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ABSTRACT

This paper discusses aspects of validating simulation
models designed to describe, explain and predict real-
world phenomena. It starts with a short review of argu-
ments used in the simsoc mailing list discussion on the-
ory, simulation and explanation a few months ago, deals
with the use of quantitative and qualitative computational
models to make quantitative and qualitative predictions
or rather to draw conclusions from complex antecedents,
and then discusses different types of explanation and pre-
diction (and the relation between these two), It closes
with an overview of topics in validity and validation from
the point of view of the structuralist programme in the
philosophy of science.

INTRODUCTION: THEORY, SIMULATION, EX-
PLANATION AND OBSERVATION

A few months ago, the simsoc mailing list experienced
a longish discussion1 which originated from Thomas
Kron’s question “about the relation of computer simu-
lation and explanation, especially sociological explana-
tion”. More than fifty contributions to this discussion fol-
lowed within less than three weeks, and contributors dis-
cussed the role of simulation in theory building (mostly,
but not only) in the social, economic and management
sciences — as well as the relation between observation on
one hand and computer-assisted theory building (Hanne-
man 1988) on the other. Scott Moss came back to his
presidential address at the 1st conference of the Euro-
pean Social Simulation Association, Groningen, Septem-
ber 2003, in which he said “that if social simulation with
agents is to be anything other than another in the long line
of failed approaches to social science, it will be a positive
departure only because it facilitates the dominance of ob-
servation over theory” and continued that the great suc-
cessful scientists (outside the social sciences) built their
generalisations around observation, developing new theo-
retical structures based on and validated by new evidence
(quoted from his contribution to the simsoc mailing list
as of November 14, 2003). Well in the line of this trait of
thinking is the role of simulation or computational mod-
eling which can be found in Gilbert and Troitzsch 1999

1The discussion can be found in the November 2003 section
of http://www.jiscmail.ac.uk/archives/simsoc.html, topics
“simulation and explanation” and “theory and simulation”.

which was recently extended by Alexis Drogoul (Drogoul
et al. 2003: 5) and can be seen in Figure 1.
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Figure 1: Drogoul’s and his colleagues’ interpretation of
Gilbert’s and Troitzsch’s methodological proposition on
the role of simulation

This diagram does not even contain the word ‘simu-
lation’, but in its centre we find ‘data’ which are taken
from observation and compared with results from simu-
lation runs, for their similarity. Gilbert’s and Troitzsch’s
original diagram describing “the logic of simulation as
a method” (Gilbert and Troitzsch 1999: 16, 54, see also
Troitzsch 1990: 2) is much the same: A model is built
by abstraction from a target system, it is translated into
a computer programme which can then be run and deliv-
ers results in the form of simulated data which can, and
have to, be compared to data gathered from the same kind
of target systems in the real world from which the model
was abstracted.

Being aware that observation (as contrasted to just
looking around in the world) presupposes at least some
primitive form of theory (which tells us which entities
and which of its properties to observe and which rela-
tions between them to register to find out whether there
are some regularities), we should admit that our assump-
tions and our observation are not independent from each
other (although Figure 1 insinuates this). And we should
admit that in most cases computational (and other) mod-
els do not directly start from observation data but from
a theory which in turn should build on, but often does
not refer explicitly to observation data. Instead, we often
start from a verbal theory which expresses our (or other
authors’) belief in how reality works, comparing simula-
tion results with stylised facts instead of observation data.

A good example of this strategy is Sugarscape where
the question “can you explain it?” is interpreted as “can
you grow it?”, and where “a given macrostructure [is]
‘explained’ by a given microspecification when the lat-
ter’s generative sufficiency has been established.” (Ep-
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stein and Axtell 1996: 177)
At the other extreme, we might have microanalytical

simulation which starts from a large collection of obser-
vational data on persons and households and the popu-
lation as a whole. The model is initialised with empiri-
cal estimates of transition probabilities, age-specific birth
and death rates and so on. Tens of thousands of software
agents are created with data from real world people. And
all this aims at predicting something like the age structure
or kinship networks of this empirical poulation in the far
future (see for instance Harding 1996).

In what follows we want to discuss the use of quan-
titative and qualitative computational models to make
quantitative and qualitative predictions or rather to draw
conclusions from complex antecedents and discuss differ-
ent types of explanation and prediction (and the relation
between these two) and close with an overview of topics
in validity and validation.

