed growth dynamics of income for both the aggregate economy and 
individuals. The distribution of the GDP annual growth rates is shown in Fig. 
3.13. The data are retrieved from the OECD Statistical Compendium. The growth 
rates are defined as log-differences, RGDP = log(GDPt+1/GDPt). Data are reported 
in 1976 prices; moreover, to improve comparison of the values over the years we 
detrend them by applying the Hodrick-Prescott filter. 
 
Table 3.2. Estimated lognormal and Pareto distribution parameters for all the years 
 
 Year µ̂  σ̂  β̂  ŝ  0x̂  2R  

1977 3.31 (0.005)  0.34 (0.004) 2.08 3.00 (0.008) 10,876 0.9921 
1978 3.33 (0.005)  0.34 (0.004) 2.09 3.01 (0.008) 11,217 0.9933 
1979 3.34 (0.005)  0.34 (0.005) 2.08 2.91 (0.009) 11,740 0.9908 
1980 3.36 (0.005)  0.33 (0.005) 2.15 3.06 (0.008) 11,453 0.9915 
1981 3.36 (0.005)  0.32 (0.004) 2.23 3.30 (0.008) 10,284 0.9939 
1982 3.38 (0.004)  0.31 (0.005) 2.27 3.08 (0.005) 11,456 0.9952 
1983 3.38 (0.004)  0.30 (0.004) 2.32 3.11 (0.006) 11,147 0.9945 
1984 3.39 (0.004)  0.32 (0.005) 2.24 3.05 (0.007) 11,596 0.9937 
1986 3.40 (0.004)  0.29 (0.006) 2.40 3.04 (0.005) 11,597 0.9950 
1987 3.49 (0.004)  0.30 (0.004) 2.38 2.09 (0.002) 24,120 0.9993 
1989 3.53 (0.003)  0.26 (0.003) 2.70 2.91 (0.002) 15,788 0.9995 
1991 3.52 (0.004)  0.27 (0.004) 2.58 3.45 (0.008) 14,281 0.9988 
1993 3.47 (0.004)  0.33 (0.004) 2.15 2.74 (0.002) 16,625 0.9997 
1995 3.46 (0.004)  0.32 (0.003) 2.19 2.72 (0.002) 16,587 0.9996 
1998 3.48 (0.004)  0.34 (0.006) 2.10 2.76 (0.002) 17,141 0.9993 
2000 3.50 (0.004)  0.32 (0.004) 2.20 2.76 (0.002) 17,470 0.9994 
2002 3.52 (0.004)  0.31 (0.005) 2.25 2.71 (0.002) 17,664 0.9997 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.13. Probability density function of Italian GDP annual growth rates, 1977-2002, together 
with the Laplace fit (solid line). 
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By means of a nonlinear algorithm, we find that the probability density 
function of annual growth rates is well fitted by a Laplace distribution. This 
result seems in agreement with the growth dynamics of PI, as shown in Fig. 3.14 
for a randomly selected yearly sample. These finding leads us to conjecture that 
the two phenomena obey the same distribution. Before testing this conjecture, in 
order to consider almost the same number of data points for the two datasets we 
draw a 2% random sample of the data we have for individuals, and normalize it 
using the transformations ( ) PIPIPI RR σ/−  and ( ) GDPGDPGDP RR σ/− . As shown in 
Table 3.3, which reports the p-values for all the cases we studied, the null 
hypothesis of equality of the two distributions cannot be rejected at the usual 5% 
marginal significance level. Therefore, the data are consistent with the 
assumption that a common empirical law might describe the growth dynamics of 
both GDP and PI, as shown in Fig. 3.15, where all curves for both GDP and PI 
growth rate normalized data almost collapse onto the red solid line representing 
the non-linear Laplace fit.8

 
 
Fig.3.14.Probability distributions of the Italian PI for the years 1987/89 ans 1991/1993. 
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8 See Lee et al. (1998), for similar findings about the GDP and company growth rates. 
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Table 3.3. Kolmogorov-Smirnov test p-values for GDP and PI growth rate 
 
 Growth rate R89/87 R91/89 R93/91 R95/93 R98/95 R00/98 R02/00 

RGDP 
R89/87 
R91/89 
R93/91 
R95/93 
R98/95 
R00/98 

0.872 
 
 
 
 
 

 

0.919 
0.998 

 
 
 
 

 

0.998 
0.984 
0.970 

 
 
 

 

0.696 
0.431 
0.979 
0.839 

 
 

 

0.337 
0.689 
0.995 
0.459 
0.172 

 
 

0.480 
0.860 
0.994 
0.750 
0.459 
0.703 
 

0.955 
0.840 
0.997 
1.000 
0.560 
0.378 
0.658 

 

 
 
 
 
 
 
 
 
 
 
Fig.3.15. Probability distribution of Italian GDP and PI growth rates. 
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We now turn to the fluctuations of the indexes specifying the income 
distribution, i.e. the Pareto and Gibrat indexes, whose yearly estimates are 
reported in Fig. 3.16. 
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Fig.3.16. The temporal variation of the Pareto (left) and Gibrat (right) indexes over the period 
1977-2002. 
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Since income deriving from financial assets has been regularly recorded only 

since 1987, we cannot take it into account for the period 1977-1987. The longest 
line in the graphs, therefore, depicts the time series obtained by excluding all the 
income deriving from financial assets, while the shortest one refers to the yearly 
estimates obtained from data including income from financial assets.  The pattern  
of the two series is similar, with the more complete definition of income showing 
a greater inequality because of the strongly concentrated distribution of returns 
on capital.  

Although the frequency of data (initially annual and then biennial from 1987) 
makes it difficult to establish a link with the business cycle, it seems possible to 
find a (negative) relationship between the Gibrat and Pareto indexes and the 
fluctuations of economic activity, at least until the late 1980s. For example, Italy 
experienced a period of economic growth until the late 1980s, but with 
alternating phases of the domestic business cycle: a slowdown of production up 
to the 1983 stagnation has been followed by a recovery in 1984, to be followed 
again by a slowdown in 1986. The values of Gibrat and Pareto indexes, inferred 
from the numerical fitting, tend to decrease in the periods of economic expansion 
(concentration goes up) and increase during the recessions (income is more 
evenly distributed).  
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Fig. 3.17. The Gini coefficient for the Italian personal income, 1977-2002. 
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The time pattern of inequality is shown in Fig. 3.17, which reports the change 
of the Gini coefficient over the considered period. The level of inequality 
decreased significantly during the 1980s and raised in the early 1990s, to be 
substantially stable in the following years. In particular, a sharp rise of the Gini 
coefficient (i.e., of inequality) is encountered in 1987 and 1993, corresponding to a 
sharp decline of the Pareto index in the former case and of both Pareto and 
Gibrat indexes in the latter case. 
 

3.4 Power law scaling in the world income distribution 
In the literature sprung up in recent years on the dynamics of the world 
distribution of per capita GDPs across countries, two empirical results have 
surfaced.9 First, while convergence in terms of per capita GDP has been achieved 
among a restricted set of industrialized countries, i.e. the so-called convergence 
club (Baumol, 1986), divergence has been the rule for the GDP distribution taken 
as a whole (see e.g. Pritchett, 1997). Second, the density function of the cross-
country GDPs distribution has moved from a unimodal shape in the 1960s to a 
"twin-peaks" shape in the 1990s (see e.g. Quah, 1993; 1996).  

                                                           
9 Interesting reviews are e.g. Parente and Prescott (1993) and Jones (1997).  
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In this Section we aim to add a new perspective to this literature very much in 
the spirit of the empirical methodology put forth so far, by discussing a third 
stylized fact regarding the world GDPs distribution which to our knowledge has 
been largely neglected so far.10 We show that the GDP per capita of countries 
falling in the range between the 30th and the 85th percentiles of the distribution 
follows a power law, and that this result is extremely robust as we move from 
1960 to 1997. Furthermore, over the same period the exponent of such a power 
law distribution displays a downward trend.  

We study the world distribution of per capita GDPs as taken from the Penn 
World Table (PWT) Mark 6.1 (Summers, Heston and Ater, 2002), from 1960 to 
1997. For the sake of brevity, in what follows we will refer to this object as the 
world income distribution. Though the PWT dataset contains estimates for some 
countries extending from 1950 to 2000, a restriction of the time horizon has been 
imposed in order to minimize the trade-off between the cross-section dimension 
and the time dimension of the panel.  

Let the distribution of GDP per capita of M countries at year t be xt = (x1t, …, 
xMt). Suppose each observation xit is a particular realization of a random variable 
x with cumulative distribution function Ft(x). Furthermore, let the observations in 
xt to be ordered from the largest to the smaller, so that the index i corresponds to 
the rank of xit. When we make use of this simple algorithm to graphically 
represent the income distribution, which operationally corresponds to a scatter 
plot of the log of rank against the log of GDP per capita, we obtain a Zipf plot. As 
a matter of example, in Fig. 3.18 we show the Zipf plot of the world income 
distribution for t = 1980. Qualitatively similar findings hold for all the other years 
in our sample. 

In the figure we superimpose a dashed line, which helps us in visually 
isolating four different regions of the distribution: i) starting from the early 1970s, 
in several years there is a small group of extremely rich countries - typically, 
scarcely populated oil-producing ones – which can be considered outliers; ii) the 
remainder of the left tail consists typically of high income OECD countries, plus 
other more densely populated oil-producing nations; iii) the central part of the 
distribution, contains roughly 55% of the countries. For these countries, the log of 
per capita income is arranged along an interpolating line; iv) the right tail, which 
can be identified, for any practical purpose, with Africa.  

 
 

                                                           
10 For an example of work very close in spirit to ours, see Sinclair (2001). 
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Fig. 3.18. Zipf  plot of the world income distribution (GDP per capita) in 1980. 
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The most intriguing feature emerging from this analysis is undoubtedly the 

regularity characterizing region iii), that is the fact that the data on GDP per 
capita for middle income economies fit a downward sloping straight line 
remarkably well. This fact holds invariably for the range of per capita GDP 
ranging from the 30th to the 85th percentiles11 of the world income distribution in 
each single year of our time horizon, though the slope of the fitting line tends to 
change significantly over time, as one can easily recognize from Fig. 3.19.  

We run an OLS regression for each year of the time span 1960-1997, for the 
data in the range between the 30th and the 85th percentiles of the world income 
distribution. The results are summarized in figure 3.20, where we plot the 
estimated value of the scaling exponent γ (continuous line)12, and a measure of 
the goodness of fit expressed in terms of R2 (dashed line).  

The hypothesis that the central part of the world income distribution follows a 
power law seems to be corroborated by the extremely good fit of linear 
regressions, as one can appreciate by noting that the value of R2 is never below 
0.978. Furthermore, note that γ shows a clear tendency to decrease over time. 
Both features have interesting implications for theory.  

 
 

                                                           
11 This range has been obtained on a pure data-dependent basis. 
12 The coefficient γ was always statistically significant at the 1% level. 
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Figure 3.19. Zipf  plot of the 30th-85th percentiles of the world income distribution in 1960 and 
1997. 
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Figure 3.20. Time path of the power exponent γ (continuous line), and goodness of fit of OLS 
estimates in terms of R2 (dashed line). 
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A possible explanation of this finding can be advanced along the following 
lines. Let us assume continuity both of GDP per capita levels and of time. Let p(x, 
t; x0) be the probability density function for xt, where x0 represents the initial 
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condition. The  evolution over time of p (x, t; x0) is given by the following Fokker-
Plank diffusion equation:13

 
( ) ( ) ( )[ ] ( ) ( )[ ]

2
0

22
00 ;,

2
1;,;,

x
xtxpxx

x
xtxpxx

t
xtxp

∂
∂

+
∂

∂
−=

∂
∂ σµ .  (3.7) 

 
where µ (x) and σ (x) are the drift and the diffusion coefficients, respectively. 
Cordoba demonstrates (Theorem 2, p.14) that for the probability distribution 
function of x to be Pareto with exponent γ, necessary conditions are that: i) the 
conditional mean, or drift, is constant, µ (x) = φ; ii) the diffusion coefficient takes 
the form σ (x) = Axγ-1, where A is a positive constant. 

With reference to the issues at stake, these two conditions imply that countries 
belonging to the range of the world income distribution which scales down as a 
Pareto distribution are characterized by a common average growth rate φ, and 
that the variance of growth decreases with size as soon as |γ| < 1. The first 
condition, in particular, states a precise relationship between scale and growth, in 
that growth rates have to be scale-invariant.  

This result is in line with the prediction of a recent stream of endogenous 
growth literature focusing on the driving role of R&D expenditure, according to 
which scale effects show up on GDP per capita levels, but not on growth rates14. 
Furthermore, the conjecture of a common average growth rate is consistent with 
panel data estimations provided by Evans (1998), who shows that the null 
hypothesis of different trend growth rates among a sample of countries with 
well-educated populations is rejected at standard statistical levels.  

While steady state growth without scale effects seems to characterize 
countries with GDP per capita in the middle of the distribution, however, from 
our analysis it turns out that the mechanics of growth is likely to differ widely for 
very rich and very poor countries. In particular, the finding that growth 
processes for countries in the first 15% of the world income distribution seem to 
differ from those of the other high and middle income countries is somehow 
puzzling, and it deserves further research. 

If the assumptions at the core of model (3.7) hold true, our estimates of γ imply 
that the variance of growth rates scales down on average as σ2(x) ∼ x − 0.22 , 
meaning that the standard deviation follows a Pareto distribution with exponent 

                                                           
13 See Aoki 1996 for an introduction to the Fokker-Plank equation. 
14 See e.g. Dinopoulos and Thompson (1998) and Segerstrom (1998). Jones (1999) surveys the topic. 
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β = − 0.11. This guess is strikingly close to direct estimates of σ(x) reported in 
Canning et al. (1998) and Lee et al. (1998), where β = − 0.15 ± 0.03. Notice that if an 
economy J consists of j > 1 identical and independently distributed units of size 
x0 15, xj 0 = jx , the volatility of its growth tends to decrease with the square root of 
its size, so that for the whole vector x fluctuations as a function of size should 
scale down with an exponent β = − 0.5 (Buldyrev et al., 1997). Therefore, an 
average β smaller (in absolute value) than 0.5 can be interpreted as suggesting 
the existence of long-range correlation between an economy's components, like in 
models of the business cycle based on direct interactions16.  

Furthermore, the negatively sloped trend of the estimated parameter γ signals 
that the volatility of fluctuations in countries in the lowest part of the 30th-85th 
range of the distribution has been increasing in relative terms all over the span 
1960-1997, so that β has actually increased over the same period. Of course, our 
analysis is unsuited to ascertain whether this fact is due to an increase in the 
amplitude of output fluctuations in low-income countries or to a decrease of 
volatility in countries with higher incomes. Independent evidence (Agenor et al., 
2000; IMF, 2001), however, seems to suggest that the first conjecture is likely to be 
the right one, probably reflecting a strengthening of the inverse relationship 
between income levels and vulnerability to financial and debt crisis.  
 
 
3.5 Distributional features of aggregate fluctuations 

The last piece of evidence presented in this Chapter is related to some 
distributional features of macroeconomic fluctuations, under the implicit 
assumption that the alternation of expansionary and contractionary phases of 
aggregate activity simply reflects the complex dynamics of firms’ demography. 

Our starting point consists in noticing the great effort that the profession has 
put forth so far to investigate whether the business cycle exhibits duration 
dependence. In fact, the received wisdom in mainstream macroeconomic theory 
is that business fluctuations are driven by recurring identically independently 
distributed (iid) random shocks, so that cycles' duration should be independent 
of length. The empirical work on duration dependence has been conducted by 
means of both nonparametric (McCulloch, 1975; Diebold and Rudebusch, 1990) 
and parametric techniques (Sichel, 1991; Diebold et al., 1993; Zuehlke, 2003), the 
                                                           
15 Think, e.g., to the multi-sector Real Business Cycle  model of Long and Plosser (1983). 
16 As a matter of example, the models by Durlauf (1996) and Aoki (1998).  
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latter being generally favoured because of modelling convenience and higher 
statistical power.  

While the evidence as a whole is far from conclusive, a relative consensus has 
been recently established in favour of positive duration dependence, at least for 
pre-war expansions and post-war contractions. A tentative explanation for this 
result has been advanced by Sichel (1991). Suppose that policymakers are 
interested in lengthening expansions. Hence positive duration dependence of 
contractions and null duration dependence of expansions might emerge simply 
because policymakers are urged to act countercyclically as downturns lengthens, 
while macroeconomic policy mistakes could be as likely to end short as well as 
long expansions.  

This type of reasoning resembles the so-called stabilization debate, that is 
whether macroeconomic policy effectiveness in decreasing the volatility of 
business cycle fluctuations around trend has improved after the second World 
War (WWII). Romer (1999) argues in the affirmative while Stock and Watson 
(2003) have a partially dissenting view. Regardless of the position one is prone to 
take in this debate, it should be recognized that policymakers are plausibly not 
interested in the length of a business cycle phase (to end it if a recession, and to 
lengthen it if an expansion) per se. A recession could be disturbing not only if it is 
very long, but also if it is short and particularly severe. By the same token, an 
expansion could force antinflationary (i.e., countercyclical) policies if it is gaining 
excessive momentum, regardless of its duration. In other terms, macroeconomic 
policy could well be targeted at controlling the magnitude of business cycle 
phases, rather than their duration alone. 

In line with this assumption, in this Section we aim to extend the empirical 
literature on dependence in business cycles by posing a related but different 
question: are expansions or contractions in economic activity more likely to end 
as they become bigger?  

