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Abstract

In this paper we deal with some validation (and a �rst calibration) experiments on
the CATS model proposed in Gallegati et al. (2003a, 2004b).

The CATS model has been intensively used (see, for example, Delli Gatti et al., 2004;
Russo, 2004; Gallegati et al., 2003b) to replicate a large number of scaling type stylized
facts with a remarkable degree of precision and, for these purposes, the simulation of the
model has been performed entering ad hoc parameter values and using the same initial
set up for all the agents involved in the experiments.

Nowadays alternative robust and reliable validation techniques for determining whether
the simulation model is an acceptable representation of the real system are available (Sar-
gent, 1996; Kleijnen, 1999); furthermore many distributional and goodness-of-�t tests
have been developed (see, for example, Prabhakar, 2003; Kleiber and Kotz, 2003) while
several graphical tools have been proposed to give the researcher a quick comprehension
of actual and simulated data (Embrechts, 1997).

This paper discusses some validation experiments performed with the CATS model.
In particular starting from a sample of Italian �rms included in the AIDA database, we
perform several ex-post validation experiments over the simulation period 1996-2001. In
the experiments, the model parameters have been estimated using actual data and the
initial set up consists of a sample of agents in 1996. The CATS model is then simulated
over the period 1996-2001. Using alternative validation techniques, the simulations�
results are ex-post validated respect to the actual data. The results we achieve seem to
be quite promising.
JEL classi�cation: C15, C16, D31, E37, L11, L16, O31.



1. Introduction

Mainstream economics adopts the classical mechanics approach of 19th cen-
tury physics, based upon the reductionist principle, according to which one can
understand the aggregate, simply analysing its single elements. The microfound-
ation of macroeconomics in the (New) Classical tradition is based on the hope
that the aggregate behaviour is the magni�cation of the single agent�s behaviour
on a larger scale. The application of the reductionist framework implies that the
so-called overlapping principle holds true, i.e. the dynamics of a (linear) model can
be decomposed into its constituent parts through the representative agent (RA)
framework.
The microeconomic foundations of general equilibrium models must be based,

according to mainstream economics, on an optimizing RA, fully rational and om-
niscient. Unfortunately, �there are no assumptions on [...] isolated individuals
which will give us the properties of aggregate behavior which we need to obtain
uniqueness and stability. Thus we are reduced to making assumptions at the ag-
gregate level which cannot be justi�ed by the usual individualistic assumptions.
This problem is usually avoided in the macroeconomic literature by assuming that
the economy behaves like an individual. Such an assumption cannot be justi�ed in
the context of the standard economic model and the way to solve the problem may
involve rethinking the very basis on which this model is founded.� (Hildenbrand
and Kirman, 1988, p. 239).
The quantum revolution of the last century radically changed the perspective

in contemporary physics. According to the holistic approach, the aggregate is
di¤erent from the sum of its components because of the interaction of particles.
In the social sciences, a step in this direction is taken by the agent-based modeling
(ABM) strategy.
Agent-based models, which are increasingly applied in economics (Tesfatsion,

2002; Axelrod, 1997), have been developed to study the interaction of many het-
erogeneous agents. In a sense they are based on new microfoundations, according
to a bottom-up approach. They have a holistic methodology as opposed to the
reductionist approach of the mainstream economics. One builds a model starting
from simple behavioral rules at the single agent level. Through interactions some
aggregate statistical regularities emerge and they can not be inferred from the
individual level. This emergent behaviour often feeds back to individual agents
making their rules change (they may evolve in an adaptive way). According to
this approach, macroeconomics is not a set of equations that occurs by summation
and averaging of the individual decisions, but it is a SOC (Self-Organized Critical)
phenomenon that rises from the micro-level.
As already mentioned, ABM and simulations have been extensively used in

many scienti�c �elds, including economics, in the last decade (Axelrod, 1997;
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Axtell, 2000). However, only in recent years only, researchers have started being
concerned with whether a model and its results may be considered correct. As
Sargent (1998) puts it: �This concern is addressed through model veri�cation
and validation. Model validation is usually de�ned to mean substantiation that
a computerized model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model�. This is
not at all a secondary problem, in fact, only a correct model is a good model.
In this paper we deal with some validation experiments of the CATS model

proposed in Gallegati et al. (2003a, 2004b).
The CATS model has been intensively used (see, for example, Gallegati et al.,