QUALITATIVE AND QUANTITATIVE SIMULA-
TION

Although most simulation uses quantitative procedures
— doing calculations with numbers, often real valued,
which make believe that the properties of the target sys-
tem are quantitative, metric properties —, most of our
mental models and verbal theories which are the prede-
cessors of most of our simulation programmes do not talk
about numbers and numerical values, but rather of prop-
erties which are categorical or, at best, ordinal. “How-
ever we claim that the use of numbers in this way is often
simply a result of laziness — we often use numbers as a
stand-in for qualitative aspects that we do not know how
to program or have not the time to program.” (Edmonds
and Hales 2003: 3)

Example: Gender desegregation among staffs of
schools

The following example — which is taken from (Gilbert
and Troitzsch 1999: 108–114) and earlier papers — tries
to “explain” how the process of overcoming gender seg-
regation in German schools went on in the 1950s and
1960s. The modeling process started from a large col-
lection of empirical data showing the proportion of male
and female teachers in all grammar schools in the fed-
eral state of Rhineland-Palatinate (approximately 150 in
number) from 1950 to 1990 (see Figure 2, left graph).
The model reproducing the empirical distribution of this
proportion over time quite well was designed as parsimo-
nious as possible, just assuming three hypotheses:

1. that all teachers leaving their jobs are replaced by
men and women with equal overall probability (Ar-
ticle 2 linea 2 of the German Basic Law),

2. that men stay in their jobs approximately twice as
long as women (an empirical observation), and

3. that new women are assigned to an individual
school with probabilityP(W|ξ) = ν(t)exp(κξ) ac-
cording to the percentageξ of women among its

teachers (a theoretical assumption);κ is 0.5 in this
simulation run, andν(t) is such that at all times
men and women have the same overall probability
of replacing retired teachers, to comply with hy-
pothesis 1.

The simulation is initialized with a gender distribu-
tion close to the empirical distribution of 1950. With
κ > 1, gender segregation would continue and even be-
come stronger.
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Figure 2: Distribution of percentages of women
among teachers at 150 secondary schools in Rhineland-
Palatinate from 1950 to 1990; left: empirical data, right:
simulation

The simulation model reproduced the qualitative re-
sult that in the early 1970s the staff of all these 150
schools became mixed after twenty years of segregation
where there were schools with high proportions of either
male or female teachers but nearly no schools with be-
tween 40 and 60 per cent female teachers. And this repro-
duction / retrodiction was effected with the help of quan-
titative simulation, calculating probabilities of assigning
teachers to schools. But did the model explain how and
why this happened? Obviously not — since it is clear that
the school authority, in fact officers in the ministry of edu-
cation, did not cast dice or draw random numbers to select
candidates for particular schools. Perhaps these officers
saw to it that the overall proportion of men and women
in school staffs was sufficiently equal to give women an
equal chance, but even this has not been observed — in-
stead we know that the process of desegregation of school
staffs had entirely different origins: it was only the con-
sequence of desegregation among girls and boys which in
turn was due to the fact that most small towns could not
afford separate schools for boys and girls (the percent-
age of girls in grammar schools rose steeply in the 1950s
and 1960s). To summarise: a nice prediction (or at least
retrodiction), but a poor explanation.

Example: Artificial eutrophication of a lake

Another example which is at the borderline between
quantitative and qualitative simulation is the following.
It was derived from a purely quantitative System Dynam-
ics simulation in the tradition of Meadows and Forrester
(Anderson 1973) which was used to quantitatively pre-
dict the consequences of bringing fertiliser into the soil in
the neighbourhood of a lake and of actions taken to avoid
these consequences by, for instance, harvesting algae or
dredging the ground of the lake. This was, as it were, a
simulation machine to predict the outcomes of real-world
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experiments or perhaps to replace such experiments. An-
derson’s model was not designed to predict how farmers,
fishers, tourist offices, local authorities around the lake
would act when they realised that dead fish was swim-
ming on the surface of the lake or when its water reeked
of decay: this was only introduced in a revised model
where local authorities — modelled as software agents
— could decide which action to take when they were in-
formed about the state of the lake, and where local farm-
ers — also modelled as software agents — could decide
whether it was more profitable for them to pay taxes for
using artificial fertiliser on their fields and to grow more
crop or to waive fertilising, not to pay fertiliser taxes and
to be satisfied with lower yield (M̈ohring and Troitzsch
2001; see Figure 3).
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Figure 3: Two versions of Anderson’ model of the eu-
trophication of a lake (Anderson 1973); left: a model of a
lake subject to simulation experiments, right: a model of
the lake and its (agri-) cultural environment

The difference between the two approaches is
twofold:

• First, in the original approach Anderson took a for-
mal model of the physical, chemical and biolog-
ical processes running in a lake to simulate what
could happen if these processes were disturbed by
external influences imposed on the model by the
simulating experimenter — whereas the extended
model embeds the model of a lake into its social,
political and economic environment and models
influences external to the lake as internal to the
model, thus taking into account that the lake and
its socioeconomic environment interact and are in-
terdependent.

