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Abstract

We introduce a continuous global optimization heuristic for a stochastic approxi-
mation of an objective function, which itself is not globally convex. The objective
function arises from the simulation based indirect estimation of the parameters of
agent based models of financial markets. The function is continuous in the variables
but non-differentiable. Due to Monte Carlo variance, only a stochastic approxi-
mation of the objective function is available. The algorithm combines features of
the Nelder-Mead simplex algorithm with those of a local search heuristic, called
threshold accepting. The Monte Carlo variance of the simulation procedure is also
explicitly taken into account. We present details of the algorithm and some results of
the estimation of the parameters for a specific agent based model of the DM /US-$
foreign exchange market.
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1 Introduction

The validation or estimation of agent based models of financial markets by
means of simulation methods based on actual data leads to a highly com-
plex optimization problem. We introduce a continuous global optimization
heuristic for the resulting globally non convex objective function which can
be evaluated, for a given set of parameters, only up to some Monte Carlo va-
riance. Although our first implementation is targeted at the specific problem
of indirect estimation, the proposed algorithm might be considered for any
continuous non convex optimization problem.

Agent based models gained increasing interest in different areas of economic
modelling as reflected in the special issues of Computational Economics and
the Journal of Economic Dynamics € Control (Tesfatsion, 2001a, 2001b).
For the modelling of financial markets, agent based models offer at least two
advantages. First, they allow a more realistic modelling of agents’ behavior
than standard representative agent models (Fama, 1970). At least for specific
parameter settings, the results of the simulations of such agent based models
show some statistical similarities with actual foreign exchange time series,
e.g. fat tails and volatility clustering.

Second, the rapid increase in available computing resources allows for more
extensive simulation studies of agent based models. Thus, it became possible
to assess the impact of changes in parameter values on the simulated time
series. Nevertheless, “validation ... remains a very weak area for the class of
models described here” (LeBaron, 2000, p. 698), i.e. a systematic assessment
of such simulation models based on actual market data is required.

An indirect estimation approach for validation purposes, discussed in more de-
tail in our companion paper Winker and Gilli (2001) and sketched in Section 2,
leads to a highly complex optimization problem. It is based on the compari-
son of the moments of actual data and simulated moments of the agent based
model. This involves the minimization of a stochastic approximation of an
objective function f(0)

min f(6)

0cO
where © is a subspace of R? describing the possible parameter values, and f(6)
measures the distance between empirical moments of the financial market data
and those of the simulated time series.

Given that the objective function f is not globally convex and can only
be approximated up to some Monte Carlo variance, standard optimization
algorithms including gradient methods and the Nelder—-Mead simplex algo-
rithm (Lagarias et al., 1999) do not produce useful results even if a high
number of replications is used for the Monte Carlo simulation step.



Therefore, we suggest an algorithm which is a combination of the Nelder—
Mead simplex direct search method (Lagarias et al., 1999) and the threshold
accepting optimization heuristic (Dueck and Scheuer, 1990; Winker, 2001).
The Nelder-Mead search enables the algorithm to chose efficient steps for a
continuous but non differentiable objective function and the threshold accept-
ing strategy avoids the algorithm to be trapped in the many local minima the
objective function has due to the simulation variance.

In the Nelder-Mead simplex algorithm each current solution consists of the
points of a simplex in the parameter space ©. Comparing the values of the
objective function f at the edges of a simplex, a search direction — pointing
towards smaller values of the objective function — is identified. If along this
search direction a point with improved value of the objective function can be
found, it will replace one of the old simplex edges. Otherwise, reflection and
shrink operations concentrate the search inside the existing simplex. While
this method appears to be efficient for smooth globally convex functions, in
our problem, because of the Monte Carlo variance, the simplex shrinks rapidly
and gets stuck in a region close to the starting point.

The standard threshold accepting algorithm considers only a single element
f° € O. In each iteration, a neighbor of this current solution is randomly
selected and the value of the objective function is evaluated. If the new point
represents an improvement, it is accepted as new current solution. However,
even if the objective function value should increase, it will be still accepted
as new current solution as long as this worsening of the objective function
does not exceed a predefined threshold. Consequently, the threshold accepting
algorithm can escape the local minima that result from Monte Carlo variance
and non convexity.

Given that the underlying objective function f appears to be rather smooth,
we expect improved efficiency of a combined algorithm. For this purpose, we
introduce the idea of temporary worsening of the objective function in the sim-
plex algorithm. We will present the details of the algorithm and some results
for the specific agent based model introduced by Kirman (1991) and analyzed
in an indirect estimation approach by Winker and Gilli (2001) applied to the
DM/US-$ foreign exchange market.

The paper is organized as follows: In Section 2 we sketch the underlying prob-
lem of validating agent based models and describe the resulting objective func-
tion f. The optimization algorithm is described in Section 3. The estimation
results of some parameters for a standard agent based model of the DM /US—$
exchange rate are summarized in Section 4, while Section 5 provides a conclu-
sion and the outlook on further research, both with regard to the algorithm
and its application for validating agent based models of financial markets.