2003b, 2004a, 2005; Delli Gatti, 2004) to replicate a large number of scaling type
stylized facts with a remarkable degree of precision and, for these purposes, the
simulation of the model has been performed entering ad hoc parameters�values
and using the same initial set up for all the agents involved in the experiments. It
must be recalled that the above mentioned analyses have been performed following
Kaldor�s suggestion: �construct a hypothesis that could account for these stylized
facts, without necessarily committing himself on the historical accuracy" (Kaldor,
1965, page 178).
In this paper our intentions are a little bit more ambitious: using an initial set

up of actual data (a sample of Italian �rms in 1996) we aim to verify if the CATS
model, simulated over a period for which actual data are available (the interval
1996-2001), is an acceptable representation of the real system. In other words we
intend to perform an ex-post validation of the model.
Alternative robust and reliable statistical techniques are currently available

for validating simulation models (for a survey see, for example, Sargent 1996
and Kleijnen 1999) and, in our analyses, we use some of the distributional and
goodness-of-�t tests discussed in Prabhakar et al. (2003) and Kleiber and Kotz
(2003) and the graphical tools (Embrechts, 1997) proposed to give the researcher
a quick comprehension of actual and simulated data.
In the validation exercise, over the simulation period 1996-2001, we use a

sample of 6422 Italian �rms included in the AIDA database. The model para-
meters have been estimated using actual data and the initial set up consists of the
sample data of the year 1996. The CATS model is then simulated over the period
1996-2001 and the simulations�results are ex-post validated with respect to actual
data.
We then propose a �rst simple calibration experiment using a grid method, in

order to ameliorate the �tting of data.
Anticipating some conclusions, we may say that the model reproduces, in a

short (medium) term horizon, a good percentage (81% in 2001) of the output
actual data. The two samples (simulated and observed data) belong to the same
distribution with a con�dence interval of 95%. Moreover the model also reproduces
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the �rms�growth dynamics at a micro level, while less satisfying is the simulation
for the behaviour of the very small and very large �rms.
The papers is organized as follows: Section 2 presents the model we have

studied and validated; Section 3 describes the database we used and the empirical
evidence we aim to investigate; Section 4 shows the proceeding of the validation
procedure; Section 5 introduces a �rst calibration experiment; while Section 6
concludes.

2. The CATS model

Consider a sequential economy1 , with time running t = 1; 2; :::; populated by
many �rms and banks. Two markets are opened in each period: the market for a
homogeneous produced good and the market for credit. As in the levered aggregate
supply class of models �rst developed in Greenwald and Stiglitz (1990.1993), our
model is fully supply-determined, in the sense that �rms can sell all the output
they optimally decide to produce. Due to informational imperfections on the
equity market, �rms can raise funds only on the credit market. The demand for
credit is related to investment expenditure and it is fully accomplished at the �xed
banks�interest rates: i.e. total credit supply always equals the demand for it.
At any time t = 1; :6, the economy consists of Nt �rms, each located on an

island2 . Every �rm i 2 Nt produces the output Y according to a linear production
function, in which capital (Kit) is the only input3 :

Yit = �itKit: (1)

For each �rm i the productivity �it in t = 1 corresponds to its actual productivity
(estimated on the AIDA data in 1996) and it evolves to

�it�1 + %it

q
�it�1; where %it =

M

2
; (2)

with M � U(0; 2), if the �rm is small4 , and to

�it = �i1; (3)

if large5 .
The demand for goods in each island is a¤ected by an iid idiosyncratic real

shock. Since arbitrage opportunities across islands are imperfect, the individual
selling price in the i-th island is the random outcome of a market process around
the average market price Pt of the output, according to the law Pit = uitPt, where
E(uit) = � and �2uit < +1. Actual data suggest to split the price generator
process into two di¤erent processes, depending once again on �rms�size. For the
sake of simplicity we assume that uit follows two di¤erent uniform distributions:

4



small �rms get a high average price and a stronger volatility6 , while big �rms face
more concentrated prices with a lower mean.
Summarizing, if U1 is the distribution of uit if i is small and U2 if i is large, we

have that �U1 > �U2 and �2U1 > �
2
U2
:

Since, by assumption, credit is the only external source of �nance for �rms,
the �rm can �nance its capital expenditure by recurring to net worth (Ait) or
bank loans (Lit), i.e. Kit = Ait + Lit: At the exogenous real interest rate r, at
each time t debt commitments for every �rm are equal to rLit. Since, for the sake
of simplicity, there are no dividends distributed to equities, �nancing costs equal
debt commitments. Therefore, pro�t/loss (�it) in real terms is:

�it = uitYit � rLit (4)

In our model a �rm goes bankrupt if its net worth become negative, that is to
say Ait < 0. The law of motion of Ait is, for hypothesis,

Ait = Ait�1 + �it: (5)

As in Greenwald and Stiglitz (1993), we assume that the probability of bank-
ruptcy (Prb) is directly incorporated into the �rm�s pro�t/loss function: bank-
ruptcy is costly and increasing with the �rm�s size:

Cb = cY 2it c > 0 (6)

Every �rm, by maximizing its objective function, determine its optimal capital
stock K�

it:
max
Kit

�it = E(�it)� E(Cb): (7)

and the demand for credit.

3. The Database and the Empirical Evidence

All our validation experiments, together with the subsequent empirical analysis,
are based on �rm-level observations from the AIDA database, for the period 1996-
2001, AIDA, formerly developed by the Italian Chambers of Commerce, is now
a subset of AMADEUS, a comprehensive pan-European database elaborated by
Bureau Van Dijk7 .
Thanks to several queries on the database, we have collected a sample of 6422

Italian non-�nancial �rms, all satisfying the following: (i) no missing data in each
year; (ii) reliable data for capital, employees and costs. For each �rm and year, we
have data on equities, long term debts and loans, short term debts, total capital,
gearing ratio, solvency ratio, debt ratio, number of employees, cost of employees
and revenues.
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Recent explorations (Gallegati et al., 2005) in industrial dynamics have de-
tected three empirical regularities, which are so widespread across countries and
persistent over time to be characterized as universal laws:

1. The distribution of �rms�size is right skewed and can be described by a Zipf
or power law probability density function (Gallegati et al., 2003b; Ga¤eo et
al., 2003; Axtell, 2001; Ramsden, Kiss-Haypal, 2000; Okuyama et al., 1999;
Quandt, 1966a-b; Simon, 1955);

2. Firms� growth rates are Laplace distributed, belonging to the Subbotin�s
Family (Stanley et al, 1996; Bottazzi, Secchi, 2003);

3. There is a power law relation between the variance of the size growth rates
and the size itself (Stanley et al., 1996; Gabaix, 2004).

Gallegati et al.(2004b) have analytically shown that 1-3 determine several in-
dustrial, �nancial and business cycle facts (see those papers for a review of the
empirical literature.) A model should therefore be able to replicate the empirical
evidence 1-3, and our validation exercise is centered according to it.
The following section will present the validation exercise, i.e. if the above

presented CATS model successfully deals with the evidence 1-3.

4. Simulation and Results

Our validation exercise is run with a sample of 6422 �rms over the period
1996-2001,
The validation procedure we have used is standard and very similar to the

methodology presented in Embrechts (1997)8 . Appendix A contains a quite de-
tailed description of this procedure.
In t = 1, every �rm is initialized with its actual data from 1996: net worth,

loans, productivity and so on. The market interest rate is exogenous and equal
for all the �rms.9

In each period actual data from the AIDA database are compared with the
simulated data produced by the model. In particular our analysis can be divided
into two di¤erent approaches: a pointwise analysis, meant to evaluate the evolution
of the single �rm, in order to study the predictive power of the model; and a
distributional analysis, whose aim is to look for regularities.
Our experiments can be considered a �rst ex-post validation of the CATS

model, that�s to say a �rst step, necessary to develop all the subsequent analysis.
As far as the aggregate output is concerned, the model underestimates it

slightly (average aggregate actual output over six years on log scale: 10:3486;
average aggregate simulated output over six years on log scale: 10:1132), while the
output volatility is almost identical (' 1:205 vs. ' 1:207).
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Figure 1: Zipf�s Plot of the total capital distributions: observed (plus) and simu-
lated (diamonds).