• Second, the original approach starts from physi-
cal, chemical and biological theory providing the
equations between the main variables describing
the lake and generates quantitative simulation re-
sults (predictions) which might be compared to fur-
ther observation data and help improve (fine tune)
the theory of the biochemical processes occurring
in a lake — whereas the extended model takes the
behaviour of the lake for granted and adds a num-
ber of assumptions about the behaviour and actions
of a number of human actors which are (or at least
could have been) based on everyday observation

and discussions with stakeholders, and these as-
sumptions are not aimed at generating quantitative
predictions about the effect of the tax rate imposed
on artificial fertilisers on the oxygen concentration
in the lake, but only in qualitative predictions an-
swering the question under which tax regime and
under which additional measures taken by govern-
ment and other neighbours of the lake its eutrophi-
cation could or could not be avoided.

Both approaches would serve as explanatory models:
the restricted model would explain how and why under
certain external or internal circumstances a lake would
be eutrophicated and suffocate and what was the physical
and biochemical mechanism behind the processes leading
to total consumption of oxygen at the ground of the lake
— and it would at the same time recommend countermea-
sures and allow for an estimation for their potential suc-
cess; and the extended model would explain under which
conditions such countermeasures would be taken by the
population living around the lake and what incentives one
part of the population would have to promise another part
of the population to take the necessary countermeasures.

EXPLANATION AND PREDICTION

There is a long discussion about the question whether ex-
planation and prediction are equivalent, or, to put it in
other words, whether a theory which predicts empirical
observations correctly at the same time explains what
it predicts. Gr̈unbaum (1962) pleaded for the equiva-
lence while Scriven (1969) pleaded that both were “non-
symmetrical”. If we consider prediction and explana-
tion equivalent then our first example above would have
explained the gender desegregation in German schools
observed in the second half of the 20th century (al-
though this was only retrodiction, but in principle, the
three assumptions could have been stated in 1950), but
this explanation is of the same quality as the explana-
tion Mesopotamian priests could give 2,500 years ago
for their (mostly correct) predictions of solar eclipses.
In both cases, some scepticism in in order: from our re-
search into the history of school staffs we know that de-
segregation had different causes than those stated in the
assumptions, and the Mesopotamian theories of planetary
movements were superseded 400 years ago by new theo-
ries which are substantially more valid.

The controversy between Grünbaum and Scriven,
however, was different: Scriven had argued the other
way round: “Satisfactory explanation of the past is pos-
sible even when prediction of the future is impossible.”
(Scriven 1969: 117; Grünbaum 1962: 126) while we
argued above that even when prediction of the future is
possible with the help of a theory, this does not mean that
this theory satisfactorily explains what happened (another
theory could yield the same prediction and deliver a bet-
ter explanation).

Without going into the details of this old controversy
we should instead discuss what explanation and predic-
tion could mean in the context of (social) simulation. Ep-
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stein and Axtell argued that explanation of a phenomenon
is achieved once the phenomenon could be reconstructed
or generated (“grown”). From this point of view, the
development of the distribution of percentages of fe-
male teachers in German grammar schools is explained
by the three assumptions mentioned above, since this
time-dependent frequency distribution as a macrostrucure
could be reconstructed quite well from the microstructure
defined in the three assumptions. Of course, this recon-
struction is by no means quantitatively precise: the two
graphs are similar, but not identical (perhaps due to some
simplifications in the assumptions, perhaps due to the fact
that the random number generator in the simulation run
which generated the time-dependent frequency distribu-
tion was not perfect, or for any other reasons) — and,
of course, Sugarscape explanations are of the same, non-
quantitative type.