2 Indirect Estimation of Agent Based Models

We start with a short presentation of the agent based model for which we want
to estimate some parameters. Then, we derive the objective function which
has to be minimized with respect to the parameters under consideration. More
details on the indirect estimation approach can be found in Winker and Gilli
(2001).

We use a model originally introduced by Kirman (1991, 1993) that stresses the
importance of interaction between heterogenous, not fully rational individuals.
The model assumes that the individuals acting on the foreign exchange market
differ with regard to their behavior. A first type of agents acts on fundamentals,
i.e. they expect an adjustment of prices towards the fundamental value of the
asset which is assumed to be known to all agents. The second type of agents
follows a momentum strategy or chartist rule. An agent of this type expects
price changes to be the same as in the previous period.

Besides this heterogeneity of agents’ behavior already introduced in Frankel
and Froot (1986), an important feature of the model is that the type of any
individual agent can change over time. This may happen for two reasons.
Either the agent undergoes a random mutation with probability € or he is
convicted by a direct interaction with a second individual. Conviction is mod-
elled as a discrete process in time. At any time period two randomly selected
agents meet. The second one will convince the first one of his point of view,
i.e. change the type of the first agent to his type, with a given probability 0.
Consequently, due to mutation and conviction, the share of fundamentalists
and chartists in the population of agents changes over time. It turns out that
this simple model of endogenous agent types coupled with a price process
depending on the type of agents in the population is able to generate quite
complex dynamics including ARCH-effects and excess kurtosis.

The Algorithm 1 summarizes the price generation process in Kirman’s model

resulting from n; interactions of n4 agents of two types, i.e. fundamentalist
(F) and chartists (C).

Algorithm 1 Kirman’s model.

1: fori=1:n;do

2 Generate g;, the share of fundamentalists F' in the market
3 Transform share ¢; into w; (perceived weight of fundamentalists in market)
4:  Compute market price p; by weighting the agents price expectations
5
6

: end for
: Observe p;, it =1:np:n; (every np interactions between agents)

The three steps in the algorithm, i.e. the generation of the share of funda-
mentalists, the transformation of this share into a perceived weight and the



computation of the market price expectation are presented in Algorithm 2. In
Statement 3 in Algorithm 2 nothing happens, of course, if agent a; and agent
ay already follow the same strategy.

Algorithm 2 Process defining ¢;, the share of fundamentalists.

Given the set F after interactioni—1 (A=FUC and FNC = Q)
Randomly select three agents aq, a9, ag € A

ay convinces a; with probability § to follow his strategy  (Direct interaction)
a3 changes his strategy with probability ¢ (Random mutation)

@i = |F|/|A]

To compute, in Statement 3 of Algorithm 1, the perceived weight w; of funda-
mentalists at time 7 in the market, it is assumed that agents have information
about ¢; in the form of a noisy signal (Kirman, 1991). This signal ¢; is sup-
posed to be normally distributed, §; ~ N(g;, 07) and the knowledge about the
proportion w; of fundamentalist at time ¢ in the market is then defined as the
following probability

Finally, in Statement 3 of Algorithm 1, the market price p; is computed by
weighting the agents price expectations. For the fundamentalist the expected
change in the price is given by E¥ (Ap;) = v(p—p;_1), where p is the fundamen-
tal value of the underlying asset and v denotes the error correction term. The
chartists are assumed to extrapolate last period prices, i.e. their expectations
are described by E€(Ap;) = p; 1 — pi_2. Combining the two models yields the
market price expectation EM(Ap;) = w; v (p — pi1) + (1 — wi)(pi1 — pi_2)-
Given a specific utility function and initial wealth of market participants,
Frankel and Froot (1986) derive the price formation process as a weighted av-
erage of these market expectations and the fundamental value. Thereby, the
weight assigned to market expectations depends on the degree of risk aversion
implicit in the utility function, which is a further parameter of the model.
Kirman (1991) adds an exogenous perturbation u; ~ N(0,02) to the price
process.

Table 1 provides an overview on the most important parameters of the model.
In order to keep the problem computationally feasible, we decided to start
with the estimation of only the three parameters ¢, ¢ and o, describing the
dynamics of agent types. The other parameters have been kept fixed for the
present first implementation according to their values given in Table 1.



Table 1
Parameters of the agent based model.

Label Interpretation Value
na Number of agents 100
ny Number of interactions 50000
nr Number of interactions per trading day 50
v Adjustment speed in fundamentalists expectations  0.045
O Standard deviation of price shocks 0.25
) Probability for direct interaction

€ Probability for random mutation

o Standard deviation of noise in majority assessment

It should be noted that the goal of the present paper is not a discussion of the
agent based model itself, but of a method for estimating the parameters based
on actual data. Algorithm 3 resumes the main steps of the indirect estimation
procedure. For this first implementation, the moments of the actual data to

Algorithm 3 Indirect estimation procedure

1: Give 2(9 € R” initial vector of parameters to be estimated

2: while not converged do

3:  Determine successive vectors z (defined by the minimization algorithm)
4 for each z do

5 Evaluate objective function f(z) =| kf — k™ | + X | of® — o™ |
6: end for

7: end while

be matched are the estimated ARCH(1)-effect @™ and the empirical kurtosis
k5™ of the daily logarithmic returns of the DM /US-$ exchange rate over the
sample period 11.11.1991 — 8.11.2000. The objective function to be minimized
is

f=Ike = kg™ [ +A [ ai® —ai™ | (1)

where £ and af® denote the moments of the time series generated from the
agent based model and the weight A\ = 15 given to the second component
was chosen ad hoc based on the relative magnitude of the two moments. Of
course, the algorithm presented in the sequel is flexible enough to be applied
to objective functions based on different moments of the data, e.g. estimates
of SETAR—models (Killian and Taylor, 2001) or quantiles of the whole (con-
ditional) distribution of returns. This will be a subject of our future research.