Let�s now consider the total capital dynamics. Accepting a maximum deviation
of �20% between observed and simulated data in 2001 (that�s a composite yearly
deviation rate of 3.5%), we succeed in reproducing 5201 �rms over 6422 (81%).
As Figure 1 shows, the tails of the �rms�size distribution is not adequately �tted.
Similar results can be found in the previous years (in 1997, for example, the
percentage of �tted �rms is 74%, while in 1999 it�s 77%) and analyzing the pooled
distributions (78%).10

Figure 1 also shows that both observed and simulated capital distributions are
particularly skewed, with fat right tails (decreasing linear relationship in the plot).
This reproduces a widely accepted result (Zipf, 1932), according to which �rms�
size is power law distributed11 (Axtell, 2001; Ga¤eo et al., 2003; Gabaix, 2004).
We have performed many graphical and analytical tests to discover if our two

samples (observed and simulated data) may be considered belonging to the same
distribution.
A �rst Quantile-Quantile plot (Figure 2) seems to support the idea of a unique

distribution for both samples, since there exists a clear linear relationship between
observed and simulated data.
Another graphical test, the Box Plot (Figure 3), shows that the two distribu-

tions we are considering have many similarities. For example, the median (red

7



Figure 2: Q-Q Plot of the two Capital distributions

line) is almost the same and it�s not centered in the box, indicating two skewed
distributions. Moreover, both distributions present a great number of outliers (red
plus) in the right tails, underling the possible presence of fat tails.
The same results are supported by the Generalized Kolmogorov-Smirnov Test12

(Prabhakar et al., 2003) with a con�dence interval of 95%. Therefore, it�s possible
to say that our two samples belong to the same distribution.
In particular, not considering the right Paretian tails (we trimmed them after

a threshold study), we found out that our data follow a Generalized Pareto Dis-
tribution (GPD)13 , a Pareto II type in particular (� � 0). Figure 4 shows a linear
Pareto II Plot14 of the observed capital distribution (again, after excluding the
largest �rms).
The presence of a Paretian behaviour in the right tails of the two distributions

is also supported by the Mean Excess Function versus Threshold Plot (MEPLOT).
In fact, an upward sloping mean excess function, as in Figure 5, indicates a heavy
tail in the sample distribution. That is why, thanks to the Hill�s method15 , we
have decided to estimate the shape parameters of the two sample, in order to see
if data have a similar behaviour in the right tails.
Figure 6 contains the Hill�s estimates of the shape parameter for the simulated

capital, while Figure 7 refers to observed data. In the �rst case � = 1:61, while in
the second one � = 1; 68:So, the two parameters are very similar (Figure 8) and
belong to the Paretian �eld (0:8 < � < 2)16 , but we cannot state that the two
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Figure 3: Box Plot of simulated (left) and actual (right) Capital.

Figure 4: Pareto II Plot of the actual capital (biggest 10% trimmed)
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Figure 5: Meplot of observed (above) and simulated (under) Capital.

tails behave in the same way. Simulated capital, in fact, shows a slightly heavier
tail (since its alpha is lower17), demonstrating that we slightly overestimated the
observed values.
As far as net worth is concerned, accepting a maximum deviation of �20%

between actual and simulated data in 2001, we succeed in reproducing 4944 �rms
over 6422 (77%)18 . This number is lower than that of total capital, indicating
some more problems of �tting.
Other positive results, see Figure 9, are the skewness of the two distributions

and the presence of a clear Paretian behaviour in both actual and simulated net
worth. Hill�s estimates of the shape parameters both show heavy right tails: actual
data present � = 1:52, while the simulation produces � = 1:48.
As far as the possibility of a unique distribution for the two samples, the two-

sided generalized Kolmogorov-Smirnov test rejects such a null hypothesis. On the
contrary the one-sided right version of the test19 is not refused, indicating that we
get a better �tting of medium and big �rms, but we fail in forecasting the smallest
one (see in Figure 9).
The results we get about loans are very similar to those of the total capital:

we succeed in �tting 5137 �rms out of 6422 (80%).
Moreover, as happens for total capital, both graphical and analytical tests

support the idea of a unique distribution for both actual and simulated debt data.
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Figure 6: Hill Plot of the simulated Capital

Figure 7: Hill Plot of the actual capital
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Figure 8: Comparison of the two Hill Plots.

Figure 9: Zipf�s Plots of the net worth distributions: observed (plus) and simulated
(diamonds) data
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Figure 10: Zipf�s plot of loans: observed (plus) and simulated (diamonds).