What simulation models like these are designed to
predict is only how a target system might behave in the
future qualitatively; what we want to know is whether
any macrostructures might be observed and what these
macrostructures might look like, given that on a micro
level some specific rules are applied or some specific laws
hold. This is what we should call a qualitative predic-
tion which at best would tell us that a small number of
categorical outcomes can be expected with their respec-
tive probabilities. But this is not the type of prediction as
the objective of simulation “which most people think of
when they consider simulation as a scientific technique”
(Axelrod 1997: 24) — “most people think of” attempts at
simulating planetary formation (Casti 1996: 14) instead
of “simulating the movement of workers or armies”. But
if we use prediction in a non-quantitative sense, predic-
tions delivered by simulations might still be useful “for
the discovery of new relationships and principles” which
Axelrod finds “at least as important as proof or predic-
tion”. They might answer questions like “Which kinds
of macro behaviour can be expected from a given mi-
cro structure under arbitrarily given parameter combina-
tions and initial conditions?” The definition of this mi-
cro structure will typically be derived from observations
on the micro level, and the simulated macro structures
will typically be compared to macro structures in the tar-
get systems (which perhaps have not even be discovered).
And a simulation model which generates a macro struc-
ture which resembles real-world macro structures from
simulated micro structures which resemble micro struc-
tures observable in the real world might be accepted as a
provisional explanation of real-world macro structures.

In a second step we might apply simulation to pro-
ceed to a second stage of qualitative prediction, where
we are not interested in the general behaviour of a cer-
tain classof target systems, but in the future behaviour
of a particularinstanceof this class of target systems
— say, the future market shares of a number of com-
peting products in a market, trying to answer the ques-
tion whether most trademarks will survive with reason-
able market shares or whether most of them will survive
only in small niches whereas one product will gain an

overwhelming share of the whole market; this would still
be a qualitative answer: we might not be interested in
which trademark will be the winner, and we might not be
interested in how many per cent of the market it will win
(this would be only the third use of simulation, namely
to predict quantitatively and numerically, as in microan-
alytical simulation and, perhaps, also in the simulation
of climatic changes where we would not be content with
the outcome that mean temperatures will rise but wanted
to know when, where and how fast this process would
have effects on nature and society). Or, to return to the
example of the lake, its eutrophication and the counter-
measures taken by its neighbours, we would

• first apply simulation to the very general question
whether an artificial society “living” around an ar-
tificial lake which functions much like an empir-
ical lake could ever learn to avoid eutrophication
(something like a tragedy-of-the-commons simula-
tion),

• then apply simulation to an empirical setting (de-
scribing and modelling an existing lake and its sur-
roundings) to find out whether in this specific set-
ting the existing lake can be rescued, and

• eventually to apply simulation to the question
which political measures have to be taken to make
the lake neighbours organise their economy in a
way that the best possible use is made of the lake
— and obviously this would be a discursive model
in which stakeholders should be involved to nego-
tiate and find out what “best possible use” actually
means for them.

And to involve stakeholders in the development of a sim-
ulation model like this it will be necessary to validate
the model (which could be done in the first two steps
described just above) — otherwise stakeholders would
not believe it was worthwhile to work with the simula-
tion model.

TYPES OF VALIDITY

With Zeigler we should distinguish between three types
of validity:

• replicative validity: the model matches dataal-
ready acquiredfrom the real system (retrodiction),

• predictive validity: the model matches databefore
data are acquired from the real system,

• structural validity: the model “not only reproduces
the observed real system behaviour, but truly re-
flects the way in which the real system operates to
produce this behaviour.” (Zeigler 1985: 5)

Zeigler here addresses three different stages of model
validation (and development). Social science simulation
does not seem to have followed this path in all cases:
Since often data are very poor in the social sciences,
early models, too, tried to be structurally valid and did
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not bother much about replicative or predictive validity.
“Data already acquired from the real system” were not
available in a form that could be matched to the bulk of
data simulation models had generated. There are several
reasons for this difference between natural and social sci-
ences: Data collection is a very expensive task in the lat-
ter, and in most cases it is even impossible to generate
long time series for individual or group behaviour — in-
dividual attitudes, e.g., may be changed by the very mea-
surement process, and groups may have changed in their
composition before they were able to generate a time se-
ries which would have been long enough to allow for pa-
rameter estimation. On the other hand, the different kinds
of influences non-living things exact upon each other are
very much limited in their number, such that a structurally
valid model can much more easily be found for the tar-
get systems natural sciences deal with than for social sys-
tems.