The concept of business cycle fluctuations we adopt here is that of growth 
cycles, that is expansions and contractions expressed in terms of deviations from 
an estimated GDP trend or potential (Zarnowitz, 1992). A useful method to 
summarize information on either time (i.e., duration) and size (i.e. output gap) of 
any single episode consists in calculating its steepness,17 expressed as the ratio of 
the amplitude y (i.e. cumulative percentage points of peak-to-trough and trough-
                                                           
17 The concept of steepness we use has a geometrical meaning and it is therefore different from the 
one in Sichel (1993), where this same term has been used to define a property of asymmetric 
business fluctuations. 
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to-peak output gap for recessions and expansions, respectively) to the amplitude 

t (in time periods), 
t
yx = > 0.18 In what follows, we will use this measure to 

approximate the magnitude of a business cycle phase.  
 
The following step consists in deriving the conditional probability that phase i 

will end at magnitude xi, given that a magnitude xi has been obtained. Our 
investigation is based on a Weibull parametric hazard model (Lancaster, 1979): 

 
( ) 1−= βαβxxhW        (3.8) 

 
and on its associated survivor function ( ) ( )βαxxS W −= exp , with , η > 0 
being the scale parameter, while the shape parameter β > 0 measures the elasticity 
of magnitude dependence. If β is higher (lower) than one, then the conditional 
probability that a phase ends increases (decreases) linearly as its magnitude 
increases. Finally, when β is equal to 1, the hazard function corresponds to that of 
an exponential, or memory-less, distribution. 

βηα −=

It is well known that in model (3.8) unobserved heterogeneity across 
observations biases the estimate of the elasticity parameter β downward 
(Lancaster, 1979). In particular, if estimates point towards negative magnitude 
dependence it could be practically impossible to identify whether such a result 
owes to true negative dependence or to heterogeneity bias. McDonald and Butler 
(1987) explain how to use mixture distributions to handle heterogeneity, showing 
that if the location parameter is inverse generalized gamma distributed, the 
distribution for observed data will be Burr type IIX.  

Our empirical exercise is based on a sample of pooled international data, so 
that heterogeneity is likely to seriously affect our estimates. Hence, in addition to 
the standard 2-parameter Weibull model (W) we check the robustness of our 
results by recurring to the hazard function for the generalized 3-parameter 
Weibull model proposed by Mudholkar et al. (1996) (MSK), which contains the 
Burr type XII distribution as a special case: 

 
 ( ) ( )[ ] γβαβ −−= iMSKiMSK xSxxh 1                  (3.9) 

                                                           
18 This measure corresponds to the slope of the hypotenuse of the triangle approximation to the 
cumulative movement during a business cycle phase as discussed in Harding and Pagan (2002).  
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where is the corresponding survivor function, the location 
parameter γ  is real, and the sample space for x is (0, ∞) for γ < 0 and 

[ 1

1
−

−=
γβγαxSMSK ]

( ) ( )( )11,0
−−− βαγ  for γ > 0. Besides correcting for unobserved heterogeneity, the 

additional parameter γ allows the hazard function to be nonlinearly monotonic 
increasing (β > 1, γ > 0), nonlinearly monotonic decreasing (β < 1, γ < 0), bathtub 
shaped (β < 1, γ > 0), unimodal (β > 1, γ < 0) or constant (β = 1, γ = 0). Finally, 
when β > 0 and γ ≤ 0 the generalized Weibull corresponds to the Burr type XII 
distribution. 

For both models parameters’ estimation has been conducted by means of 
Maximum Likelihood. The log-likelihood function for a series of expansions 
(contractions) with observed magnitude xi is: 

 

( ) ( )[ ] ( )[ ]{ }∑
=

+Λ=•
N

i
ijijij xSxhL

1
lnlnln                 (3.10) 

 
with j = W, MSK, and where Λi is a binary variable that controls for the censoring 
of incomplete phases. Given that we are operating with nested models, a 
significantly positive (negative) estimate of γ is evidence, besides of positive or 
bathtub shaped (negative or unimodal) magnitude dependence, of a statistical 
superiority of the MSK model relative to the W model (Zuehlke, 2003). 
Furthermore, the sign of the estimated γ allows us to control for heterogeneity in 
the data: the magnitude elasticity obtained with the W model is likely to be 
biased downward as soon as γ in the MSK model is significantly negative. 

The data we use are annual GDP indexes for 16 countries19 spanning from 
1881 through 2000 (IMF, 2002). The time series do not contain data for the periods 
corresponding to the two WWs, i.e. 1914-1919 and 1939-1948. For each country, 
the GDP potential has been calculated by means of the Hodrick-Prescott filter. 
Finally, in order to obtain enough observations to attain reliable estimates, we 
built samples for expansions (276 observations) and contractions (284 
observations) by pooling data for individual countries.20  

                                                           
19 The 16 countries are Australia, Canada, Denmark, Finland, France, Germany, Italy, Japan, 
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and United States. 
20 This allows us to employ a number of observations one order of magnitude higher that the ones 
usually employed in the duration dependence literature. 
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Figure 3.21. Weibull probability plots for expansions and contractions, full sample. 
 
   a) Expansions      b) Contractions  

       

Given that both parameterizations (3.8) and (3.9) yield hazard functions 
belonging to the Weibull family, as a preliminary check of model adequacy we 
study the magnitude empirical distribution of pooled expansions and 
contractions by means of Weibull probability plots. An advantage of such a 
plotting technique is that it allows to gain insights on the appropriateness of a 
distribution model by visual inspection: if the data come from a Weibull 
distribution the plot will be linear, while other distribution types would 
introduce curvature in the plot. Figure 3.21 shows that our modelling strategy 
finds a convincing support for contractions (Panel b), with observations 
distributed along the reference line but for few data points in the left tail, and a 
reasonable support for expansions (Panel a), with the Weibull model yielding a 
good fit to the empirical distribution for the central portion, but a relatively poor 
fit for both tails. 
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Table 3.3. Tests of magnitude dependence in pre-WWII, post-WWII and total sample expansions 
and contractions for a pool of 16 countries (1881-2000). Standard errors in round brackets, p-
values in square brackets.  

 Expansions  Contractions 

 Total 
sample 

Pre-WWII 
sub-sample 

Post-WWII 
sub-sample 

 Total 
sample 

Pre-WWII 
sub-sample 

Post-WWII 
sub-sample 

1) W model 

η 
0.0387†

(0.0024) 
0.0517†

(0.0028) 
0.0259†

(0.0027) 
 0.0401†

(0.0018) 
0.0533†

(0.0024) 
0.0265†

(0.0017) 

β 
1.0143 

(0.0384) 
1.4440** 
(0.0753) 

0.8643** 
(0.0444) 

 1.3832** 
(0.0604) 

1.6792** 
(0.0912) 

1.5173** 
(0.1007) 

2) MSK model 

η 
0.0358†

(0.0023) 
0.0496†

(0.0028) 
0.0242†

(0.0026) 
 0.0389†

(0.0018) 
0.0505†

(0.0024) 
0.0257†

(0.0017) 

β 
0.9635 

(0.0375) 
1.3853** 
(0.0730) 

0.8402** 
(0.0437) 

 1.3314** 
(0.0586) 

1.5808** 
(0.0869) 

1.4678** 
(0.0979) 

γ 
0.0018†

[0.0000] 
0.0016 

[0.4091] 
0.0011†

[0.0004] 
 0.0009 

[0.2259] 
0.0022 

[0.4144] 
0.0006 

[0.6995] 
   ** Significantly different from unity at the 5% level using a one-tailed test. 
     † Significantly different from zero at the 5% level using a one-tailed test. 
 

In Table 3.3 we report the Maximum Likelihood parameter estimates, along 
with their asymptotic standard errors, obtained with the W model (3.8) and the 
MSK model (3.9) for the full sample, the pre-WWII sub-sample and the post-
WWII sub-sample, respectively. Expansions and contractions are treated 
separately. 

The evidence from the W model shows that, for the total sample, positive 
magnitude dependence exists for contractions, while for expansions we are not 
able to reject the null of magnitude independence at standard significance levels 
with a one-tailed test. This last result occurs because of a structural change over 
the period studied. Pre-WWII expansions exhibit magnitude dependence (β = 
1.444), while for the post-WWII sample the dependence elasticity is lower than 
one (β = 0.8643), meaning that in this case the probability expansions end 
decreases with their magnitude. In turn, contractions exhibit a substantially 
similar degree of positive magnitude dependence either in the pre-WWII (β = 
1.6792) and in the post-WWII samples (β = 1.5173). 
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Estimates for the MSK model seems to confirm the robustness of our findings. 
The additional location parameter γ turns out to be positive but very small in all 
cases. In this case, an assessment of the statistical superiority of the MSK model 
relative to the W model cannot be based on standard tests build on asymptotic 
standard deviations because of their low power. Instead, a better strategy 
consists in using a minimum statistic test under the null γ = 0, which returns the 
probability to observe a minimum above the ML estimate of γ. 
 
Figure 3.22. Hazard plots for pre-WWII and post-WWII expansions and pre-WWII and post-
WWII contractions. 
 

a) Expansions      b) Contractions 
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Contractions still show positive magnitude dependence both in the pre-WWI 
and in the post-WWI era. As regards expansions, positive magnitude 
dependence is detected in the pre-WWII period, while for the post-WWII period 
the parameters estimates suggest a bathtub shaped hazard function. In fact, over 
the range of variation of our data the degree of non-linearity introduced by the 
MSK model is negligible for any practical purpose, as one can realise by visually 
inspecting the MSK hazard plots for expansions and contractions shown in 
Figure 3.22.  

There are many possible explanations for the evidence at hand. Among them, 
the most appealing for us has to do with the so-called stabilization debate, that is 
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whether the coming out of automatic stabilizers and the increased ability in 
conducting monetary policy after WWII has significantly contributed to decrease 
volatility in aggregate economic activity. Our starting point is that stabilization 
macroeconomic policy is generally aimed at affecting either the duration and the 
deepness of business cycle fluctuations: policymakers are better off if sustainable 
(i.e., without significant inflationary pressures) expansions lengthen a lot, and 
mild recessions are short. The measure we use for the magnitude of a business 
cycle phase, i.e. steepness, is designed precisely to capture both aspects. From 
this perspective, the structural shift we find for expansions before and after 
WWII could be interpreted as an indirect evidence that macroeconomic policy 
has became more effective from the 1950s on.  
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4 
An agent-based model 

__________________________________________________________ 

 

4.1 Introduction 
 Reductionism, i.e. the methodology of classical mechanics which has been 

adopted by analogy in neoclassical economics, can be applied if the law of large 
numbers holds true, i.e.: 

• the functional relationships among variables are linear; and, 

• there is no direct interaction among agents. 

Since non-linearities are pervasive, mainstream economics generally adopts 
the trick of linearizing functional relationships. Moreover agents are supposed to 
be all alike and not to interact. Therefore an economic system can be 
conceptualized as consisting of several identical and isolated components, each 
one being a representative agent (RA). The optimal aggregate solution can be 
obtained by means of a simple summation of the choices made by each 
optimizing agent.  

Moreover, if the aggregate is the sum of its constitutive elements, its dynamics 
cannot but be identical to that of each single unit. The reductionist methodology 
implies that to understand the working of a system, one has to focus on the 
working of each single element. Assuming that elements are similar and do not 
interact – i.e. the economy is completely described by a representative agent -- 
the dynamics of the aggregate replicate the dynamics of the sub-unit. The 
existence of an aggregate equilibrium, which is in turn “[…] deeply rooted to the 
use of the mathematics of fixed point theory” (Smale, 1976, p.290), merely requires 
that every single element is itself in an equilibrium state.  
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The ubiquitous RA, however, is at odds with the empirical evidence (Stoker, 
1993)1, is a major problem in the foundation of general equilibrium theory 
(Kirman, 1992)2,3 and is not coherent with many econometric investigations and 
tools (Lippi and Forni, 1997)4. All in all, we may say that macroeconomics (and 
macroeconometrics) still lacks sound microfoundations. 

 

4.2. Heterogeneous interacting agents and power  laws 

 
The search for natural laws in economics does not necessarily require the 

adoption of the reductionist paradigm. Scaling phenomena and power law 
distributions are a case in point. If a scaling behavior exists, then the search for 

                                                 
1 A modeling strategy based on the representative agent is not able, by construction,  to reproduce 
the persistent heterogeneity of economic agents, captured by the skewed distribution of several 
industrial variables, such as firms’ size, growth rates etc. Stoker (1993) reviews the empirical 
literature at disaggregated level which shows that heterogeneity matters since there are systematic 
individual differences in economic behavior. Moreover, as Axtell (1999, p.41) claims: “… given the 
power law character of actual firms’ size distribution, it would seem that equilibrium theories of 
the firm  […] will never be able to grasp this essential empirical regularity.”  
2 According to Hildenbrand and Kirman (1988, p. 239): “… There are no assumptions on [...] 
isolated individuals which will give us the properties of aggregate behavior which we need to 
obtain uniqueness and stability. Thus we are reduced to making assumptions at the aggregate 
level, which cannot be justified, by the usual individualistic assumptions. This problem is usually 
avoided in the macroeconomic literature by assuming that the economy behaves like an individual. 
Such an assumption cannot be justified in the context of the standard economic model and the way 
to solve the problem may involve rethinking the very basis on which this model is founded.” This 
long quotation summarizes the conclusion drawn by Arrow (1951), Sonnenschein (1972), and 
Mantel (1976) on the lack of theoretical foundations of the proposition according to which the 
properties of an aggregate function reflect those of the individual components.  
3 In General Equilibrium theory one can put all the heterogeneity s/he likes, but no direct 
interaction among agents. Grossman and Stiglitz (1980) has shown that in this case one cannot have 
any sort of informational perfection. If information is not perfect markets cannot be efficient. 
Market failure leads to agents’ interaction and to coordination failures, emerging properties of 
aggregate behavior, and to a pathological nature of business fluctuations.  
4 If agents are heterogeneous, some standard procedures (e.g. cointegration, Granger-causality, 
impulse-response functions of structural VARs) loose their significance. Moreover, neglecting 
heterogeneity in aggregate equations generates spurious evidence of dynamic structure. The 
difficulty of testing aggregate models based on the RA hypothesis, i.e. to impose aggregate 
regularity at the individual level, has been long pointed out by Lewbel (1989) and Kirman (1992) 
with no impact on the mainstream (a notable exceptions is Carroll, 2001). 
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universality can be pushed very far. Physicists have shown that scaling laws are 
generated by a system with strong interactions among heterogeneous agents 
(Marsili and Zhang, 1998; Amaral et al., 1998) and therefore are incompatible 
with reductionism. As a consequence, the occurrence of scaling laws in 
economics is incompatible with mainstream economics. The macroscopic pattern 
(consisting of a multitude of heterogeneous interacting units) works as a unified 
whole independent of the dynamical process governing its individual 
components. The idea that systems which consist of a large number of interacting 
agents generates universal, or scaling, laws that do not depend on microscopic 
details is now popular in statistical physics and is gaining momentum in 
economics as well.  

The quantum revolution of last century radically changed the perspective in 
contemporary physics, leading to a widespread rejection of reductionism. 
According to the holistic approach, the aggregate is different from the sum of its 
components because of the interaction of particles. The properties of the sub-
units are not intrinsic but can be grasped only analyzing the behavior of the 
aggregate as a whole. The concept of equilibrium is therefore different from that 
of mainstream economics. The equilibrium of a system does not require any more 
that every element is in equilibrium, but rather that the aggregate is quasi-stable, 
i.e. in “[…] a state of macroeconomic equilibrium maintained by a large number of 
transitions in opposite directions” (Feller, 1957, p. 356). 5  

If the system is far from equilibrium, self-organizing phenomena and a state of 
self-organized criticality (SOC) may occur. According to the notion of SOC (Bak, 
1997; Nørrelykke and Bak, 2002), scaling phenomena emerge because the sub-
units of a system are heterogeneous and interact, and this leads to a critical state 
without any attractive point or state6. Since scaling phenomena characterize such 
critical states, the occurrence of a power law may be read as a symptom of self 
organizing processes at work. A notable example of this approach applied to 
macroeconomics is the inventory and production model developed by Bak et al. 
(1993).  

                                                 
5 Moreover agents’ choice should not necessarily be an equilibrium one, derived from their 
optimizing behavior, because agents’ interaction generates self-organizing solutions. It follows 
from this that one should not analyze the individual problem in isolation from the others (a game 
against nature) but  rather the interconnections among HIAs. 
6 In the SOC literature the concept of equilibrium is borrowed from statistical mechanics and is very 
different from that of mainstream economics. In fact, equilibrium results from the balance of actions 
of a large number of many interacting particles. 
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If a distribution is described by a power law, firms are located along a curve 
whose coefficient is stable and the intercept changes very slowly over time.7  This 
is due to the fact that the data generating process is random: in terms of the states 
of a dynamics process we may say that the transition from one state to another is 
affected by chance as well by agents’ systematic actions.8

In the model of Section 4.6, output fluctuations are due to: 1) a random 
process on current revenues as a consequence of imperfect information on actual 
prices; 2) systematic interactions among agents. The distribution is quasi-stable 
over relatively long periods because it represents “[…] slowly changing, age-
dependent characteristics of a population which ages and renews itself only gradually” 
(Steindl, 1965, p.142). This means that, since firms are born small, their growth 
takes time and mortality decreases with age and size, the slow change of the 
distribution comes as a consequence. In a nutshell: the distribution is stable, or 
quasi-stable, because the dissipative force of the process (here, the Gibrat’s law) 
produces a tendency to a growing dispersion, which is counteracted by a 
stabilizing force (i.e., the burden of debt commitments and the associated risk of 
bankruptcy). 