As in Fujiwara (2003), the distribution of loans is also power law. The Hill�s
estimates of the shape parameters of the Paretian right tails are � = 1:71 for the
actual data and � = 1:58 for the simulated ones, demonstrating an overestimate
of biggest �rms.
Finally, analyzing the ratio between net worth and debt we �nd out that,

apart from some exceptions20 , it�s almost constant for each �rm over time. In
other words, if �rm i has a ratio of x% in 1996, it shows a very similar ratio in
2001,
As far as �rms�growth rates are concerned, several studies (Axtell, 2001; Bot-

tazzi and Secchi, 2002; Hall, 1987) �nd a tent-shape behaviour. In particular,
the Laplace and Lévy distributions seem to provide the best �tting (Bottazzi and
Secchi, 2003; Gabaix, 2004).
We have investigated if the empirical distributions of growth rates (in terms of

capital) belong to the well-known Subbotin�s family (Subbotin, 1923), which rep-
resents a generalization of several particular cases, such as Laplace and Gaussian
distributions. The functional form of Subbotin�s family is:

f(x; a; b) =
1

2ab
1
b�
�
1 + 1

b

�e� 1
b j x��a jb; (8)

where � is the mean, b and a two di¤erent shape parameters and � is the standard
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observed data Simulated data
� -0.0030 ( 0 .0 0 1 3 ) 0.0048 ( 0 .0 0 2 1 )

a 0.0587 ( 0 .0 2 4 4 ) 0.0614 ( 0 .0 2 3 8 )

b 1.0184 ( 0 .3 4 9 5 ) 1.0626 ( 0 .3 6 6 4 )

�loglik 1.1528 1.1549

Table 1: Estimated Subbotin�s Parameters (standard errors in brackets)

Figure 11: Empirical distributions of actual and simulated growth rates.

Gamma. If b ! 1 the Subbotin distribution becomes a Laplace, a Gaussian for
b! 2.
Using the maximum likelihood method21 , we have estimated the three Sub-

botin�s parameters on our data. Table 1 contains the results.
At a �rst glace, observed and simulated growth rates show several similarities:

1. The two means are very close to zero;

2. Since b is very near to 1, both distributions are in the �eld of attraction of
the Laplacian case22 . Figure 11 supports this evidence since it�s tent-shaped;

3. The values of a, the Laplacian shape parameter, are not very di¤erent in
both cases, even if simulated data show slightly fatter tails (0.061>0.059),
see Figure 11.
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All in all, the CATS model is able to mimic �rms�growth dynamic, once again
with some discrepancies as far as the tails are concerned.
In order to analyze the relationship between �rms�size and �rms�growth rates,

we followed the methodology suggested by Gabaix (2004)23 . Stanley and coauthors
and Gabaix �nd that large �rms show a lower volatility of their growth rates;
moreover, they show that this volatility (�rates) linearly decreases with size (S),
that is to say

ln�rates = �� lnS + �; (9)

with � ' 0:15:
In order to investigate if this relationship holds true for our actual and simu-

lated data, we divided �rms�size in four bins. Then we computed the standard
deviation of their growth rates. Finally, we plotted a log-log graph of the average
standard deviation of growth rates versus the average size in each bin.
For both observed and simulated data, our results are very similar of those

presented in Gabaix (2004). Figure 12 shows how the relationship we have found
decreases with size. Our estimates of � are 0.1643 for the actual data and 0.1621
for the simulated ones (not far from Gabaix�s 0:15). Once again, the CATS model
successfully reproduces the empirical data.
All in all, we may say that the CATS model successfully passes the ex-post

validation exercise of this section, with the only exception of very small �rms.

5. Calibration: a �rst experiment

Since the validation results of the CATS model seem to be quite promising, we
have decided to try a �rst calibration experiment using a simple grid method.
Our idea was to perform a sort of sensitivity analysis, in order to discover

the most relevant parameters in the model. In particular we have found out
that the most sensitive parameters are those concerning with the price generators�
processes, that�s to say the supports of the uniform distributions.
Using a traditional grid method, we have decided to let the supports change on

a grid in order to �nd those values24 (supports�inf and sup) which minimize the
distances between the distributions of actual and simulated data. In particular, we
have used a common quadratic loss function concerning with the shape parameters
of the two distributions25 (Prabhakar et al., 2003).
This �rst naive calibration show surprisingly good results. As far as total

capital in 2001 is concerned, from an initial �tting of 81%, we �nd out a new value
of 88%; while, considering the pooled distributions, from a �rst 78% we then get
a better 83%.
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Figure 12: Growth Rates Std vs Size (observed data)

All this makes us believe that more complex and precise calibration methods
could get better results. For this reason, in our future studies, we aim to use
indirect inference (Gouriéroux and Monfort, 1996) as a calibration tool.