When talking about structural validity, a digression
on structuralism might be in order: Structuralism as de-
fined by Sneed (1979) and Balzeret al. (1987) sees both
simulation models and observations as models of a theory
which in turn — for them — is a mathematical structure
consisting of (among others) three sets of such models.
And these models — full models, potential models, and
partial potential models — are defined as lists of terms
and functions and (in the case of full models) invariants.
Observations in this structuralist programme in the phil-
iosophy of science are intended applications of a theory,
they are a subset of the set of its partial potential mod-
els in a sense that we can talk about them in terms which
are non-theoretical with respect to a theoryT in question
(“T-non-theoretical terms”, for short). Elsewhere it was
shown that a simulation model“of a theory” is “anal-
ogous to a structuralist reconstruction of this theory”,
and that such reconstructions can easily be translated
into simulation models and vice versa (Troitzsch 1994),
provided the simulation language is object-oriented and
functional (in other simulation languages the translation
might be less straightforward). Simulation models would
then be translated into full models in so far as they con-
tain both T-non-theoretical terms (those we can use for
talking about the target system irrespective of whether the
theory is validated or not) and its T-theoretical terms —
those which are only introduced by the theory, “in the
sense that their meaning depends onT”, (Balzer et al.
1987: 40) — and, thirdly, the axioms or invariants the
theory postulates — whereas observations (or rather: in-
tended applications, to keep to the terminology of struc-
turalism) are only partial potential models listing just the
terms which are non-theoretical with respect to this the-
ory. Thus, simulation is “richer” than observation.

Validation of simulation models is thus the same (or
at least analogous) to validation of theories. In the sense
of structuralism, we can interpret validation as the at-
tempt at finding whether there exist intended applica-
tions of a theory (observations to which the theory refers)
which belong to the content of the theory — which means
that it should be possible to make an observation (in T-

non-theoretical terms) which complies with the axioms
of the theory (which in turn might be expressed in T-
theoretical terms, but then these must be linked to T-non-
theoretical terms).

What does this mean for agent-based simulations in
the range defined in the introduction? Sugarscape agents
and plants correspond to T-theoretical terms, and the rules
which the agents obey correspond to the axioms of this
theory. But is there any empirical claim of the theory be-
hind Sugarscape? If this theory predicts that — with a
given parameterisation and initialisation — macrostruc-
tures emerge from the microstructures programmed into
“its” models, and the emerging macrostructures suffi-
ciently resemble observable macrostructures, we could
admit that this observable macrostructure together with
its microstructure (provided it resembles the model’s mi-
crostructure) is an intended application of the theory be-
hind Sugarscape and that it complies with its axioms.

In the case of the empirical examples sketched above,
the case is even simpler. Our model of a lake and its so-
cioeconomic environment was based on observation, but
it would still contain a number of terms which can only
be used within a theory of, say, ecological consciousness:
There would be some link between the state of the lake
(its smell or colour) and the state of ecological conscious-
ness of a particular person living near the lake (something
like “the worse the water smells, the more am I willing to
protect the lake from sewage”) and the action this person
takes, and we could only observe the direct link between
the observable smell of the lake and the observable ac-
tions taken, so the two “internal” links (as functions with
their numerical coefficients, or as fuzzy rules with their
membership functions) would remain theroetical with re-
spect to such a theory — but the computer programme
used for this simulation would still be a full model of
this theory, because it would contain a function or rule
representing this link, and that part of the simulation out-
put which could be compared to empirical observational
data would be the partial potential model of the theory.
Stakeholders, however, might find that the T-theoretical
links between the observable state of the lake and the ob-
servable actions on one hand and the T-theoretical state
of ecological consciousness comply with what they think
how ecological consciousness (if ever such a thing exists)
works. And this could be the special value simulation
could have in participatory modelling approaches (cf. the
last few paragraphs of El hadouajet al. 2001).

CONCLUSION

We dealt with the question about the relation of com-
puter simulation and explanation, especially sociological
explanation. and came to the conclusion that computer
simulation programmes can be seen as models of theories
from the point of view of the structuralist programme in
the philosophy of science. This means that computer sim-
ulation should always have an empirical claim the same
way as any theory should have an empirical content. Em-
pirical claims of computer simulations come in different
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forms — from quantitative predictions of future measure-
ments down (or up?) to qualitative descriptions of possi-
ble scenarios. Both can be used to validate (the theory
behind) the simulation model.

“Good validation of social simulation requires predic-
tion” (Moss 2001: 9), but a good prediction is not always
a sufficient indicator for validity. And “descriptiveness”
is also a good indicator “for the validity of ... models”
(Moss 2001: 10): When we model social processes in a
participatory context, then agreement of the participating
stakeholders on the validity of the model can be a reason-
able indicator for the validity of the model.
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to combine reactivity and anticipation: The case of con-
flicts resolution in a simulated road traffic. In S. Moss
and P. Davidson (eds),Multi-Agent-Based Simulation,
pp. 82–96. Springer, Berlin.

Epstein, J. M. and Axtell, R. (1996)Growing Artificial
Societies – Social Science from the Bottom Up. MIT
Press, Cambridge, MA.

Gilbert, N. and Troitzsch, K. G. (1999)Simulation for
the Social Scientist. Open University Press, London.
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