Moreover, distributions are interconnected. The population is characterized by 
a joint distribution of several variables (in our model: equity, capital, debt, age, 
equity ratio), which is completely inconsistent with the RA framework. The 
change of firms’ distribution (and the business cycle itself) has to be analyzed in 
terms of changes of the joint distribution of the population.9  

Alternatively, and in some sense in a way more germane to the economics 
discourse, power laws can be generated by models based on scale free growth 
processes. The basic idea can be traced back to the well-known Simon's model 
(Simon, 1955), where the Gibrat's law of proportional effects is combined with an 
entry process to obtain a Lévy distribution for firms' size. Furthermore, recent 
work by physicists (e.g. Marsili and Zhang, 1998; Amaral et al., 1998) has shown 

                                                 
7 Stability of the slope through time is a quite standard result in the empirical literature on Pareto’s 
law (see e.g., the work by C. Gini, J. Steindl and H. Simon). Quite nicely, Steindl (1965, p.143) 
defines the Pareto coefficient “… a sediment of growth over a long time”.  
8 The biased behavior of this random process helps to explain the systematic differences (asymmetries) 
between expansions and contractions found in the empirical evidence. Gaffeo et al. (2003) have 
found systematic differences of the Pareto exponents during expansions and contractions. 
9 A recession, e.g., is more likely when firms are relatively young, small and leveraged. The RA 
framework not only is inconsistent with the evidence (i) but it also misses and outguesses any 
dynamical properties of the actual systems (Forni and Lippi, 1997). 
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that, by extending the heterogeneity of the system's components implied in 
Simon's scheme to account for direct or indirect interactions among units, power 
laws emerge naturally and, most notably, without the disturbing asymptotic 
implications of the original Simon's model or of its modern successors, like the 
one by Gabaix (1999).10

It is worthwhile to stress that, regardless of the modeling strategy one 
chooses, the adoption of the scaling perspective in economics implies rejecting 
the very definition of a representative agent because the dynamics of the system 
originate from the interaction of heterogeneous agents. We believe that, in order 
to grasp the empirical evidence and provide a coherent framework, economists 
have to adopt a methodological approach based on heterogeneous interacting 
agents (HIA).  

 

4.3. Agent based modelling 

A step in this direction is the agent-based modeling strategy, which is 
increasingly applied also in economics (Epstein and Axtell, 1996; Tesfatsion, 
2002). At the simplest level, agent-based models are computer programs that 
simulate the autonomous behavior of individual entities and the relationships 
between them. Such virtual environments are particularly powerful and flexible, 
as they can be employed for advancing theoretical conjectures as well as for 
testing alternative normative prescriptions in a controlled situation. In fact, we 
claim that the agent-based approach represents a fruitful methodology to do 
realistic macroeconomics, that is one based on bounded rational, heterogeneous 
interacting agents adapting to a complex world.  

In a sense, agent-based computational techniques provide a route to develop 
microfoundations for macroeconomics completely at odds with the RA approach. 
The relevance and reliability of these new microfoundations are grounded in the 
empirical evidence they can account for. From this viewpoint, microfoundations 
can be defined as sound if they are based on a reasonable model of individual 
behavior and market and non-market interactions, who in the aggregate can 
produce regularities consistent with the empirical evidence, instead of being 
grounded on optimizing principles and equilibrium solutions. 

 
                                                 

10 Discussions on this point can be found in Krugman (1996) and Blank and Solomon (2000). 
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In our approach the origin of business fluctuations – which is the most 
important single problem in macroeconomics – can be traced back to the ever 
changing configuration of the network of heterogeneous interacting firms.11 A 
major role in shaping dynamics is played by financial variables. The sequential 
timing structure of our economy implies that future markets are absent, so that 
agents have to rely on means of payment − here, bank credit extended to firms − 
to bridge the gap between agents' decisions and their realization. Highly 
leveraged (i.e., financially fragile) firms, in turns, are exposed to a high risk of 
default, that is of going bankrupt. When bankruptcies occur, loans not refunded 
negatively affect banks' net worth, with banks responding to their worsen 
financial position by reducing credit supply. The reduction in credit supply 
impacts on the lending interest rate all other firms have to pay to serve their 
financial commitments.  

In what follows, we build on the HIA framework developed in Gallegati et al. 
(2003) and Delli Gatti et al. (2005) to put at work all the notions we surveyed in 
this section, by modeling an economy characterized by aggregate scaling 
behaviors due to multiplicative idiosyncratic shocks and interactions among firms. 

In Chapter 2, we observed how data on industrial dynamics display several 
empirical regularities which emerge so neatly across countries and over time to 
be characterized as empirical laws. Here we focus on two of them, that is: (i) the 
distribution of firms’ size is right skew and can be described by a Zipf or power 
law probability density function; (ii) the growth rates of firms’ output and 
countries' GDP follow a Laplace distribution.  

So far, the literature has generally dealt with (i) and (ii) as if they were 
independent stylized facts. In this chapter we aim at making three contributions.  

• We explore the link between the two, showing that the power law distribution 
of firms’size may be at the root of the Laplace distribution of growth rates (i.e. we 
demonstrate that, under the Marshall-Olkin (1967) conditions, (i) implies (ii)) 
(section 4.4).  

• We discuss a model of financial fragility, empirically validated through 
conditioning (Brock, 1999), which generates fact (i) (section 4.5). 

                                                 
11 Schumpeter (1939) suggested that business cycle scholars should analyze “… how industries and 
individual firms rise and fall and how their rise and fall affect the aggregates and what we call 
loosely general business conditions”. This approach is reminiscent of Marshall’s parallel between 
the dynamics of the individual firm and the evolution of a tree in the forest. 
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• We demonstrate that the features of business fluctuations such as the shifts of 
the distribution of firms’ size over the cycle, the properties of the 
distribution of individual and aggregate growth rates and many others, are a 
consequence of (i) (section 4.6).  

While the industrial organization literature has explored at length the 
regularities (i) and (ii) at least since the 1950s,12 inadequate attention has been 
paid so far to establishing a link between them and business cycle theory. We 
argue that this is mainly because mainstream macroeconomics lacks adequate 
conceptual and analytical tools to accomplish such an endeavor. 
 

4.4. Pareto and Laplace 

 
In this section we show that a Laplace distribution for growth rates can be 

derived as soon as the size of the state variable under scrutiny is Pareto 
distributed. As discussed in Palestrini (2005), one can start from the definition of 
the growth rate as the log-difference of the state variable's levels, so that the 
proof consists in showing that: 1) the logarithm of a Pareto random variable 
follows an exponential distribution; and 2) the difference of two exponential 
random variables becomes a Laplace distribution. 

Let us start by assuming that the distribution of the firms’ size above a certain 
threshold k is Pareto. The most immediate way to think at the statistical 
properties of firms’ growth at any t consists simply in exploiting the statistical 
features of firms’ sizes at consecutive periods of time. If we define the growth 
rate gt of size St as the log-difference between sizes at time t and t−1:  

 
gt = log(St) – log(St-1),        (4.1) 

 
it is immediate to note that, without any further information on the firms’ size 
joint density function, gt represents the difference of two dependent exponential 
distributions. The proof of this proposition is based on the monotonic property of 
the logarithmic function and on the rule of transformation of random variables. 

                                                 
12 For a review of the debate on the shape of the firms' size distribution sprung up during the 1950s 
and 60s, see the monograph by Steindl (1965).  
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Let the random variable S to follow a Pareto distribution with parameter α. 
Thus, the probability distribution of log(S) is: 
 

( )( ) ( )( ) ( )( ) ( )k-expexpexpPrlogPr αα =∝≥=≥ −kkSkS   (4.2) 
 
that is, an exponential distribution with parameter α. In other terms, log(S) 
follows an exponential distribution with probability density function equal to: 
 

( )( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛−=−

αα
α SSE logexp1;log 1 .     (4.3) 

 
In the case of independent exponential variables, it is simple to prove that a 

Laplace distribution regarding growth rates emerges by making use of the 
convolution theorem and its relation with the characteristic function. In fact, the 
characteristic function of two independent exponential distributions zj, j = 1, 2, 
with parameter  is: 1−α

 
( ) ( ) 11 −−= αγγ iC

jz        (4.4) 

 
while their difference y = z1 – z2 has a characteristic function that is the product of 
the two, that is: 

 

( ) ( ) ( ) ( ) ( ) ( ) 12211 111
21

−−− +=+−=−= γααγαγγγγ iiCCC zzy , (4.5) 
 

that is the characteristic function of a Laplace distribution. 
To prove the existence of a relationship between the Pareto distribution for 

firms’ size and the Laplace distribution for their growth rates in the case of time 
dependent exponential distributions, first note that for any exponential 
distribution the two following properties hold true: 
 
 ( ) ( )2121 PrPr sssssss ttt >=>+> ,     (4.6) 

 ( ) ( )2111211 ˆPrˆˆˆPr sssssss ttt >=>+> +++ .    (4.7) 
 

 76



 

Marshall and Olkin (1967) proved that whenever the two properties above 
hold true also for the joint probability distribution of st and st+1, that is: 
 
 ( ) ( )tttttttt ssssksksksskss ˆ,Pr,ˆ,Pr 11111 >>=>>+>+> +++ , (4.8) 
 
then the only bivariate exponential distribution function consistent with (4.8) 
which has exponential marginals is given by: 
 
 ( ) ( )( ) ( )( )212211211 ,maxexplog,logPr sssssSsS tt λαα −−−=>> +  (4.9) 
where λ is a measure of dependence. In other terms, λ = 0 means independence 
whereas when λ > 0 there is a positive dependence between observations in t and 
t+1. As a result, expression (4.9) can accommodate a pure Gibrat process, as well 
as growth processes displaying various degree of temporal correlation. 

If the growth rate is positive, g > 0, the joint density is proportional to the 
following exponential: 
 
 ( ) ( 2221112 exp, sssssf )λαα −−−∝ .     (4.10) 

 
Integration along the line s2 = s1 + g in the plane (s1, s2) allows us to obtain the 

following relation for the probability density function of g, φ(g): 
 

    (4.11) 
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that implies: 
 
 ( ) ( )( gg 2exp )αλφ +−∝ .      (4.12) 

 
By symmetry, the probability density function of |g| for the case g < 0 satisfies 

the following condition: 
 

( ) ( )( gg 1exp αλφ +−∝ ) .      (4.13) 
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Relations (4.12) and (4.13) show that the rate of change of firms size follows a 
double exponential distribution. In particular, the shape of the Laplace 
distribution for firms’ growth rates may be asymmetric, and it is affected by two 
components: 1) the dependence between firms’ size at consecutive time periods 
λ; and 2) the scale parameters α1 and α2 at time t and time t+1, respectively. 

The main message looming large from the statistical results discussed 
so far is that the scaling approach to business fluctuations derives in the 
first place from the levels of state variables being distributed as a power 
law. Thus, the basic question to be answered is whether scale invariance 
for levels of state variables is a general feature of economic systems or not. 
From this viewpoint, it emerges that power law probability functions arise 
endogenously in economics basically for two reasons: 1) the lack of a 
characteristic scale in empirical and theoretical economics, implying that 
the occurrence of either rare or frequent events (i.e., sizes) is governed by 
the same law (Zajdenweber, 1997); 2) a power law behavior in the tail(s) of 
a distribution is a feature of a family of distributions known as Lévy-stable 
distributions. Due to a generalization of the central limit theorem 
(Gnedenko and Kolmogorov, 1954), the sum of a large number of identical 
and independent random variables has a probability density function 
characterized by a four-parameter characteristic function. Among the many 
different available parameterizations, we choose the S0(α, β, γ, δ) 
parameterization proposed by Nolan (2002),13 according to which the 
characteristic function of X is given by: 
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A major advantage of the functional form (4.14) is that the four parameters 

have an intuitive interpretations. The characteristic exponent or index of stability 

                                                 
13 The parameterization of the characteristic function S0 is particularly convenient because 

the density and the distribution functions are jointly continuous in all four parameters. 
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α, which has a range 0 < α ≤ 2, measures the probability weight in the upper and 
lower tails of the distribution. In general, the pth moment of a stable random 
variable is finite if and only if p < α. Thus, for α < 2, a Lévy-stable process 
possesses a mean equal to the location parameter δ (which in turn indicates the 
centre of the distribution) but it has infinite variance, while if α < 1 even the 
mean of the distribution does not exist. β, defined on the support -1 ≤ β ≥ 1, 
measures the asymmetry of the distribution, with its sign indicating the direction 
of skewness. Finally, the scale parameter γ, which must be positive, expands or 
contracts the distribution around the scale parameter δ. The Lévy-stable 
distribution function nests several well-known distributions, like the Gaussian 
N(µ, σ2) (when α = 2, β = 0, γ = σ2/2 and δ = µ), the Cauchy (α = 1 and β = 0) and 
the Lévy-Smirnov (α = 0.5 and β = ±1). 

Lévy-stable distributions are particular important because they represent an 
attractor in the functional space of probability density functions, in that the 
generalized Central Limit Theorem (Gnedenko and Kolmogorov, 1954) states 
that the only possible limiting distribution for sums of independently and 
identically distributed random variables belongs to the Lévy-stable family.  It 
follows that the conventional Central Limit Theorem is just a special case of the 
above − a special case which applies whenever one imposes the condition that 
each of the constituent random variables has a finite variance. In particular, 
Lévy-stable distributions are stable under convolution. Simply stated, if we sum 
N iid Lévy-distributed variables with characteristic exponent α:  

 

α

τ

1
1

N

N

i
i

N

∑
==Τ .        (4.15) 

 
the renormalized sum TN is also Lévy-stable with characteristic exponent α. 
Besides other interesting properties,14 non-Gaussian Lévy-stable distributions 
(i.e., for α < 2) are characterized by tails which are asymptotically Pareto 
distributed with exponent 1 + α.  

                                                 
14 A comprehensive reference is Samorodnitsky and Taqqu (1994). 
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When α = 2, β = 0 and 
2

2σγ = , the distribution is Gaussian with mean µ and 

variance σ 2. The Gaussian family is the only member of the Lévy class for which 
the variance exists. The presence of second moments implies that, if disturbances 
hitting firms are only idiosyncratic ones, aggregate fluctuations disappear as the 
number of firms N grows large. In fact, without aggregate shocks the variance of 
the average output of N firms is less than the maximum variance of firms’ 

output, say 
N

2
maxσ , a quantity that, for N going to infinity, vanishes. On the 

contrary, stable distributions with α < 2 do not need aggregate shocks to generate 
aggregate fluctuations. 15, 16  

The difference between the two situations may be well described by the 
example depicted in Fig. 4.1, where we report the average output time path of 
two economies identical but for the shape of their firms' size distributions. In the 
first economy firms are Pareto distributed, whereas in the second one the 
distribution of firm’s size is lognormal. Output is assumed to be proportional to 
size. Time series have been obtained by averaging from samples extracted from 
the two distributions at any time period t. 

 

                                                 
15 The first author conjecturing it explicitly has been Mandelbrot (1960). 
16 From this viewpoint, in real world normality (in terms of Gaussian distributed variables) might 
just be a special case. 

 80



 

             
Fig. 4.1. Comparison between two simulated economies, inhabited by 10000 firms each. In the first 
economy (black line) agents’ size distribution is Pareto with location parameters k = 1 and stability 
parameter α = 1.5. In the second economy (grey line) agents’ size distribution is lognormal, with the 
same mean (i.e., 3) and same estimated variance at t=0 (i.e., 10.4) of the other economy. The plot 
describes the two time series of agents’ average output, Ypa (the time evolution of the mean of the 
Pareto distributed firms) and Yln (the time evolution of the mean of the lognormal distributed 
firms). 

 
The time evolution of the average output shows almost no aggregate 

fluctuations for the lognormal economy, but large fluctuations in the Pareto 
economy even in the absence of aggregate shocks. In particular, the variance of 
the average aggregate output in the Pareto case is one order of magnitude greater 
than the variance of the lognormal case. Put differently, stable Pareto-Lévy 
distributions are good candidates to explain aggregate large fluctuations in time 
periods characterized by small aggregate shocks.  
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4.5. An agent-based model 
Consider a sequential economy,17 with time running discretely in periods t = 1, 
2,…, populated by many firms and banks. Two markets are opened in each 
period: the market for an homogenous produced good, and the market for credit. 
As in the levered aggregate supply class of models first developed by Greenwald 
and Stiglitz (1990, 1993), our model is fully supply-determined,18 in the sense that 
firms can sell all the output they (optimally) decide to produce.  

Due to informational imperfections on the equity market, firms can raise 
funds only on the credit market. The demand for credit is related to investment 
expenditure, which is therefore dependent on banks' interest rates. Total credit 
supply, in turn, is a multiple of the banks' equity base, which is negatively 
affected as insolvent borrowing firms go bankrupt. As we will discuss below, this 
mean-field interaction provides a mechanism to create long-range inter-temporal 
correlations capable to amplify and propagate idiosyncratic shocks. 
 
 
4.5.1 Firms 
At any time period t, the supply side of the economy consists of finitely many 
competitive firms indexed with i = 1, …, Nt, each one located on an island. The 
total number of firms (hence, islands) Nt depends on t because of endogenous 
entry and exit processes to be described below. Let the i-th firm uses capital (Kit) 
as the only input to produce a homogeneous output (Yit) by means of a linear 
production technology, Yit = φKit. Capital productivity (φ) is constant and uniform 
across firms, and the capital stock never depreciates. 

                                                 
17 Recall that in a sequential economy (Hahn, 1982) spot markets open at given dates, while future 
markets do not operate. 
18 Two scenarios are consistent with this assumption. In the equilibrium scenario, aggregate demand 
accommodates supply, i.e. households and firms absorb all the output produced by the latter and 
the goods market is always in equilibrium. In this scenario, aggregate investment must be equal to 
the sum of retained profits and households' saving. As we will see, both investment and retained 
profit are determined in the model, so that we have to assume that households' saving adjusts in 
order to fill the gap between the two. In the disequilibrium scenario, aggregate demand does not 
(necessarily) accommodate supply, so that the goods market is generally not in equilibrium. In this 
case, the difference between aggregate investment on the one hand, and the sum of profit and 
households' saving on the other must be assumed to take the form of involuntary inventories 
decumulation.  
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The demand for goods in each island is affected by an iid idiosyncratic real 
shock. Since arbitrage opportunities across islands are imperfect, the individual 
selling price in the i-th island is the random outcome of a market process around 
the average market price of output Pt, according to the law Pit = uitPt, with 
expected value E(uit) = 1 and finite variance. 