6. Conclusions and what comes next

Even if the results of the ex-post validation experiments discussed in section
4 are preliminary they shows that, in the interval 1996-2001, the simple CATS
model, �rstly introduced by Gallegati et al. (2003a) and slightly modi�ed for
these experiments (see section 2), has good capabilities in replicating empirical
evidence, with few exceptions.
More reliable results could be obtained improving the speci�cation of the

model, better calibrating some key parameters using simulation based methods
discussed, for example, in Gouriéroux and Monfort (1996) and in Klevmarken
(1998) and carefully adjusting the dimensions of the sample used in the initial set
up.
In future validation experiments, we intend to modify the model speci�cation,

endogenising the banking sector (as in the standard CATS model) and the price
generator process and including a labor market module. Considering the sample
size of the initial set up we are planning to build a new sample. With respect to
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same key variables (for example, number of employees), we will replicate in our
new database �rms in order to obtain the same proportions of the �rms considered
in the INPS (Istituto Nazionale della Previdenza Sociale) sample. Starting with
this new set up, we will check whether our new model is able to reproduce, in the
simulation interval, the proportions observed in INPS database.

Notes

1In a sequential economy (Hahn, 1982) spot markets open at given dates, while
future markets do not operate.

2In this attempt to calibrate the model, Nt is always equal to 6422 (the total
number of �rms in our database). In fact, if a �rm goes bankrupt, the entry and
exit processes guarantee that a new one enters the market.

3In this model capital stock never depreciates.

4According to the Italian Fiscal Law, to which we referred in writing this paper,
a �rm is considered: �small�, if it has less than 50 employees; �medium� if it has
between 51 and 250 employees; �large� if it has more than 250 employees. In our
sample, the percentage of �rms is: � 56% small, � 31% medium, � 13% large. In
1996 the smallest �rm shows 2 employees, while the largest one 7308.

5The evolution of the productivities of small and large �rms reproduce an evid-
ence present in our database. Small �rms, in fact, show an increasing productivity,
while the large ones present an almost constant one.

6This assumption about a stronger price volatility has a justi�cation in the
greater volatility of small �rms�revenues and pro�ts in actual data.

7For more information: http://amadeus.bvdep.com

8But also in Sargent et al. (2000), Sargent (1998), Kleijen (1998), Gumbel
(1958).

9It decreases every year starting from 11.5% (1996) and arriving at 10% (2001).

10As in Ijiri et al. (1997), the use of pooled distribution is possible since the
single distributions show similar slopes.

In this paper, almost all the �gures refer to year 2001.
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11A power law behaviour in �rms� size is essentially due to the random iid
micro-multiplicative shocks (Solomon, 1995; Gabaix, 2004) and the presence of the
(bankruptcy) lower bound we have modelled. As Lutz et al. (1995) show a system
with power laws tails distributions have divergent �rst and second moments, so
the law of large numbers does not hold and the system is not ergodic. All this has
disruptive consequences for mainstream economics (Davidson, 1986).

12The Generalised or Two Sample Kolmogorov-Smirnov test is a variation of
the classical Kolmogorov-Smirnov test.

Given N data points Y1; Y2; :::; Yn the empirical distribution function (ECDF)
is de�ned as

FN =
n(i)

N
; (10)

where n(i) represents the number of points less than Yi. As one can see, this step
function increases by 1

N for each data point.

The Kolmogorov-Smirnov test is based on the maximum distance between the
ECDF and the theoretical cumulative distribution one wants to test (FT ):

D = max
1�i�N

����FT (Yi)� i

N

���� : (11)

On the contrary, the two sample K-S test, instead of comparing an empirical
distribution function to the theoretical one, compares two di¤erent ECDF, that is

D = jF1(i)� F2(i)j ; (12)

where Fi is the empirical distribution for sample i.

The generalised K-S statistic can be de�ned as:

H0 : F1 = F2 ! the two samples come from the same distribution

H1 : F1 6= F2 ! the two samples come from di¤erent distributions

To decide the results of the test, the values of D are compared to the critical
values obtained from Kolmogorov and Smirnov�s table.

13Starting from the well-known Fisher-Tippett Theorem, which deals with the
convergence of maxima, the GPD distribution (Pareto, 1986) represents one of the
most important limiting cases.
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Its functional form is:

H(x) =

� 1� (1 + � x� )
� 1
� if � 6= 0

1� e
� x
� if � = 0

; (13)

where � > 0 and x is such that 1+�x > 0 and � is the shape parameter (tail index
� = 1

� ).