By assumption, firms are fully rationed on the equity market, so that the only 
external source of finance at their disposal is credit. The balance sheet identity 
implies that firms can finance their capital stock by recurring either to net worth 
(Ait) or to bank loans (Lit), Kit = Ait + Lit. Under the assumption that firms and 
banks sign long-term contractual relationships, at each t debt commitments in 
real terms for the i-th firm are ritLit, where rit is the real interest rate.19 If, for the 
sake of simplicity, the latter is also the real return on net worth, each firm incurs 
financing costs equal to rit(Lit + Ait) = ritKit. Total variable costs proportional to 
financing costs20, gritKit, with g > 1. Therefore, profit in real terms (πit) is: 

 
( itititititititit KgruKgrYu )−=−= φπ .    (4.16) 

 
and expected profit is E(πit) = (φ − grit)Kit. 

In this economy, firms may go bankrupt as soon as their net worth becomes 
negative, that is Ait < 0. The law of motion of Ait is: 

 
ititit AA π+= −1 ,        (4.17) 

 
that is, net worth in previous period plus (minus) profits (losses). Making use of 
(4.16) and (4.17), it follows that the bankruptcy state occurs whenever: 
 

 it
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it
itit u
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−< −11

φ
.       (4.18) 

 
As in Greenwald and Stiglitz (1990, 1993), the probability of bankruptcy ( fPr ) 

is incorporated directly into the firm's profit function because going bankrupt 
                                                 

19 It follows that the credit lines periodically extended by the bank to each firm are based on a 
mortgaged debt contract. 
20 As a matter of example, one can think of retooling and adjustment costs to be sustained each time 
the production process starts. 
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costs, and such a cost is increasing in the firm's output. Assuming for 
expositional convenience that uit is uniformly distributed on the support (0,2), 
and that bankruptcy costs are quadratic,  with c > 0, the objective 
function takes the form:

2
it

f cYC =
21

  

( ) ( ititititititit KAKgrcKgr 1
2

2 −−−−=Γ )φφ .     (4.19) 

 
From the first order condition, the optimal capital stock is: 
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Thus, the desired capital stock in t is decreasing (non-linearly) with the 

interest rate and it increases linearly with financial robustness, as proxied by the 
t−1 net worth. Time period t desired investment is simply the difference between 
the desired capital stock and the capital stock inherited from the previous period, 

. To finance it, the i-th firm recurs to retained profits and, if 
needed, to new mortgaged debt, 

1−−= it
d
itit KKI

ititit LI ∆+= −1π ,22 where ∆Lit = Lit - Lit-1. Making 
use of (4), the demand for credit is given by: 
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21 For this program to be well defined g should be such that the condition Ait-1 < gritKit holds. 
22 A word of caution is in order here. The law of motion of the net worth (4.17) seems to imply that 
the correct time at which profit had to be taken into account in deriving the demand for credit 
should be time period t. In fact, the timing structure of the model is such that when deciding how 
much to borrow from banks, firms do not have received any time t revenues yet. Hence, at the 
beginning of time period t the only internal finance they can count on are inherited equity and time 
t−1 profits. 
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4.5.2 The banking sector 
We model the banking sector in terms of the reduced form from the working of 
an oligopolistic industry. The balance sheet of the banking sector is , 
with L

tt
s
t DEL +=

t being total credit supply, Et the banks' equity base and Dt deposits which, 
in this framework, are determined as a residual. To determine the aggregate level 
of credit supply, we assume that banks are subject to a prudential rule set up by a 

regulatory body such that ν
1−= ts

t
EL , where the risk coefficient ν is constant. 

Hence, the healthier are banks from a financial viewpoint, the higher is the 
aggregate credit supply (Hubbard et al., 2002).  

Credit is allotted to each individual firm i on the basis of the mortgage it 
offers, which is proportional to its size, and to the amount of cash available to 
serve debt23 according to the rule:    

 

( )
1

1

1

1 1
−

−

−

− −+=
t

it
s

t

it
s

s
it A

A
L

K
K

LL λλ       (4.22) 

 

with , , and 0 < λ < 1. The equilibrium interest rate 

for the i-th firm is determined as credit demand (4.21) equals credit supply (4.22), 
that is:  
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where κit-1 and αit-1 are the ratios of individual to total capital and net worth, 
respectively. 

                                                 
23 For evidence on the effects exerted by firms' size and credit worthiness on banks' loan policies see 
e.g. Strahan (1999). 
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Under the assumption that the returns on the banks' equity are given by the 
average of lending interest rates tr , while deposits are remunerated with the 

borrowing rate , the banks' profit ( ) is given by: A
tr

B
tπ

 
( )[∑

∈
−− +−−=

tNi
ttt

s
itit

B
t EDrLr 111 ωπ ]      (4.24) 

 

with 
ω−1

1  being the spread between lending and borrowing rates. Note that ω, 

which in what follows will be treated parametrically, captures the degree of 
competition in the banking sector: the higher is ω, the higher is the interests' 
spread which, in turn, increases with a higher monopolistic power of banks. 

When a firm goes bankrupt, Kit < Lit. In this case, the banking sector as a whole 
registers a loss equal to the difference between the total amount of credit 
supplied up to time period t and the relative mortgage, Bit = Lit − Kit = − Ait, where 
Ait < 0 if firm i belong to the set of bankrupt firms Ωt. Let us call Bit bad debt. The 
banking sector's equity base evolves according to the law of motion: 
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Through the banking sector's equity base law of motion, idiosyncratic real 

disturbances leading to a bankruptcy have systemic consequences: an increase of 
bad debt forces the aggregate credit supply shifting to the left, thus raising the 
financial costs due to a higher interest rate, ceteris paribus. Furthermore, the 
distribution of firms' net worth influences the average lending interest rate, 
which in turn affects the bank's profit and, eventually, credit supply. Thus, firms 
dynamically affect each other through indirect interactions. In particular, 
interactions are global and independent of any topological space, and they occur 
through a field variable, which in our case is the banking sector's balance sheet 
(Aoki, 1996).  

Interactions, if strong enough, allow the system to escape from the property of 
square root scaling for sums of iid shocks due to the Central Limit Theorem. It is 
well known from statistic theory (e.g, Resnik, 1987) that as N grows large, 
independence of idiosyncratic disturbances implies that the volatility of the 
system decays with the square root of size, leading to a power law distribution 
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with exponent β = −0.5. If distant agents are sufficiently correlated through 
interactions, in turn, aggregate volatility decays more slowly, according to a 
power law with exponent β  < −0.5. The empirical evidence reported in Amaral et 
al. (1997) for companies and in Canning et al. (1998) for countries goes precisely 
in this direction. 
 
 
4.5.3 Firms' demography 
Recent empirical work has shown that firms entering and exiting markets 
contribute almost as much to employment and macroeconomic fluctuations as  
firms continuing their activity (e.g., Davis et al., 1996). Hence, any theory of 
business fluctuations should pay particular attention to the way entry and exit of 
firms are modeled.24

In our framework, exits are endogenously determined as financially fragile 
firms go bankrupt, that is as their net worth becomes negative. Besides making 
the total output to shrink, exits cause the equity of the banking sector − and, in 
turn, aggregate credit − to go down. As discussed above, this mean field 
interaction in terms of a bank effect (Hubbard at al., 2002) amplifies and 
propagates idiosyncratic shocks all over the economy. 

As regards entries, the literature has suggested models ranging from 
exogenously defined purely stochastic processes (Winter et al., 1997), to models 
where entry is endogenous in that the number of entrants depends on expected 
profit opportunities (Hopenhayn, 1992). Alas, the available evidence has been so 
far inconclusive. Caves (1998), for instance, claims that the only firm points are 
that entrants are in general largely unsure about the probability of prospective 
success, and that entries does not occur at a unique sector-specific optimal size.  

Our modeling strategy aims at capturing these facts by means of a mechanism 
in which a probabilistic process is affected by prospective performance, and 
entries can take place at different sizes. First, the number of new entrants ( ) 
is obtained by multiplying a constant 

entry
tN

N  > 1 to a probability which depends 
negatively on the average lending interest rate: 

 

                                                 
24 Delli Gatti et al. (2003b) provide an extensive analysis on the relationship between entries and 
exits and aggregate fluctuations in a model very similar to this one. 
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where d and e are constants. The higher is the interest rate, the higher are 
financial commitments, and the lower are expected profits, with entries being 
lower in number. Second, entrants' size in terms of their capital stock is drawn 
from a uniform distribution centered around the mode of the size distribution of 

incumbent firms, each entrant being endowed with an equity ratio (
it

it
it K

A
a = ) 

equal to the mode of the equity base distribution of incumbents.  
 
 

4.5.4 Long-run dynamics 
In order to understand the long-run − i.e., growth − properties of our economy, it 
is convenient to consider a deterministic version of the model. Indeed, 
abstracting from uncertainty means getting rid of heterogeneity, so that we can 
easily keep track of the dynamic behavior of a representative firm. If the interest 
rate is assumed constant, from (4.16), (4.17) and (4.20) it turns out that the law of 
motion of the net worth is:  
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The solution of this first order difference equation returns the steady state 

gross growth rate of the economy, ⎥
⎦

⎤
⎢
⎣

⎡
+1

2
1

gr
φ , which implies positive growth 

whenever ( ) 0>− grφ : whenever the return to capital is higher than its cost, the 
economy is characterized by endogenous growth. This result is far from 
surprising as soon as we note that in our model the production function exhibits 
constant returns to the only input that can be accumulated, which is the same 
engine of growth as in the well-known AK endogenous growth model developed 
by Rebelo (1991).  

This analogy can be further extended to appreciate the special role played by 
credit in our economy. First, recall that in the Rebelo's model the steady-state 
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growth rate depends positively on the saving rate. In our partial equilibrium 
analysis savings are implicitly defined as the difference between investment and 
retained profits,25 so that at each time period t total savings are equal to banks' 
loans. Indeed, changes in the banking regulatory regime or in the competitive 
pressure in the banking sector end up affecting the equilibrium lending interest 
rate, and through it the long-run growth rate.  

 

4.6. Simulation results: preliminaries 
The complexity of the model directs the analysis of its high-frequency properties 
towards computer simulation techniques. Figures 4.2 and 4.3 exhibit the 
evolution of an artificial economy lasting 1000 time periods, implemented using 
the framework analyzed in the previous section with a starting number of 10000 
firms.26 In particular, in Figure 4.2 we show the time path of the logarithm of total 
output, whereas in Figure 4.3 it is drawn its volatility expressed in terms of 
output's growth rates.  

From Fig. 4.2 it emerges that our stochastic economy, buffeted with iid 
idiosyncratic disturbances only, is characterized by sizable aggregate 
fluctuations; that its growth process displays a broken-trend behavior27 (Perron, 
1989); and that Great Depressions (e.g., the one during the simulation time period 
855-880) can suddenly punctuate its time path, due to bankruptcies of great firms 
that origin remarkable impacts on the business cycle via the financial sector 
(Gabaix, 2003). The output series possesses an autocorrelation parameter equal to 
0.99. Interestingly, before large downturns our model seems to exhibit a common 
pattern: starting from a constant growth trend, the economy gains momentum 
with accelerating growth and increasing volatility, to subsequently move into a 
deep recession. 

                 

                                                 
25 See the equilibrium scenario depicted in note 18. 
26 In the following, every simulation were conducted by means of Swarm, an agent-based  software 
developed at the Santa Fe Institute to implement artificial economies. Interested readers can find it 
at the web site: www.swarm.org. 
27 For instance, the average growth rate goes from 0.19% in periods 150-350, to 0.25% in periods 
351-780, to 0.37% in periods 780-855, to 0.31% in periods 880-1000. Yearly average growth rates 
more close to reality could be obtained in this model through a more careful calibration exercise. 
Given that our main interest is in business fluctuations, however, we leave this undertaking to 
future research.  
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Fig. 4.2. Logarithm of the aggregate output. The first 150 periods have been deleted to get rid of 
transients. 
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Fig. 4.3. Growth rates of aggregate output. 
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Furthermore, as shown in Fig. 4.3, fluctuations as measured by output's 

growth rates are characterized by cluster volatility, a well known phenomenon 
mostly in the financial market literature due to the heavy tails character of asset 
returns' distributions (Cont et al., 1997). The growth rates' standard deviation is  
0.0289. 
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4.6.1 Firms' size and growth rates distributions 
In Fig. 4.4 we report the Zipf plot for firm sizes recorded at simulation time 
period 1000. In agreement with recent empirical results (Axtell, 2001) the firms' 
size distribution is skewed and it follows a power law. Furthermore, the scaling 
exponents recorded (α = 1.15) are consistent with what found in real data (Gaffeo 
et al., 2003). As widely shown in the complexity literature, the emergence of such 
a distribution is deeply correlated with the hypothesis of interaction of 
heterogeneous agents that is at the root of the model. More specifically, the 
interaction among units buffeted with multiplicative iid shocks leads the system's 
dynamics  to a complex critical state in which no attractive point or state 
emerges. In terms of business fluctuations, it means that there is not a single and 
determinate equilibrium, but a non-stable state emerges after each recessive or 
expansive episode.  
 
 
Figure 4.4. Zipf plot of firm sizes. 

 

                          
 
 

The firms' size distribution tends to shift to the right during growing phases, 
while during recessions the estimated stability parameter α decreases. In fact, 
during expansions greater firms tend to grow faster than smaller ones, causing a 
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higher slope of the interpolating line if compared with the situation observed 
during recessions. On the contrary, bankruptcies of great firms during 
downturns cause a more equal distribution of the size distribution. Once again, 
this is precisely what observed in real data (Gaffeo et al., 2003). 

Stanley et al. (1996) and Bottazzi and Secchi (2003), among others, find that the 
growth rates of firms are generally well fitted by a Laplace (or double 
exponential) distribution. As discussed in Section 3, such a finding can be shown 
to derive from firms' size being distributed as a power law. In fact, simulated 
data for firms' growth rates, reported in Fig. 4.5, are well approximated by a 
(asymmetric) Laplace distribution.  

 
Fig. 4.5. Distribution of firms growth rates. 

 

                
                          

 
In another stimulating paper, Lee et al. (1998) show that binned growth rates 

for firms and countries' GDPs settle on the same regression line in a log-log plot. 
If analyzed from a complex perspective, this result signals the presence of self 
similarity28, i.e. the behavior of greatest units (countries) reproduces the behavior 
of smaller units (firms), possibly corrected by a scale factor (Durlauf, 2003). As 
shown in Fig. 4.5, where we plot the distribution of the growth rates of aggregate 
output, this feature has been recorded in our model as well. The difference of 
parameters between the firms' growth rate and the aggregate output growth 

                                                 
28 According to Sornette (2000, p.94), self-similarity occurs when "… arbitrary sub-parts are 
statistically similar to the whole, provided a suitable magnification is performed along all 
directions”. 
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rates distributions is sensible, in our simulations, to the modeling choice for the 
production function, though we do not have at this stage any analytical result to 
prove it. 
 
Fig. 4.6. growth rates of aggregate output. 

 

                 
 

 
The model is capable to display several other striking similarities with 

observable facts. In particular: 1) the frequency of firms’ exits seems to be well 
approximated by an exponential function of firms' age (Steindl, 1965; Fujiwara, 
2003); 2) bad debt, that is the amount of unpaid loans due to bankruptcies 
extended by the banking sector, follows a stretched exponential distribution 
(Delli Gatti et al., 2003d); 3) profits are power law distributed, and exhibit time 
reversal symmetry (Fujiwara, 2003); 4) expansions and recessions, measured as 
trough-to-peak and peak-to-trough of the GDP growth rates time series, are 
distributed as a Weibull (Di Guilmi et al., 2003); 5) the rate of return on the capital 
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K
π  and the equity ratio ai are positively correlated; 6) a higher equity ratio is 

associated with a lower volatility of profits, the last two facts being consistent 
with the evidence one can obtain by analyzing real data.  
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4.6.2 Conditional distributions 
In this subsection we address a typical aggregation issue, known as the mixture 
problem, which is likely to negatively affect the reliability of results as soon as 
scaling plots are taken into account (Brock, 1999; Durlauf, 2003). Roughly 
speaking, the mixture problem asserts that, when aggregating economic units 
with different behaviors, it is possible to observe marginal distributions with 
heavy tails even though conditional distributions do not possess such a property. 
In other terms, a power law may appear simply because heterogeneous units 
governed by different stochastic processes are erroneously mixed, instead of 
signaling the invariant properties of a unique Lévy-stable underlying stochastic 
process. In fact, if the latter is the case one should observe the same scaling 
behavior independently of which conditioned sub-sample is considered. In fact, 
the mixture problem may be present in our work, since the model described in 
Section 4.6 implies different behaviors according to the financial position of 
firms, as well as differently aged firms.  
 
Fig. 4.7. Profit distribution conditioned on the equity ratio, with firms grouped in 10 bins. 
 

                           
 
 
 

To understand which variable is likely to be most suitable for conditioning, 
we start considering one of the basic hypothesis at the root of the model 
mechanics, that is the fact that an heavy indebted firm is forced to use a large 
amount of its revenues to pay for its financial commitments, instead of using it 

 94



 

for real investments. In other terms, a high leverage is likely to reduce the 
profitability index. The analysis of the relationship between profit rate and equity 
ratio, conducted by means of nonparametric regression29, returns an upward 
sloping trend (Fig. 4.7) as one would expect from the theoretical model, and in 
line with what recorded for empirical data. Furthermore, simulations show that 
the rate of profit distribution shifts to the right when conditioning on the equity 
ratio30, and that the probability to fail does not depend on the size but only on the 
financial position31. This is important for the analysis to follow, suggesting that to 
address the mixture problem it is sufficient to compute firms’ distributions 
conditional on the equity ratio.  

 
Fig. 4.8. Zipf plot of firms dimension sorted by equity ratio (a). 

 

                 
Hence, the power law behavior of the firms' size distribution is analyzed 

partitioning the [0,1] interval, to which a belongs, in several bins (chosen 
according to a percentile allotment). Figure 4.8 shows that data from different 
distributions conditioned on the equity partition [0, 0.1734], (0.1734, 0.2269], 

                                                 
29 We use a kernel density estimation (Härdle, 1990), with a Gaussian kernel. 
30 The shape of the conditioned profit distributions depends on the assumption one makes on the 
distribution of idiosyncratic real shocks. We made several trials, to conclude that the best 
approximation to what observed in real data could be obtained by forcing the relative price shocks 
to be normally distributed. Nevertheless, none of the model's properties discussed in the main text 
are qualitatively affected by this modeling choice. 
31 This finding could be further conceived by recalling that firs' exists are exponentially distributed, 
and that the exponential distribution possesses the well known property of being memoryless. 
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(0.2269, 0.3319]32 collapse on the same interpolating line, a clear sign of self-
similarity, thus signaling that the unconditional distribution of firms' size is 
likely to display a scaling behavior because of its true nature and not due to 
spurious mixing. The level of the equity ratio seems not to have any influence on 
the relative growth of firms, since the conditional distributions of growth rates, 
sorted in bins according to their financial position, invariably collapse on the 
same curve.  

To summarize, of the two forms of heterogeneity in the model − i.e., firms' 
financial position and age − the one that really matters in firms’ behavior is the 
former, here measured by the equity ratio a. The analysis above shows that the 
scaling and the self-similarity properties – phenomena which suggest complex 
behaviors – do not depend on the aggregation of different economic units but it 
is an intrinsic property of an economic system with interacting units buffeted 
with idiosyncratic multiplicative shocks. 

 
Fig. 4.9. Distributions of firms' growth rates partitioned according to their equity ratio. 

 

                        
 
 

4.7. Statistical aggregation  
Roughly speaking, the job of a macroeconomist consists in analyzing people’s 
behavior by focusing on the resulting aggregate quantities and their 

                                                 
32 A fourth bin, i.e. the partition (0.3319, 1], has been excluded from the plot due to a lack of 
sufficient observations. 
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relationships. This is exactly the key point of the aggregation problem: starting 
from the micro-equations describing/representing the (optimal) choices of the 
economic units, what can we say about the macro-equations? Do they have the 
same functional form of the micro-equations (what Theil (1954) called the analogy 
principle)? If not, how to derive the macro-theory? Certainly, simulations 
constitute a useful way round, and probably the only one when the model is 
filled with non-linearities. It seems interesting, however, to look for analytically 
closed-form solution to the aggregation problem even for agent-based model.   

The modern approach to aggregation is the one proposed e.g. by Kalejian 
(1980) and Stoker (1984) which aims at exploiting the statistical structure of the 
model. In particular, the core idea of the statistical aggregation procedure consists in 
looking for relationships between the first moments of the macro-variables, given 
the micro-theory, instead of requiring that the aggregate model inherits the same 
functional form of the micro-relationship. 

Suppose that the micro-relationship we are interested in has the following 
form: 

 
               ( ) 1 2 1 2it i it it iy f x u i … N t … Tθ= , , = , , , = , , ,                                  (4.28) 

 
where  is the strategic choice of the generic economic unit i. In the reduced 
form representation, that choice depends on the vector of explanatory variables 

ity

itx , whereas  is a vector of unobservable characteristics and itu iθ  a vector of 
parameters. Call ( it it i tP x u )θ φ, , ;  the joint distribution of all variables 
characterized by a time-variant vector tφ . Then, using for the sake of simplicity a 
continuous notation: 
 

              [ ] ( ) ( ) ( ) ( )t y y t t t i t t i t t tE y t f x u P x u dx du dµ φ θ θ φ= = Ψ = , , , , ;∫ θ ,       (4.29) 
 
while the following equation gives the expected (aggregate) variables: 
 

              [ ] ( ) ( ) ( )t x x t t t t i t t tE x t x P x u dx du dµ φ θ φ= = Ψ = , , ;∫ θ .                       (4.30) 
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The idea behind this line of research is to partition φ  into two sub-vectors, 

1 2(t t )tφ φ φ= , , such that: a) 2tφ has the same dimension of itx ; and b) an invertible 

function between 2tφ  and ( )x tµ  exists, say . Conditions a) 
and b), if combined, imply that we can write: 

1
2 1( (t x t x tφ φ µ−= Ψ , ))

1tt
 

               1
1 1( ) [ ( ( ))] ( ( ) )y y t x t x xt t Fµ φ φ µ µ φ−= Ψ ,Ψ , = ,                                   (4.31) 

 
which represents the (aggregate) relation between the first moments of the 
economic variables.  

Two remarks are in order. First, notice that the aggregate relationship between 
( )y tµ  and ( )x tµ  depends on a set of parameters of the joint distribution, here 

represented by 1tφ . Second, in general the aggregate relationship F differs from 
the true micro-one f. In other words, if one allows for heterogeneity in individual 
choices, it is impossible to use the analogy principle even if we are interested in 
an aggregate model that holds only on  average. 

It must be admitted that this approach has been rarely used in the literature, 
basically because of its difficult implementability and the need for gathering too 
much information about cross-sectional distributions. Furthermore, as argued by 
Pesaran (2000), it is far from clear how this approach could be extended to the 
case of dynamical systems. In what follows, however, we will argue that an 
approximate and simplified adaptation of the stochastic aggregation procedure 
can be derived, which possesses the valuable attribute of manageability. Simply 
stated, the key idea of the aggregation procedure we propose here consists in 
approximating equations (4.29) and (4.30) along the line suggested by Keller 
(1980), and extending such a methodology to a dynamical context. This implies to 
expand around the mean the micro-relation (4.28) in Taylor series up to a certain 
order k (usually 2), and to take the expectation operator with respect to the 
agents’ cross-section distribution.  

For expositional purposes let us suppose that, as it is the case in many 
economic models, the random components u is additive, that the functions fi and 
the parameters θi are the same across agents (fi = f ; θi = θ). and that f does not 
depend on θ: 
 

( )it it ity f x u= + .       (4.32) 
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Provided that f(x) has the first k+1 derivatives, the deterministic part of the 
equation (4.32) can be expanded in Taylor series up to order k. In the following, 
we limit ourselves to the case k=2, but the reader can easily generalize the idea to 
higher values. In our case, we get:  

  
1
2( ) ( ) ( ) '( ) ''( ) (|| ||)T

it xt it xt xt it it xt it itf x f f f f oµ ε µ µ ε ε µ ε ε= + = + + +  (4.33) 
 
where µxt is the expected value of the vector xit, εit is the vector spreads from the 
mean and f’ and f’’ are, respectively, the gradient and the Hessian matrix of f(x).  

Taking the expectation we obtain:      
 

1
2[ ] ( ) [ ( ''( ))] [ (|| ||)]T

it xt it it xt itE y f E tr f E oµ ε ε µ= + + ε   (4.34) 
 
where E[.] is the expectation operator and tr is the trace operator. Using the 
linearity property of E, we obtain: 
 

1
2[ ] ( ) ( ''( )) [ (|| ||)]yt it xt t xt itE y f tr f E oµ µ µ= = + Σ + ε      (4.35) 

 
where  is the variance-covariance matrix of x. The equation (4.35) represents 
the exact aggregate relationship between y and x. When there is no dispersion 
among agents (i.e.,  converges to the null matrix), (4.35) reduces to the 
representative agent equation in which the analogy principle between first 
moments of cross-sectional individual behaviors and aggregate variables holds 
true. In other terms, we can interpret the two terms  

tΣ

tΣ

 
1
2 ( ''( )) [ (|| ||)t xt ittr f E o ]µ εΣ +  

 
as the error we made using the RAH when in fact there is important 
heterogeneity among agents/firms33.  

                                                 
33 In probability theory, those terms represent the error made linearizing a non-linear 

transformation of random variables. In fact, as discussed in the main text, there is no aggregation 
error in an economic theory only when the relationships between micro-variables are all linear or 
affine. 
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When we try to apply the general exact aggregation procedure discussed so 
far to real-data problems, we have to distinguish between two cases. First, 
suppose we have prior information about the agents’ distribution. The 
aggregative relationship between first moments and the parameters of the 
distribution can be now easily inverted. Consider an individual-level scalar 
micro-equation (i.e, x is a scalar variable). In this case, equation (4.35) reads:34

 
21

2( ) ''( ) [ (|| ||)yt xt xt xt itf f E oµ µ µ σ ε= + + ] .     (4.36) 
 
Suppose, as a matter of example, that the sample distribution of x can be 
approximated by an exponential probability density function with parameter b, 

i.e. 
1 exp( )x
b b

− . Then, the mean µ  is equal to b and the variance 2σ  to b2. This 

implies that  2 2σ µ=  and the exact aggregate equation becomes: 
 

21
12( ) ''( ) [ (|| ||)] ( ) [ (|| ||)yt xt xt xt it xt itf f E o h E oµ µ µ µ ε µ ε= + + = + ]

)

. (4.37) 
 
Expanding the micro-relationship in Taylor series of order k = 2 implies that the 
approximate equation 
 

1(yt xthµ µ≈         (4.38) 
 
can be seen as a second order approximation (or, more generally, an approximation 
of order k) to the exact aggregation relation.  

If, on the contrary, we do not have prior distributional information, we can 
usefully exploit any empirical or theoretical information we have about the 
dynamic evolution of x.35 For example, let the law of motion of the micro-variable 
x be described by the following first order difference equation: 

                                                 
34 This method may in principle be applied even when second moments of x do not exist 

(but the first moment of y exists) using an appropriate transformation of the microvariable x. In 
such cases, the approach can give only qualitative insights. 

35 For instance, in the industrial dynamics literature such a kind of information comes 
naturally as one considers the evolution of firm sizes. The asymptotic distribution for the size of 
firms usually associated to alternative models of firms’ size growth is log-normal or power law 
(Axtell, 2001; Sutton, 1997). As it is well known, power law distribution may do not possess second 
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1( )it it itx g x z−= +        (4.39) 

 
where g is a function of the variable x and zit is some idiosyncratic component 
with zero mean and variance 2δ . Assume, as before, that g can be differentiated 
at least three times, and take an expansion in Taylor’s series of order 2 of the 
right hand side of equation (4.39). The expected value across all xit, can then be 
written as an approximate function of the cross-section mean and variance at 
time t-1:  

 
2

1(x t x x t x thµ µ σ, , −≅ , 1), −

)

.       (4.40) 
 

Let hy be the function relating the first moment of y with the first and second 
moment of x: 
 
               2(y t y x t x thµ µ σ, ,≅ , ,

2

                                                                                (4.41) 
 
As we take the variance on both sides of (4.39) after the expansion in 

Taylor’s series has been accomplished, it is possible to compute the approximate 
relation between second moments at time t and first and second moments at time 
t-1  

 
2 2 2 2 2

1 1 1 1'( ) ( , , )xt xt xt xt xtg vσ µ σ δ µ σ δ− − − −≈ + =     (4.42) 
 

that can be substituted in the equation (4.41) to get: 
 

2 2 2
1 1 1 1( ) ( ( , , )) ( , ,y t y x t x t y x t xt xt yy x t xt xth h v h 2 2 )µ µ σ µ µ σ δ µ µ σ δ, , , , − − , − −≅ , = , = , .    (4.43) 

 
Then, by inverting equation (4.40) with respect to 2

1x tσ , −  we obtain: 
 

                                                                                                                                      
moments. In such situations, we need to work on transformed variables (e.g., logarithmic 
transformations) to use the above approach. Obviously results must be read carefully since they 
may hold only qualitatively.   
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              ( )1,,
2

1, , −− ≅ txtxxtx l µµσ                                                                               (4.44) 
 

and by replacing equation (4.44) in equation (4.43) we get a second (approximate) 
aggregate relationship:  
 
              2

2 1( ,y t x t xth )µ µ µ δ, , −≅ ,                                                                           (4.45) 
 

relating the per-capita value of the variable yi at time t with the per-capita value 
of the variable xi at time t and t-1, and with the variance of the idiosyncratic 
shock affecting the dynamics of x. 

Summarizing, whenever we are interested in describing the aggregate 
implications of a stochastic process x characterizing the evolution of a population 
of agents, we suggest to approximate the dynamic evolution of the first two 
moments (in general the first k moments) by the following map: 

 
21

1 2
2 2 2 2

1

( ) ''( )

'( )
xt xt xt xt

xt xt xt

g g

g

µ µ µ

σ µ σ δ
+

+

⎧ ≈ +⎪
⎨

≈ +⎪⎩

σ
     (4.46) 

 
In Figures 4.10 and 4.11, we present the results of a simulation of the equity 

ratio stochastic process for a simplified version of the model described in Section 
4.5, in which the interest rate has been considered constant. A set of 10,000 firms 
has been simulated for 20 periods. At the start, all the firms share the same equity 
ratio, set at a value of 70%, and an initial variance equal to 0. For each period, the 
average and the variance of the firm equity ratio distribution has been recorded, 
and plotted as open circles. In both figures, the solid line represents the 
approximation given by system (4.46).  
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Fig. 4.10. Mean of equity ratio. The dots represent the results of the stochastic simulation, 
whereas the solid line is the solution of the system (3.46). 
 

  
Fig. 4.11. Variance of equity ratio. The dots represent the results of the stochastic 
simulation, whereas the solid line is the solution of the system (3.46). 
 

 
 
 

4.8 Summing up 
Scaling phenomena and power law distributions are rather unfamiliar concepts 
for scholars interested in business cycle theory, regardless of the fact that these 
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objects have been studied in economics since a long time. The reason for this 
neglectfulness should be looked for in the reductionism methodology which has 
so far permeated modern macroeconomics. Our position is that the reductionism 
paradigm is not only theoretically unsatisfying, but it can also be falsified as soon 
as proper new stylized facts are isolated. Concepts and methods inspired from 
physics have revealed particularly useful in detecting new facts and guiding 
theory formation. This work aims at popularize the scaling approach to business 
fluctuations, by discussing some scaling-based ideas involved in viewing the 
macroeconomy as a complex system composed of a large number of 
heterogeneous interacting agents (HIAs). 

In particular, in this chapter we present a simple agent-based model of the 
levered aggregate supply class developed by Greenwald and Stiglitz (1990, 1993), 
whose core is the interaction of heterogeneous financially fragile firms and a 
banking sector. In order to grasp the empirical evidence we adopt a 
methodological approach based on agent-based simulations of a system with 
HIAs. In our framework, the origin of business fluctuations can be traced back to 
the ever changing configuration of the network of heterogeneous interacting 
firms. 

Simulations of the model replicate surprisingly well an impressive set of 
stylized facts, particularly two well known universal laws: i) the distribution of 
firms' size (measured by the capital stock) is skewed and described by a power 
law; ii) the distribution of the rates of change of aggregate and firms' output 
follow a similar Laplace distribution. So far, the literature has dealt with stylized 
facts (i) and (ii) as if they were independent. We have discussed as that power law 
distribution of firms’size lays at the root of the Laplace distribution of growth rates.  

The model can be extended in a number of ways to take into account, among 
other things, the role of aggregate demand, different degrees of market power on 
the goods and credit markets, technological change, policy variables, learning 
processes, etc. Our conjecture, however, is that the empirical validation of more 
complex models will be due to the basic ingredients already present in the 
benchmark framework: the power law distribution of firms’ size and then 
associated Laplace distribution of growth rates which in turn can be traced back 
to the changing financial conditions of firms and banks. 
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Appendix  
In this appendix we briefly describe the assumptions and procedures we followed to 
simulate the model. A simulation is completely described by the parameter values, the 
initial conditions and the rules to be iterated period after period. First of all, we set the 
parameter values and the initial conditions for state variables needed to start the 
simulation. There parameters of the model are relative to the firm, bank and the entry 
process.  

For the firm we have: 
• the productivity of capital φ,  
• the parameter of the bankruptcy cost equation c,  
• the firm’s equity-loan ratio α,  
• the variable cost parameter g 

For the bank: 
• the mark down on interest rate ω,  
• the weight the bank gives to the capital in allotting the credit supply λ.  

For the entry process: 
• the location parameter d, 
• the sensitivity parameter e, 

• the size parameter . 
_

N
They are set as follows: φ = 0.1 ; c = 1 ; α = 0.08, g = 1.1 ; ω = 0.002, λ =0.3, d = 100, e 

= 0.1.  must be set according to the initial number of firms (see below). The first step of 
the simulation occurs at time t=1. To perform calculations in period 1 for each firm we 
must set initial conditions for firms’ capital, the equity base, profit and bad debt. We 
chose the following  values K

_

N

i0  = 100, Ai0  = 20, Li0  =  80, πi0 = 0, Bi0 = 0. We run 
simulations for several values of initial firms and for different number of iterations. In the 
simulation we report on Section 5 the initial number of firms was set to 10000 and the 

number of iterations to 1000. Given the initial number of firms, we set . The main 
loop is described in the following algorithm. 