There are three di¤erent situations:

1. � > 0 ! GPD distribution becomes the classical Pareto distribution and
shows fat tails;

2. � = 0! GPD distribution converges to the exponential distribution;

3. � < 0! GPD distribution it then known as Pareto II.

14That�s a quantile-quantile plot with Pareto II coe¢ cients.

15The well-known Hill�s Estimator �, together with the Pickard�s one, is the most
used way to determine the shape parameter � = 1

� of a distribution belonging to
the GEV family.

In particular

� =
1

k � 1

k�1X
i=1

lnxi;N � lnxk;N for k � 2; (14)

where k is the upper order statistics and N the sample size.

16Once again the results concerning the pooled distributions are very similar.
The reason can be found in the words of Ijiri et al. (1977): �We conclude that when
two or more Pareto distributions are pooled together, the resulting distribution is
Pareto if and only if all the distributions have similar slopes [...]. This result is
important in dealing with the aggregation of empirical �rm size distributions.�

17As clearly showed in Kleiber and Kotz (2003), the Pareto density has a poly-
nomial right tail that varies at in�nity with index (�� � 1), implying that the
right tail is heavier as � is smaller.

1866% in 1997, 73% in 1999

19H0 : F
+
1 (x) = F

+
2 (x):
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H1 : F
+
1 (x) > F

+
2 (x):

20While validating our model, we have experienced several experiments on in-
terest rates, �nding out an interesting thing.

Those �rms showing a decreasing net worth/debt ratio are the same that
obviously go bankrupt if the interest rates rise. All this is interesting since the
decreasing ratio is almost completely due to a monotonically deteriorating equity
ratio (Beaver, 1966; Gallegati et al., 2005). Moreover, surprisingly, all the �rms
that went bankrupt in our simulations were the same as those that really went
bankrupt in 2002, showing a decreasing equity ratio.

Unfortunately, as already said, our data are not complete for 2002, so we prefer
not to state all this as a result.

21The results are very similar, using the method of moments.

22Some authors prefer a truncated Lévy distribution. The querelle is open. See
Kleiber and Kotz (2003).

23But also by Stanley et al. (1996) and Amaral et al. (1997)

24The new supports are: (0:9; 2:7) for small �rms and (0:4; 1:85) for the big ones.

25Since both distributions are in the Paretian case and since their scale is almost
equal, if we minimize the distance between their shape parameters, we get two more
similar distributions.

A Validation Procedure: some notes

The aim of this appendix is to describe the procedure we have used to validate
the CATS model.
All the codes and the programs have been written in Fortran90 c
, while all the

graphics have been developed with Matlab7 c
.
As far as the simulation of the CATS model is concerned, it can be useful to

underline the following aspects:

1. In t = 1 (1996), when the simulation starts, every �rm is initialized with
its actual data from the database. These data are: net worth, loans and
productivity. The current version of the model has a recursive structure so
that parameters �it have been consistently estimated using, �rm by �rm,
ordinary least squares. Then productivity evolves according to the laws of
motions presented in 2 and 3;
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2. The parameter M in 2 follows an uniform distribution, whose support (0; 2)
has been ad hoc calibrated, thanks to several replications;

3. The interest rate is equal to 11,5% in 1996 (t = 1) and decreases every
year, arriving at 10% in 2001, This reproduces the average behaviour of the
interests paid every year by �rms in our database;

4. The two di¤erent uniform distributions we have used to model the idiosyn-
cratic shocks on prices show support (0:8; 2:8) for small �rms and support
(0:5; 1:7) for the large ones. This supports have been inductively calibrated,
considering the results of several alternative replications, in order to get the
best �tting values;

5. Every year the following data are stored in order to be compared with ac-
tual data: net woth, loans, total capital, productivity, growth rates, paid
interests, total output, aggregate output.

Our analysis of data can be divided into two di¤erent approaches: a pointwise
analysis, meant to evaluate the evolution of the single �rm, in order to study the
predictive power of the model; and a distributional analysis, whose aim is to look
for general regularities.
In Embrechts (1997), one can �nd a quite complete list of all the tests a re-

searcher should perform in analysing data, while Kleijen (1998) deals with the
theoretical implications of validation.
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