180
_
=N
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5 

Where do we go from here? 
__________________________________________________________ 
 
 
5.1 Instead of a conclusion 
 
    At the end of this book, it is clear to us that the research carried out so far is 

only a step in a much longer intellectual voyage. We feel the need to pause and 
reflect not only on the distance already covered but also on the direction we have 
to take for  future research. For this simple reason, this concluding chapter is not 
a conclusion at all. We want to open a window on the future to foresee the 
shifting ground of research in contemporary macroeconomics and position 
ourselves, our incomplete and as yet probably inadequate set of ideas, methods 
and tools in the debate that will come. 

 
 5.2 Where are we? 
 
The research on the role of agents' heterogeneity in shaping microeconomic 

behaviour and macroeconomic performance has been a thriving industry in the 
profession for the last ten years or so.1 The representative agent assumption is 
still the cornerstone of most of contemporary macroeconomics but the awareness 
of its limitations is spreading well beyond the circle of more or less dissenting 
economists. Also in mainstream macroeconomics, in fact, the representative 
agent is not as eagerly embraced as in the early years of the debate on 
microfoundations in the remote '70s. 

In order to take heterogeneity seriously in macroeconomic modelling, one 
should start with heterogeneous behavioural rules at the micro level and 

                                                      
1The literature on issues pertaining to heterogeneity is growing at a very high exponential rate. 

An early overview of the role of heterogeneity in macro-dynamic models of the '90s in Delli Gatti, 
Gallegati and Kirman (2000). Hommes (2006) surveys models with heterogeneous agents focusing 
mainly on financial markets. 
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determine the aggregate (macroeconomic) quantity -- such as GDP -- by adding 
up the levels of a myriad of individual quantities. Statistical regularities at the 
aggregate level are characterized by emerging properties which do not show up at 
the microscopic level. The evolving macroeconomic features of the economy, in 
turn, feed back on microscopic behaviour in many ways, for instance by means of  
externalities or  mean field effects.  

The increasing availability of computational power has allowed the 
implementation of this bottom-up procedure in multi-agent models. Not 
surprisingly, in the last ten years, the development of Agent Based Modelling 
(ABM) has impressed a formidable boost to research on issues concerning 
heterogeneity. 2 Multi-agent modelling is the most straightforward way of 
tackling the heterogeneity issue. In the profession at large, however, there is no 
agreement on the opportunity of following this methodology. While some 
economists, mainly in the unorthodox camp, eagerly embrace the new research 
strategy, some others, mainly in the mainstream, are skeptical or even dismissal. 

There are at least three reasons for this skepticism: (i) a basic distrust for the 
output of computer simulations, which is generally very sensitive to the choice of 
initial conditions and parameter values; (ii) a critique of the prevailing research 
strategy in ABM, whose pillars are adaptive micro-behavioural rules and out-of-
equilibrium processes, often considered ad hoc; (iii) the difficulty and sometimes 
the impossibility of thinking in macroeconomic terms, i.e. of using macro-
variables in the theoretical framework. 

The first type of skepticism is rapidly fading away. After all, also Real 
Business Cycle theory -- the benchmark line of thought in neoclassical 
macroeconomics -- produces models that are too complicated to be solved by pen 
and paper and must be simulated. In order to do so RBC theorists have 
developed procedures to calibrate their models which, with the passing of time 
and the spreading in the profession, have become standard tools -- we can even 
call them protocols -- of macroeconomic research.  

As to the behavioural rules at the micro-level, it is true that some of the most 
enthusiastic believers in the economy as a Complex Adaptive System have seized 
the opportunity of agent based modelling to propose rules of individual 

                                                      
2Tesfatsion and Judd (2006) provides a comprehensive survey of the different 

viewpoints from which the exploration of behaviour of individual agents can be 
carried out. 
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behaviour characterized by bounded rationality in environments characterized 
by uncertainty, learning and adaptation. In fact, differently from mainstream 
economics, the ABM approach is particularly suitable to address issues of 
heterogeneity, interaction and complexity. 3 Multi-agent models allow the 
comparison of the impact of different behavioural rules of thumb, which are 
often traced back to bounded rationality and adaptive behaviour. There is no 
reason, however, to assume that this is the only way of modelling individual 
choices. The multi-agent framework can also accommodate models of optimizing 
behaviour of heterogeneous agents. 

It is also true that ABM is the most straightforward way of treating out-of-
equilibrium dynamic processes.4 There is no reason, however, to assume that the 
dismissal of equilibrium is a necessary ingredient of any AB model. Out-of-
equilibrium dynamics is one way of configuring a collection of agents' choices. 
Maybe it is also the most reasonable or realistic one. The multi-agent framework, 
however, can also accommodate models of market equilibrium in the presence of 
heterogeneous agents. 

The framework presented in chapter 4, section 4.5, for instance, is a hybrid 
model. First of all, in that model optimizing behaviour (on the part of 
heterogeneous firms which are pursuing the optimal degree of capital 
accumulation) co-exist with non-optimizing behaviour (on the part of the 
banking system which determines the supply of credit on the basis of a 
prudential rule of thumb).  Second, in the model equilibrium on the credit market 
coexist with disequilibrium on the goods market. 

Finally, the difficulty of thinking in macroeconomic terms can be eased by 
means of an appropriate aggregation procedure. For instance the stochastic 
aggregation procedure discussed in chapter 4, section 4.7, allows to resume 
macroeconomic thinking in a multi-agent framework.5 We claim that this 
aggregation procedure is a feasible alternative to the Representative Agent. 

                                                      
3 The practice of combining heterogeneity and interactions is at odds with mainstream 

macroeconomics which is unable, by construction, to explain non-normal distributions, scaling 
behavior or the occurrence of large aggregate fluctuations as a consequence of small idiosyncratic 
shocks. As Axtell (1999: 41) claims: “given the power law character of actual firms’ size 
distribution, it would seem that equilibrium theories of the firm  […] will never be able to grasp 
this essential empirical regularity.”  

4See Arthur (2006) for a thorough treatment of this point. 
5 For a thorough discussion of the procedure and comparison with other aggregation 

procedures see Gallegati et al. (2006). 
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5.3 A hybrid framework 
 
In our opinion, the capability of a model to reproduce significant stylized facts 

both at the micro and at the macro level is a distinctive  feature of a good 
modelling strategy. For instance, as discussed above, empirical data have shown 
that firms size distribution is well approximated by a power law (Axtell, 2001; 
Gaffeo et al., 2003) and aggregate and firm’s growth rates are Laplace distributed 
(Stanley et al., 1996; Bottazzi and Secchi, 2003).  

In this context, since the distribution of firms’ size follows by and large a 
power law we expect idiosyncratic shocks to “big firms” to be responsible to a 
non negligible extent of the ensuing turning point. In fact small idiosyncratic 
shocks at firm-level may generate large aggregate fluctuations when firms’ size is 
power law distributed (Gabaix, 2003).  

The ambitious aim of the model of section 4.5 consists in reproducing the 
empirical evidence by means of a macrodynamic framework in which financial 
factors play  a crucial role. For the sake of discussion, let’s recapitulate and clarify 
the modelling strategy we adopted.  

Starting from the assumption, well corroborated  by the existing evidence, that 
firms differ from one another according to their financial conditions, captured by 
the equity ratio, we build a macrodynamic model in three steps. First of all we 
derive a behavioural rule at the microeconomic level for investment activity in an 
optimizing framework. We have adopted an optimizing perspective precisely to 
show that a multi-agent framework can accomodate optimizing behavior. 
Following Greenwald and Stiglitz (1993) each firm is assumed to maximize 
expected profit less expected bankruptcy costs. From the optimization we derive 
individual investment, output and demand for credit as a function of the 
individual equity ratio. 

Second, we model the credit market. The aggregate supply of bank loans is 
determined as a multiple of the aggregate net worth of the banking system. The 
aggregate demand for loans is obtained by summing up the individual financial 
needs. It is worth-noting that we do impose an equilibrium condition at the 
aggregate level for the credit market. Moreover we assume a simple rule for the 
allotment of aggregate credit to firms: in equilibrium, the allocation of credit to 
each and every borrower is determined by the availability of collateralizable 
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assets. The single most important outcome of the allocation of credit in 
equilibrium is the determination of the interest rate charged to each and every 
borrower, which ultimately depends -- among other things -- by the net worth of 
the borrower itself and of the banking system. 

The net worth of the banking system is the crucial vehicle of (indirect) 
interaction into microeconomic behaviour. For instance, a positive feedback 
mechanism is activated by the bankruptcy of a single firm due to the negative 
impact that the non-performing loan (or bad debt) of the bankrupt firm has on 
the net worth of the banking system. The aggregate supply of credit shrinks, 
being a multiple of the bank’s net worth, and the interest rates go up for each and 
every borrower. As a consequence of the interest rate hike, the most fragile firms 
may be forced into bankruptcy. In other words indirect interaction among firms 
through the credit market may force vulnerable firms to exit the market. This fact 
may start a chain reaction and lead to an avalanche of bankruptcies.   

In order to endogenize the dynamics of the distribution, we focus on the law 
of motion of the individual firm’s equity which is a function, among other things, 
of the interest rate. The third step consists in plugging the equilibrium value of 
the interest rate into the individual law of motion. Inasmuch as the interest rate 
depends on the net worth of the banking system, the individual net worth turns 
out to be a function also of the financial conditions of the other firms. In a sense 
we incorporate a macrofoundation of the micro-dynamics. The individual laws of 
motion are simulated in a multi-agent setting and macroeconomic aggregates are 
determined by adding up individual quantities. The moments are computed 
directly from the empirical distribution obtained from simulated data. 6

In order to describe in the simplest form the modeling strategy we have 
adopted, let’s write the microeconomic behavioural rule as follows 

( )iii rfx ,φ=  
where xi is a choice or control variable (capital in the model of section 4.5) for 

the i-th agent, fi is an indicator of financial robustness (financial condition or 
position; equity or net worth in our case) of the i-th agent,  ri is en endogenous 

                                                      
6As an alternative, one can apply an aggregation procedure to the individual law of motion and 

determine a two dimensional non-linear dynamic system in discrete time which describes the 
evolution over time of the mean and the variance of the distribution itself. For an example see 
Agliari et al. (2000). 
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variable pertaining to the the i-th agent (the interest rate in our case). The 
microeconomic behaviour can be ad hoc, adaptive or optimizing (as in our case).  

In the model of section 4.5 in equilibrium, at the firm level the interest rate is 
determined when the individual financial need matches credit availability for the 
single borrower. The financial need of the i-th agent   is the difference 
between the level of the choice variable and the financial position. Credit 
availability  is a share  s(x

ii
d
i fxl −=

( ) exsl i
s
i µ= i), of aggregate credit supply µe, which in 

turn is a multiple of the financial position of the banking system e.  
Equaling financial need and credit availability, taking into account the 

behavioural rule above and solving for ri  one gets the equilibrium value of the 
endogenous variable:  ( efrr ii )µ,= . Notice however, that the net worth of the  
banking system depends on aggregate financial condition of the firms  
hence 

( )fee =
( )( fefrr ii )µ,= . Plugging this expression into the behavioural rule one 

gets ( )( )( fefrfx iii ,, )φ=  or, in simpler form 
( ffx ii , )ξ=         (5.1) 

where ferffirfifi err φξφφξ =+= ;   
Equation (5.1) shows the interaction at work through a mean field effect. The 

individual choice variable depends on the individual financial conditions and on 
the average or aggregate financial condition. This is the cornerstone of modeling 
financial-real interrelations in an heterogeneous setting.  
Dynamics is introduced through the law of motion of the individual financial 
condition:  ( )iiii rxfgf ,,=′ ( )fehe ,'=  where ’ is the unit time advancement 
operators. Plugging the corresponding expressions for xi and  ri into the laws of 
motion one gets mean field effects at work over time.  

Let’s apply the aggregation procedure presented in section 4.7. Take a linear 
approximation in Taylor's series up to the second order term in    ( ) ffE i =

( ) ( )( ) ( )( )2
2
1 fffffffx iffifi −+−+≈ ξξξ  

Summation and averaging yields 

( ) ( ) ( ) ( ) ( ) ( )2
2
1 ffEfffEffxEx iffifi −+−+≈= ξξξ  

where E(.) is the expectations operator. Notice that by construction  
  and    Hence ( ) 0=− ffE i ( ) .2

fi VffE =−
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( ) ( ) fff Vffx ξξ
2
1

+≈  

The aggregate or macroeconomic (choice) variable depends not only on the 
mean but also on the variance (and higher moments) of the distribution of 
financial conditions. Hence the shape and evolution of the distribution of 
financial conditions is important for macroeconomic performance.  

Equation (5.1) can emerge in many different context. Here is a simple 
example. Assume the behavioural rule is ( )rfx ii ,φ= . Applying the aggregation 
procedure presented in section 4.7 one gets 

( ) ( ) fff Vrfrfx ,
2
1, φφ +≈  

The demand for credit (in the aggregate) is . The supply is . 
When demand and supply are in equilibrium, the interest rate (uniform across 
firms) is  

fxl d −= el s µ=

( )eVfrr f ,,=  . The net worth of the banking system, however, is a 

function of aggregate financial conditions of firms. Hence  ( )fii Vffx ,,ξ=  which 
is a variant of (5.1). 

 
 
5.4 Where do we go from here? 
The model presented in the previous chapter and recapitulated in simplified 
form in the previous section is no more than a first step in the direction we want 
to follow. Our aim is to produce generative macroeconomics. 7 Macroeconomics, in 
fact, should have microfoundations: we do not agree with a purely holistic 
approach to macro-modeling. The appropriate microfoundations, however, must 
take into account heterogeneity and interaction. Moreover microeconomic 
behaviour should be not be modeled in isolation because it is deeply affected by 
the macroeconomic scenario. The impact of macroeconomic developments on 
microscopic choice may be mediated by an equilibrium configuration of one or 
more markets as shown in the previous section. However, this is not necessarily 
the rule. Macroeconomic externalities and mean field effects can affect 
microeconomic behaviour also directly. In other words, a good research strategy 
is based on an explicit consideration of a two-way causation link between micro-
behaviour and macro-variables. 

                                                      
7 We borrow this expression from the idea of a generative social science. See Arthur (2006) 
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ABM is a great leap forward in the effort to equip the profession with the 
appropriate tools to deal with heterogeneity and interaction in macroeconomics. 
As we have seen above, ABM does not necessarily imply the dismissal of 
optimization and equilibrium. We can move beyond the borders of our hybrid 
framework, however in two directions: (i) assumptions can and should be more 
realistic, i.e. agents’ actions and market processes in the model should mimic real 
ones; (ii) the model should be complete, i.e. consider goods, labour and financial 
markets and their interrelations.  

As to realism, we start from the assumption that agents do their best to 
survive and possibly gain a satisficing level of consumption (in the case of  
households) or profit (in the case of firms) in a market environment in which 
uncertainty is pervasive. In this context, transaction costs are relevant and market 
processes and institutions are designed – or emerge spontaneously – as a way of 
saving on these costs. Moreover, a certain degree of market power on the part of 
firms is a necessary part of the picture. The microeconomic behaviour of agents 
on markets, therefore, can be described as a process of adaptation to a difficult 
market environment in a complex economy. In a nutshell, we must model the 
way in which production, pricing, capital accumulation and financing occur by 
means of procurement processes (Tesfatsion and Judd, 2006) and is dictated by 
the need to carry out procurement processes.  

The main building blocks of a framework consistent with the modelling 
assumptions spelled out above are the following. In each period, each firm hires 
labour and invest to produce consumption goods. The firm basically knows only 
a limited neighbourhood of the initial condition (the status quo) on the “demand 
curve” for its products. The desired scale of production and sale price, therefore, 
are constrained by expected demand. Demand expectations change over time by 
means of an adaptive mechanism: expectations – and therefore output and price -
- are revised upward (downward) if a firm experienced excess demand (supply) 
in the previous period. The degree of expectation revision maybe stochastic.  

The interactions in the goods market should be described by a search and 
matching process between the firm, which sells the final output, and households. 
Prices (and wages) are posted by firms and discovered by households under a 
thick veil of ignorance. In this market environment, the Walrasian auctioneer is 
conspicuous for his absence.  

The household and the firms are picked at random from a distribution and 
prices and quantities are discovered in firms' stores. The household sorts the 
prices and the corresponding stores in ascending order (from the lowest to the 
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highest price) and spends all her wealth in goods of the firms with the lowest 
price. If a firm has not all the quantity the household wants to buy, she spends 
the remaining wealth in the firms with the second lowest price and so on. The 
wealth leftover after a certain number of visits is saved for the future. The entire 
procedure is repeated until every household with a positive wealth has been 
drawn. At the end of the buying-selling process, firms have received orders and 
implemented sales. 

Wages and vacancies are posted by firms and discovered by 
households/workers. The wage rate offered by the firm changes over time by 
means of an adaptive mechanism: the firm revises the wage rate upward if the 
search for labour was not successful -- that is if not all posted vacancies were 
filled -- in the previous period. It is revised downward in the opposite case. The 
degree of wage rate revision maybe stochastic. The worker adjusts her 
reservation wage taking into account both the employment status and price 
inflation in the previous period.  

The matching process which determines employment and wages goes as 
follows. A a firm and a worker are drawn at random from a discrete distribution. 
The firm hires the worker if and only if it has still an open vacancy and the 
worker's reservation wage is less or equal to the wage bid. If the worker is not 
hired by firm, another firm is drawn and a new iteration starts. If the worker is 
not hired at end of a certain number of iterations, then he stays unemployed in 
the period and earns zero income. 

In this context, firms are profit seeking agents but not necessarily profit 
maximizers. The attempt to escape bankruptcy and survive is top ranking in the 
agenda of the adaptive firm. Therefore the issue of financial vulnerability is 
crucial over the entire lifecycle of the firm.  

The firm is endowed with a certain initial level of net worth. External 
financing basically coincides with credit extended by banks. Employment and 
production plans are implemented if the firm has enough funds to finance them. 
Assuming that all the profits are retained within the firm, the equity base evolves 
over time according adding realized profits to the net worth inherited from the 
past. If a firm ends up with a negative net worth, it exits the market and is 
replaced by a new entrant firm.  

Procurement processes on the credit market may be modelled as a search and 
matching process similar to the ones presented above for the goods and labour 
markets. Interest rates and bank loans are posted by banks and discovered by 
firms. The interest rate offered by the bank changes over time by means of an 
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adaptive mechanism: the bank revises the interest rate downward if the search 
for a borrower was not successful -- that is if not all posted bank loans were 
filled. It is revised upward in the opposite case. The degree of interest rate 
revision maybe stochastic or depend on the financial condition of the prospective 
borrower. In this context the process of liquidity creation and distribution itself 
can be modelled as a procurement process on the interbank market in which 
banks and the central bank interact. 

Alternatively, one can think of a centralized credit market in which banks act 
as a system with respect to a decentralized and fragmented corporate sector. The 
interest  rate charged by the banking system maybe uniform across firms or 
differentiated from firm to firm. In both cases, the financial conditions of firms 
are an important determinant of the interest rate policy of the banking system.  

Once empirically corroborated, the complex adaptive system described so far can 
be put to waork to derive insights on the working of policy moves. It would be 
interesting, for instance, to assess the ways in which a change in the interest rate 
controlled by the central bank affects the interbank market and trickles down to 
the economy at large, showing up indirectly in sequence in the procurement 
processes of the financial, goods and labour markets. A different transmission 
mechanism of policy moves could be envisaged for fiscal policy and industrial 
policy.  

As the reader can realize at the end of the wish list of modelling choices for 
future research presented in this section, the distance covered so far and 
succinctly described in the present book, is relatively short. We are on a trajectory 
in the transitional dynamics towards a new and exciting description of the 
economy. The destination seems far away and – more important -- not absolutely 
clear in advance: we are still groping towards a more convincing description of 
the economy we want to explore.  

The only consoling consideration we can think of is that we are not ardent 
believer in the existence of a unique steady state, let alone global stability. 
Regardless of the precise contours of the final destination and the distance to be 
covered, moving forward is the only really important thing.  

  
 
 
 
 

 

 116



References 
__________________________________________________________ 

 
A. Agliari, L. Gardini, D. Delli Gatti, M. Gallegati, Global dynamics in a 

nonlinear model of the equity ratio., Chaos, Solitons & Fractals, vol. 11, n. 6, 
pp. 961-985, 2000. 

P. R. Agenor, J. McDermott, and E. Prasad. Macroeconomic fluctuations in 
developing countries: Some stylized facts. World Bank Economic Review, 
14:251–285, 2000. 

L. Amaral, Buldyrev S., Havlin S., Leschhorn H., Maas P., Salinger M., Stanley 
E. and M. Stanley, Scaling Behavior in Economics: I. Empirical Results for 
Company Growth, Journal de Physique, 7:621-633, 1997. 

L.  Amaral, Buldyrev S., Havlin S., Salinger M. and E. Stanley, Power Law 
Scaling for a System of Interacting Units with Complex Internal Structure, 
Physical Review Letters, 80:1385-1388, 1998. 

J. L. Anderson, R. E. Kates, L. S. Kegeles, and R. G. Madonna. Divergent 
integrals of post-newtonian gravity: Nonanalytic terms in the near-zone 
expansion of a gravitationally radiating system found by matching. Phys. 
Rev. D, 25(8):2038–2048, Apr 1982. 

M. Aoki. A simple model of asymmetrical business cycles: Interactive dynamics 
of a large number of agents with discrete choices. Macroeconomic Dynamics, 
2:427–442, 1998. 

H. Aoyama, W. Souma, Y. Nagahara, M. Okazaki, H. Takayasu, and 
M. Takayasu. Pareto’s Law for Income of Individuals and Debt of Bankrupt 
Companies. Fractals, 8:293, 2000. 

K. Arrow. Social Choice and Individual Values. New York, Wiley &Sons, 1951. 
K. Arrow. Rational choice functions and ordering. Economica, 1959. 
K. Arrow. A utilitarian approach to the concept of equality in public 

expenditures. Quartely Journal of Economics, 1971. 

 117



W. Brian Arthur. Out-of-Equilibrium Economics and Agent-Based Modeling, In: L. 
Tesfatsion, K.L. Judd (eds.), Handbook of Computational Economics, 
Volume 2: Agent-Based Computational Economics, Elsevier Science B.V., to 
appear, 2006. 

R. Axtell. The Emergence of Firms in a Population of Agents: Local Increasing 
Returns to Scale, Unstable Nash Equilibria, and Power Law Size 
Distributions. Working paper. The Brookings Institution, 1999. 

R. Axtell. Zipf distribution of US firm sizes. Science, 293:1818–1820, 2001. 
R. Axtell, M. Gallegati and A. Palestrini, Common Components in Firms’ 

Growth and the Scaling Puzzle, Working Paper. ?? 
P. Bak. How Nature Works. The Science of Self-Organized Criticality. Oxford 

University Press, Oxford, 1997. 
P. Bak, Chen K., Scheinkman J. and M. Woodford. Aggregate Fluctuations from 

Independent Sectoral Shocks: Self-Organized Criticality in a Model of 
Production and Inventory Dynamics, Ricerche Economiche, 47:3-30, 1993. 

E. J. Bartelsman, S. Scarpetta, and J. Halitwanger. Distributed analysis of firm-level 
data from industrial and developing countries. mimeo. 

W. Baumol. Productivity growth,convergence,and welfare. American Economic 
Rewiew, 76:1072–1085, 1986. 

R. Bénabou. Heterogeneity, stratification and growth: Macroeconomic 
implications of community structure and school finance. American Economic 
Review, 86:584–609, 1996. 

O. J. Blanchard and N. kyotaki. Monopolistic competition and the effects of 
aggregate demand. American Economic Rewiew, 77:647–666, September 1987. 

A. Blank and S. Solomon. Power laws in cities population, financial markets and 
internet sites (scaling in systems with a variable number of components). 
Physica A, 287:279–288, 2000. 

G. Bottazzi, E. Cefis, and G. Dosi. Corporate growth and industrial structures: 
some evidence from the italian manufacturing industry. Industrial and 
Corporate Change, Oxford University Press, 11(4):705–723, August 2002. 

G. Bottazzi and A. Secchi. ? ?  Physica A, 324:213, 2003. 

 118



G. Bottazzi and Secchi, A., (2003) Why are distribution of firms growth rates 
tent-shaped?, Economic Letters, 80, pp. 415–420. 

S. Bowles. Endogenous preferences: The cultural consequences of markets and 
other economic institutions. Journal of Economic Literature, 36:75–111, 1998. 

S. Brakman, H. Garretsen, C. Van Merrewijk, M. Van Den Berg. The Return of 
Zipf: Towards a further Understanding of the Rank-Size Distribution, 
Journal of Regional Science, vol. 39, february, pp.. 183-213, 1999. 

W. A. Brock. Scaling in Economics: A Reader’s Guide. Industrial and Corporate 
change, 8:409-446, 1999. 

W. A. Brock and S.N. Durlauf,  Social Interactions and Macroeconomics, UW-
Madison, SSRI Working Papers, 2005. 

W. A. Brock and S. N. Durlauf. Discrete choice with social interactions. Review of 
Economic Studies, 68:235–260, 2001. 

S. Buldyrev, L. Amaral, S. Havlin, H. Leschhorn, P. Maass, M. Salinger, 
H. Stanley, and M. Stanley. Scaling Behavior in Economics: II. Modeling of 
Company Growth. J. Phys. France I, 7(635), 1997. 

A. Burns and W. Mitchell. Measuring Business Cycless. New York, National 
Bureau of Economic Research, 1946. 

R. J. Caballero. A Fallacy of composition. American Economic review, 1992. 
D. Canning, L. A. N. Amaral, Y. Lee, M. Meyer, and H. E. Stanley. Scaling the 

volatility of GDP growth rates. Economic Letters, 60:335–341, 1998. 
R. E. Caves. Industrial organisation and new findings on the turnover and 

mobility of firms’. Journal of Economic Literature, 36:1947–1982, 1998. 
H. L. Cole, G. J. Mailath, and A. Postlewaite. Social norms, savings behavior, 

and growth. Journal of Political Economy, 100(6):1092–1125, 1992. 
R. Cont, Potters M. and J.-P. Bouchad (1997), Scaling in Stock Market Data: Stable 

laws and Beyond, in Dubrulle B., Graner F. and D. Sornette (eds), Scale 
Invariance and Beyond. EDP Science, Les Ulis. 

Cook and Ormerod. Power Law Distribution of the Demise of Firmsin the US, 
Physica A, June 2003 

K. Cowling and M. Waterson. Price-cost margins and market structure. 

 119



Economica, 43(171):267–74, August 1976. Available at 
http://ideas.repec.org/a/bla/econom/v43y1976i171p267-74.html. 

J. Crutchfield. Is anything ever new?  considering emergence. In G. Cowan, 
D. Pines, and D. Meltzer, editors, Complexity: Metaphors, Models, and Reality, 
pages 515–537. Reading, MA: Addison-Wesley, 1994. Available at 
http://www.santafe.edu/ jpc. 

A. Czirok, H. E. Stanley, and T. Vicsek. Possible origin of power-law behavior in 
n-tuple zipf analysis. Phys. Rev. E, 53:6371, 1996. 

R. H. Day. Complex Economic Dynamics, Vol.1. MIT Press, Cambridge, 1994. 
S. Davis, Haltiwanger J. and S. Schub, Job Creation and Destruction. MIT Press, 

Cambridge, 1996. 
A. T. Denzau and D. C. North. Shared mental models: Ideologies and 

institutions. Kyklos, Blackwell Publishing, 47(1):3–31, 1994. 
F. Diebold and G. Rudebusch. A nonparametric investigation of duration 

dependence in the american business cycles. Journal of Political Economy, 
98(3): 596–616, 1990. 

F. Diebold, G. Rudebusch, and D. Sichel. Further evidence on business cycle 
duration dependence. In J. Stock and M. Watson, editors, Business Cycles, 
Indicators and Forecasting. University of Chicago Press Chicago, IL, 1993. 

D. Delli Gatti, Di Guilmi C. and M. Gallegati, On the Empirics of "Bad Debt", 
mimeo, 2003b. 

D. Delli Gatti, M. Gallegati and A. Kirman (eds). Interaction and market 
structure. Essays on heterogeneity in economics, Lecture Notes in 
Economics and Mathematical Systems 484, Springer Verlag, Berlin, 2000. 

D. Delli Gatti, C. Di Guilmi, E. Gaffeo, M. Gallegati, G. Giulioni, A. Palestrini. 
Business Cycle Fluctuations and Firms' Size Distribution Dynamics, in 
Advances in Complex Systems, Vol. 7, No. 2, pp. 1-18, 2004. 

D. Delli Gatti, C. Di Guilmi, E. Gaffeo, M. Gallegati, G. Giulioni, A. Palestrini. A 
new approach to business fluctuations: heterogeneous interacting agents, 
scaling laws and financial fragility, in Journal of Economic Behaviour and 
Organization, Volume 56, Issue 4, pp. 489-512, 2005. 

 120



C. Di Guilmi, Gaffeo E. and M. Gallegati. Empirical Results on the Size 
Distribution of Business Cycle Phases, mimeo, 2003. 

E. Dinopoulos and P. Thompson. Schumpeterian growth without scale effects. 
Journal of Economic Growth, 3:313–335, 1998. 

A. Dragulescu and V. Yakovenko. Exponential and power-law probability 
distributions of wealth and income in the united kingdom and the united 
states. Physica A, 299:213–221, 2001. 

B. Dupor. Aggregation and irrelevance in multi-sector models. Journal of 
Monetary Economics, 43(2): 391–409, April 1999. available at 
http://ideas.repec.org/a/eee/moneco/v43y1999i2p391-409.html. 

S. N. Durlauf. Nonergodic economic growth. Rewiew of Economic Studies, 60:349–
366, April 1993. 

S. Durlauf. An incomplete markets theory of business cycle fluctuations. 
Computational and Mathematical Organization Theory, 2: 191–212, 1996. 

S. N. Durlauf. Complexity and Empirical Economics, mimeo, 2003. 
S. N. Durlauf and H. P. Young. Social Dynamics. Cambridge, Mass: MIT Press, 

2001. 
K. Eng, X. G. Feng, D. Popovi , and S. Washburn. Effects of a parallel magnetic 

field on the metal-insulator transition in a dilute two-dimensional electron 
system. Phys. Rev. Lett., 88(13):136402, Mar 2002. 

J.M. Epstein. et R. Axtell. Growing Artificial Societies. Brookings Institution 
Press, Washington D.C., 1996. 

R. Ericson and A. Pakes. Markov-Perfect Industry Dynamics: A Framework for 
Empirical Work. Rev. Econ. Stud., 62:53, 1995. 

Eurostat. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, ? ?  
P. Evans. Using panel data to evaluate growth theory. International Economic 

Review, 39:259–306, 1998. 
S. Fazzari, G. Hubbard, and B. Peterson. Financing Constraints and Corporate 

Investment. Brooking Papers on Economic Activity, 1:141–206, 1988. 
W. Feller, An Introduction to Probability Theory and its Applications. Wiley, 

New York, 1957. 

 121



M. Forni, M. Lippi.Aggregation and the Microfoundations of Dynamic 
Macroeconomics, Oxford, Clarendon Press, 1997. 

M. Friedman. The role of monetary policy. American Economy Rewiew, 58:1–17, 
March 1968. 

R. Frisch. Propagation problems and Impulse Problems in Dynamic Economics. In 
Essays in Honor of Gustav Cassel, 1933. 

Y. Fujiwara, W. Souma, H. Aoyama, T. Kaizoji, and M. Aoki. Growth and 
fluctuations of personal income Physica A, 321:598, 2003. 

X. Gabaix. Zipf’s law for cities: An explanation. Quarterly Journal of Economics, 
144:739–767, 1999. 

X. Gabaix. Power Laws and the Origins of Macroeconomic Fluctuations, mimeo, 
2003. 

E. Gaffeo, Gallegati M. and A. Palestrini. On the Size Distribution of Firms, 
Additional Evidence from the G7 Countries, Physica A, 324:117-123, 2003. 

M. Gallegati and L. Stanca. Financial Fragility, Heterogeneous Agents, and 
Aggregate Fluctuations: Evidence from a Panel of U. S. Firms. Industrial and 
Corporate Change, forthcoming. 

M. Gallegati, Giulioni G. and N. Kichiji. Complex Dynamics and Financial 
Fragility in an Agent Based Model, Advances in Complex Systems, 2003. 

M. Gallegati, A. Palestrini, Delli Gatti D. and E Scalas. Aggregation of 
Heterogeneous Interacting Agents: the Variant Representative Agent 
Framework, Journal of Economic Interaction and Coordination, Vol 1:1, pp. 5-
19, 2006. 

R. Gibrat. Les inégalités économiques. Sirey, Paris, 1932. 
J. Gimenez-Diaz, V. Quadrini, and J.-V. Rios-Rull. Dimensions of inequality: 

Facts on the u.s. distributions of earnings, income and wealth. Federal 
Reserve Bank of Minneapolis Quarterly Review, 21(2):3–21, 1997. 

E. Glaeser, B. Sacerdote, and J. Scheinkman. Crime and social interactions. 
Quarterly Journal of Economics, 111:507–548, 1996. 

J. Glaser, J. Dixit, and D. P. Green. Studying hate crime with the internet: What 
makes racists advocate racial violence?  Journal of Social Issues, 58:177–194, 

 122



2002. 
B. Gnedenko and A. Kolmogorov. Limit Distributions for Sums of Independent 

Random Variables. Addison-Wesley, Reading, 1954. 
R. Goodwin. A growth cycle. In C. H. Feinstein, editor, Socialism, Capitalism and 

Economic Growth. Cambridge University Press, 1967. 
W. M. Gorman. Community preference fields. Econometrica, 21:63–80, 1953. 
B. C. Greenwald and J. Stiglitz. Macroeconomic Models with Equity and Credit 

Rationing, in Hubbard R. (ed.), Information, Capital Markets and 
Investment. Chicago: Chicago University Press, 1990. 

B. C. Greenwald and J. E. Stiglitz. Financial Market imperfections and Business 
Cycles. Quarterly Journal of Economics, 108:77–114, 1993. 

S. J. Grossman, Joseph E. Stiglitz On the Impossibility of Informationally 
Efficient Markets American Economic Review, Vol. 70, No. 3, pp. 393-408, 
1980.  

J. C. Haltiwanger. Measuring and analyzing aggregate fluctuations: the 
importance of building from microeconomic evidence. Review, pages 55–78, 
1997. available at http://ideas.repec.org/a/fip/fedlrv/y1997imayp55-
78.html. 

F. Hahn, Money and Inflation. Oxford: Blackwell, 1982. 
W. Härdle. Applied Nonparametric Regression. Cambridge University Press, 

Cambridge, 1990. 
L. Hannah. Marshall’s "trees" and the global "forest": Were "giant redwoods" 

different?  In D. in N.R.Lamoreaux and P.Temin, editors, Learning by Doing 
in Markets, Firms and Countries,. National Bureau of Economic Research, 
1999. 

D. Harding and A. Pagan. Dissecting the cycle: a methodological investigation. 
Journal of Monetary Economics, Elsevier, 49 (2):365–381, March 2002. 

F. A. Hayek. Individualisn and Economic Order, University of Chicago Press, 
Chicago, 1948. 

W. Hildenbrand and A. P. Kirman. Equilibrium analysis: Variations on the themes 
by Edgeworth and Walras, North-Holland, Amsterdam, 1988. 

 123

http://ideas.repec.org/a/fip/fedlrv/y1997imayp55-78.html
http://ideas.repec.org/a/fip/fedlrv/y1997imayp55-78.html


R. J. Hodrick and E. C. Prescott. Postwar u.s. business cycles: An empirical 
investigation. Journal of Money, Credit and Banking, 29(1): 1–16, 1997. 
available at http://ideas.repec.org/a/mcb/jmoncb/v29y1997i1p1-16.html. 

C.H. Hommes. Heterogeneous Agent Models in Economics and Finance, In: L. 
Tesfatsion, K.L. Judd (eds.), Handbook of Computational Economics, 
Volume 2: Agent-Based Computational Economics, Elsevier Science B.V., to 
appear, 2006. 

C.H. Hommes, Partial equilibrium analysis in a noisy chaotic market, Economics 
Letters, 53, (3), 275-282, 1996. 

C.H. Hommes, and Manzan, S., Comments on ``Testing for Nonlinear Structure 
and Chaos in Economic Time Series’’, Journal of Macroeconomics 28, 169-174, 
2006. 

H. Hopenhayn. Entry, Exit and Firm Dynamics in Long-run Equilibrium, 
Econometrica, 60:1127-1150, 1992. 

G. Hubbard, Kuttner K. and D. Palia. Are There "Bank Effects" in Borrowers' 
Costs of Funds?: Evidence from a Matched Sample of Borrowers and 
Banks, Journal of Business, 75:559-581, 2002. 

C. R. Hulten, E. R. Dean, and M. J. Harper, (eds) New Developments in 
Productivity. Analysis. National Bureau of Economic Research Studies in 
Income and Wealth, 2001. 

Y. Ijiri and H. Simon. Skew Distributions and the Sizes of Business Firms. North-
Holland, Amsterdam, 1977. 

IMF. World Economic Outlook. IMF, Washington D.C., 2001. October, Chapter II. 
IMF. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, 2002. 
Y. G. Joh, R. Orbach, G. G. Wood, J. Hammann, and E. Vincent. Extraction of the 

spin glass correlation length. Phys. Rev. Lett., 82(2):438–441, Jan 1999. 
C. Jones. On the evolution of the world income distribution. Journal of Economic 

Perspectives, 11:19–36, 1997. 
C. Jones. Growth: With or without scale effects?  American Economic Review, 

89:139–144, 1999. 
B. Jovanovic. Selection and the evolution of industry. Econometrica, 50(3):649–

 124



670, May 1982. 
N. Kaldor. A model of the trade cycle. Economic Journal, 50:78–92, 1940. 
N. Kaldor. Capital accumulation and economic growth. In F. Lutz and D. C. 

Haugue, editors, Proceedings of a Conference Held by the International 
Economics Association. London, Macmillan, 1963. 

H.H. Kalejan. Aggregation and Disaggregation of Nonlinear Equations, in Kmenta, J. 
e Ramsey, J.B. (eds), Evaluation of Econometrics Models, New York. 
Academic Press, 1980. 

M. Keeling. Simple stochastic models and their power-law type behaviour theo. 
Pop. Biol, 58:21–31, 2000. 

M. Keeling and B. Grenfell. Simple stochastic models and their power-law type 
behaviour. ? ? ? ? ?  jounal ? ? ? ? , 1999. 

T. Keitt and H. Stanley. Dynamics of north american breeding bird populations. 
Nature, 393:257–260, 1998. 

W.J. Keller. Aggregation of Economic Relation: a Note, De Economist, 128, 
pg.559-562, 1984. 

F. E. Kidland and E. C. Prescott. Time to build and aggregate fluctuations. 
Econometrica, 50:1345–1370, 1982. 

F. E. Kidland and E. C. Prescott. Business cycles: Real facts and a monetary 
myth. Federal Reserve Bank of Minneapolis, Quarterly Review, 14:318, 1990. 

A. Kilpatrick and A. Ives. Species interactions can explain taylor’s power law for 
ecological time series. Nature, 422:65–68, March 2003. 

A. P. Kirman. The intrinsic limits of modern economic theory: The emperor has 
no clothes. Economic Journal, 99(395):126–39, 1989. 

A. P. Kirman. Whom or What Does The Representative Individual Represent. 
Journal of Economic Perspective, 6:117–36, 1992. 

T. Knudsen. Zipf’s law for cities and beyond, the case of denmark. Am. J. Econ. 
Sociol., 60:123 Â 146, 2001. 

J. J. Kruger. On the dynamics of the u.s. manufacturing productivity 
distribution. Working paper, Friedrich-Schiller Universidad Jena, 2003. 

 125



P. Krugman. The Self-Organizing Economy. Cambridge, Blackwell, 1996. 
J. E. Kwoka, Regularity and Diversity in Firm Size Distributions in U.S. 

Industries, Journal of Economics and Business, 34, 391-395, 1982. 
T. Lancaster. The Econometric Analysis of Transition Data. Cambridge: Cambridge 

University Press, 1992. 
T. Lancaster. Econometric methods for the duration of unemployment. 

Econometrica, 47:939–56, 1979. 
Y. Lee, L. Amaral, D. Canning, M. Meyer, and H. Stanley. Universal features in 

the growth dynamics of complex organizations. Physical Review Letters, 
81:3275–3278, 1998. 

H. Leibenstein. Bandwagon, snob, and veblen effects in the theory of 
consumers’ demand. QuarterlyJournal of Economics, 64:183–207, May 1950. 

A. Lewbel. Exact Aggregation and a Representative Consumer, Quarterly Journal 
of Economics, 104(3), pg. 621-33, 1989. 

J. Long and C. Plosser. Real business cycles. Journal of Political Economy, 91(1):39–
69, 1983. 

R. E. J. Lucas. An equilibrium model of the business cycle. Journal of Political 
Economy, 83:1113–1144, December 1975. 

R. E. J. Lucas. Studies in Business-Cycle Theory. MIT Press, 1981. 
Y. Malavergne, V. Pisaneko, and D. Sornette. Empirical distributions of log-

returns: between the stretched exponential and the power law?  Working 
Paper. Available at http://papers.ssrn.com/sol3/paper.cfm, 2003. 

B. Mandelbrot. The Pareto-Levy law and the distribution of income. International 
Economic Review, I, pages 79--106, 1960. 

C. F. Manski. Economic Analysis of Social Interactions. Journal of Economic 
Perspectives, 14:115–136, 2000. 

R. Mantel. Homothetic preferences and community excess demand functions, 
Journal of Economic Theory 12, 197-201, 1976. 

A. Marshall. Principles of Economics. London: Macmillan and Co., Ltd., 1920. 
Eighth edition. 

 126



M. Marsili and Y.-C. Zhang. Interacting Individuals Leading to Zips' Law, 
Physical Review Letters, 80:2741-2744, 1998. 

J. McCauley. Dynamics of Markets, Econophysics and Finance. Cambridge 
University Press, 2004. 

H. J. McCulloch. The monte carlo cycle in economic activity. Economic Inquiry, 
13:303–321, September 1975. 

J. McDonald and R. J. Butler. Some generalized mixture distributions with an 
application to unemployment duration. The Review of Economics and 
Statistics, MIT Press, 69 (2):232–40, May 1987. 

P. Mirowski. More Heat than Light. Cambridge University Press, 1989. 
M. Mizuno, M. Katori, H. Takayasu, and M. Takayasu. Statistical and Stochastic 

Laws in the Income of Japanese Companies. In H. Takayasu, editor, 
Empirical Science of Financial Fluctuations: The Advent of Econophysics, page 
321. Springer, Tokyo, 2002. 

E. W. Montroll and M. F. Shlesinger. Maximum entropy formalism, fractals, 
scaling phenomena, and 1/f noise: A tale of tails. J. Stat. Phys., 32(2):209–30, 
1983. 

G. Mudholkar, D. K. Srivastava, and G. D. Kollia. A generalization of the 
weibull distribution with application to the analysis of survival data. 
Journal of the American Statistical Association, 91: 1575–1583, 1996. 

M. Naldi. Concentration indices and zipf’s law. Economics Letters, 78(3), 2003. 
M. Nirei and W. Souma. Two factors model of income distribution dynamics. 

Santa Fe Institute Working Paper, 04-10-029, 2004. 
O. B. O. Malcai and S. Solomon. Power-law distributions and lévy-stable 

intermittent fluctuations in stochastic systems of many autocatalytic 
elements. Phys. Rev. E, 60:1299, 1999. 

J. Nolan. Stable Distributions. Springer, Berlin, 2002. 
S. Nørrelykke and P. Bak. Self-Organized Criticality in a Transient System, 

Physics Review, 68, 2002. 
A. Palestrini. Analysis of Industrial Dynamics: a Note on the Relationship 

Between Firms' Size and Growth Rate, mimeo, 2005. 

 127



V. Pareto. Le Cours d’Économie Politique. Macmillan, London, 1897. 
M.H. Pesaran. On Aggregation of Linear Dynamic Models, mimeo, 2000. 
P. Perron. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis, 

Econometrica, 57:1361-1401, 1989. 
H. Platt. Why Companies Fail. D.C. Heath and Company Lexington, 1985. 
C. I. Plosser. Understanding real business cycles. Journal of Economic Perspectives, 

American Economic Association, 3(3):51–77, Summer 1989. 
Pollack. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, 1975. 
Powers. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, 1998. 
L. Pritchett. Divergence, big time. Journal of Economic Perspectives, 11:3–17, 1997. 
D. Quah. Empirical cross-section dynamics in economic growth. European 

Economic Review, 37:426–434, 1993. 
D. Quah. Twin peaks: Growth and convergence in models of distribution 

dynamics. Economic Journal, 106:1045–55, 1996. 
R. E. Quandt, On the Size Distribution of Firms, American Economic Review, 56,  

416-432, 1966. 
W. Reed. The double pareto - lognormal distribution a new parametric model 

for size distributions. unpublished 
manuscripthttp://www.math.uvic.ca/faculty/reed/., 2001. 

S. Rebelo. Long-run Policy Analysis and Long-run Growth, Journal of Political 
Economy, 99:500-521, 1991. 

S. Resnik. Extreme Values, Regular Variation, and Point Processes. New York: 
Springer Verlag, 1987. 

C. D. Romer. Changes in business cycles:evidence and explanations. Journal of 
Economic Perspectives, 13:23–44, Spring 1999. 

T.C. Shelling. Micromotives and Macrobehavior, W. W. Northon, NY, 1978. 
R. Schmalensee. Sunk costs and market structure: a review article. J. Ind. Econ., 

40(125-133), 1989. 
J. Schumpeter. Business Cycles. New York: McGraw-Hill, 1939. 
P. Segerstrom. Endogenous growth without scale effect. American Economic 

 128



Review, 88:1290–1310, 1998. 
O. Shy. The Economics of Network Industries. Cambridge: Cambridge University 

Press, 2001. 
D. Sichel. Business cycle duration dependence: a parametric approach. Review of 

Economics and Statistics, 71(30): 245–260, 1991. 
D. E. Sichel. Business cycle asymmetry: A deeper look. Economic Inquiry, 31:224–

236, April 1993. 
J. Siegfried and L. Evans. Empirical studies of entry and exit: a survey of the 

evidence. Review of Industrial Organization, 9:121–155, 1994. 
H. Simon. On a Class of Skew Distribution Functions, Biometrika, 27:425-440, 

1955. 
R. Sinclair. Examining the growth model’s implications: The world income 

distribution. Syracuse University, mimeo, 2001. 
E. Slutzky. The summation of random causes as the source of cyclical processes. 

Econometrica, 5(2):105–146, 1937. 
S. Smale. Dynamics in general equilibrium theory. American Economic Review, 

66(2):284--294, May 1976. 
A. Smith. An Inquiry into the Nature and Causes of the Wealth of Nations, American 

Modern library Series, NY, Cannan Edition, 1937. 
H.F. Sonnenschein. Market Excess Demand Functions, Econometrica, 1972. 
D. Sornette. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-

Organization and Disorder. Concepts and Tools. Springer, Heidelberg, 2000. 
W. Souma. Universal structure of the personal income distribution. Fractals, 

9(4):463–470, 2001. 
Stanley. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, 1997. 
M. Stanley, S. Buldyrev, S. Havlin, R. Mantegna, M. Salinger, and E. Stanley. 

Zipf Plots and the Size Distribution of Firms. Economics Letters, 49:453–457, 
1995. 

M. Stanley, Amaral L., Buldyrev S., Havlin S., Leschorn H., Maas P., Salinger M. 
and E. Stanley. Scaling Behavior in the Growth of Companies, Nature, 

 129



379:804-806, 1996. 
J. Steindl. Random Processes and the Growth of Firms. Hafner, New York, 1965a. 
J. Steindl. Random Processes and the Growth of Firms: A Study of the Pareto Law. 

Griffin, London, 1965b. 
J. H. Stock and M. W. Watson. Understanding changes in international business 

cycle dynamics. Journal of the European Economic Association MIT Press, 
3(5):968–1006, 2005. 

T.M. Stoker. Completeness, Distribution Restriction, and the Form  of Aggregate 
Functions, Econometrica, 52, pg:887-907, 1984. 

T.M. Stoker. Empirical Approaches to the Problem of Aggregation Over 
Individuals, Journal of Economic Literature, 31(4), 1827-74, 1993. 

R. Summers, A. Heston, and B. Aten. Penn world table version 6.1. Center for 
International Comparisons at the University of Pennsylvania. 

Sunder. ? ? ? ? ? ? ? ? ? ? ?  title ? ? ? ? ? ? ? ? ? ? ?  journal, 2005. 
J. Sutton. Gibrat’s Legacy. Journal of Economic Literature 35, 40-59, 1997. 
J. Sutton. Technology and Market Structure. Theory and History. MIT Press, 1999. 
H. Takayasu and K. Okuyama. ? ? ?  Fractals, 6:67, 1998. 
J. B. Taylor. Aggregate dynamics and staggered contracts. Journal of Political 

Economy, 88:1–23, February 1980. 
L. Taylor. ? ? ? ? ? ? ?  Nature 189, pages 732–735, 1961. 
L. Taylor and I. Woiwod. ? ? ?  Anim. Ecol, 51:879–906, 1982. 
L. Taylor, I. Woiwod, and J. Perry. ? ? ?  Anim. Ecol., 47:383–406, 1978. 
L. Tesfatsion. Agent-based computational economics: Growing economies from 

the bottom-up. ISU Economics Working Paper No. 1, February 2002. 
L. Tesfatsion, K.L. Judd (eds.). Handbook of Computational Economics, Volume 2: 

Agent-Based Computational Economics, Elsevier Science B.V., to appear, 2006. 
J. Voit. The growth dynamics of german business firms. cond-mat/0006260 v1, 

2000. 
H. D. Wit. The bologna declaration and the integration of higher education in 

europe. In J. Forest and P. Altbach, editors, International Handbook of Higher 

 130



Education, volume II. Kluwer, The Netherlands, 2005. 
D. Zajdenweber. Scale Invariance in Economics and in Finance, in Dubrulle B., 

Graner F. and D. Sornette (eds), Scale Invariance and Beyond. EDP Science, 
Les Ulis, 1997. 

V. Zarnowitz. Business cycles: theory, history, indicators, and forecasting. The 
University of Chicago Press, 1992. 

T. W. Zuehlke. Business cycle duration dependence reconsidered. Journal of 
Business and Economic Statistics, American Statistical Association, 21(4):564–69, 
October 2003. 

 

 131


	1
	Crucial issues
	1.1 Introduction
	1.2 Aggregate among Peers – if you please
	1.3 Robinson Crusoe meets Friday
	1.4 Complexity
	1.5 Outline of the book
	book_one.pdf
	Foreword and Acknowledgements
	Contents
	Preface, by Joseph Stiglitz       1
	Chapter 3. Stylized facts in industrial dynamics: Exit, prod
	Chapter 4. An agent-based model
	Chapter 5. Where do we go from here?
	Bibliography         x


	book_three.pdf
	2
	Stylized facts of industrial dynamics:
	The distribution of firms’ size
	2.1 Introduction
	2.2 Pareto, Gibrat, Laplace: the statistical analysis of ind
	2.3 Unconditional firms’size distribution for pooled interna
	2.4 The size distribution of firms conditional on the busine
	Country
	Canada


	The size distribution shift over the business cycle: …
	2.6 does it make any sense?
	2.7 Power laws' changes in slope
	2.8 A mean/variance relationship for the size distribution

	book_four.pdf
	3
	Stylized facts in industrial dynamics:
	Exit, productivity, income
	3.1 Introduction
	3.2 The exit of firms
	3.2.1 Evidence on the extinction rate
	3.2.2 Power law for bad debt
	3.3 Productivity and income
	3.3.1 The distribution of productivity in France and Spain
	3.3.2 Power law tails in the Italian personal income distrib
	3.4 Power law scaling in the world income distribution
	3.5 Distributional features of aggregate fluctuations
	In line with this assumption, in this Section we aim to exte

	book_five.pdf
	4
	An agent-based model
	4.1 Introduction
	4.2. Heterogeneous interacting agents and power  laws
	4.3. Agent based modelling
	4.4. Pareto and Laplace
	4.5. An agent-based model
	4.5.1 Firms
	4.5.2 The banking sector
	4.5.3 Firms' demography
	4.5.4 Long-run dynamics
	4.6. Simulation results: preliminaries
	4.6.1 Firms' size and growth rates distributions
	4.6.2 Conditional distributions
	4.7. Statistical aggregation
	4.8 Summing up
	Appendix






	book_six.pdf
	5
	Where do we go from here?
	5.1 Instead of a conclusion
	5.2 Where are we?
	5.3 A hybrid framework
	5.4 Where do we go from here?




	book_seven.pdf
	References