3 Algorithm

3.1 Simulation and Monte Carlo Variance

Let us first explain in more detail how the stochastic approximation of the
objective function is obtained in Statement 5 of the indirect estimation pro-
cedure Algorithm 3. This is illustrated with the Algorithm 4 given hereafter.

Algorithm 4 Stochastic approximation of the objective function f(z).

1: Given z € R"™ a particular value of the vector of parameters to be estimated
2: for j=1:Rdo

3 Generate random sequences for price simulation

4:  Simulate price path p\9), compute returns () and corresponding &}® and l%;g_
5: end for ! ’
6: Compute a®, léj;g, the truncated means of &ij and l%;f, ij=1...,R

7

: Compute f(z) =| lézg — k3| 4+ A @ - o™ |

Figure 1 shows the resulting stochastic approximation f of the objective func-
tion f against the parameters ¢ and ¢ for o, = 0.20 and holding all the other
parameters of the model fixed at their values shown in Table 1.

0.012
0.0115
0.011

0.0105

€

0.3 0.01

Fig. 1. Simulated values of f against e—d—grid. Left panel R = 200, central panel
R = 10000, right panel R = 10000 with finer grid.

The left plot provides the results for R = 200 Monte Carlo replications. The
considerable Monte Carlo variance of the estimates of f(e,0) is evident, while
using R = 10000 replications leads to a much smoother plot (central panel).
In fact, regression analysis indicates that the Monte Carlo variance shrinks at
the usual rate of v/R. However, the estimates of f are still not smooth enough
to allow the application of standard optimization tools. This is made visible
with the plot in the right panel of Figure 1 where we use a ten times finer grid
to represent f computed with R = 10000 replications.

Furthermore, the estimation problem is not restricted to the two dimensional
problem represented in Figure 1, but, in general, will include some more para-



meters of the agent based model. For the current application it includes the
parameter o, besides ¢ and 9.

The shape of the objective function suggests the need for a global optimiza-
tion technique for our minimization problem. Unfortunately, the evaluation
(approximation) of the objective function is computationally expensive: For
ny being the number of simulated interactions and R the number of Monte
Carlo replications, the complexity for approximating f is O(n; R). In our
application we have n; R o 107. Therefore, we have to think of an optimiza-
tion approach which keeps the number of evaluations as low as possible. For
this purpose, we consider the simplex search method which was first intro-
duced by Spendley et al. (1962) and has then been modified by Nelder and
Mead (1965), while Lagarias et al. (1999) provide results about convergence
of the method. The simplex search approach enables the algorithm to choose
efficiently search steps. However due to the rough surface of the objective
function the simplex search would soon get trapped in one of the many lo-
cal minima. Therefore, the simplex search will be combined with a threshold
accepting strategy.

3.2 The Simplex Search

Figure 2 illustrates the fundamental idea of the simplex search for an objective
function with n = 2 variables. The objective function is evaluated for n + 1
points 2, 2 and 2 defined by the vertices of a simplex (a triangle for

n = 2). We then construct a new simplex, adjacent to the old one, which
is closer to the minimum of the objective function. The adjacent simplex is
obtained by projecting the vertex z(® corresponding to the worst function
value through the mean Z of the other (), i = 1,...,n vertices. The new
and x®.

simplex is then given by the vertices z(1), z(?

Fa®) o

Fig. 2. Step in the simplex search algorithm.



Let us now give a general formalization of the algorithm. We denote 2 the
n-dimensional vector of the coordinates of vertex i of the simplex, where the
vertices are numbered such as to verify f(z() < f(2®@) < ... < f(a"t)).
In order to compute the appropriate displacement of the s1mplex we need
additional points defined in Table 2

Table 2
Points computed for a given simplex in Algorithm 5.

z=213" 30 Mean

® = (1+p)z — px(tl) Reflection

z® = (1 + p€) & — p€ 2"t Expansion

2° = (1 +4p) T — hpz+D Out-contraction

=1 —-1p) T + ppx™tD) In-contraction

2@ =z — gz — 21y §=2,...,n+1 Shrink simplex toward vertex z(")

Using these additional points, the overall simplex search procedure is given by
Algorithm 5. If the reflection point z™ represents an improvement over the so
far best value of the objective function f(x(})), the algorithm tries to find an
even better value by expanding the search in the direction defined by x®. If
expansion is successful, x¥ will replace the worst vertex of the current simplex,
otherwise the original reflection point x® will be used. It is also used to replace
the worst vertex, if it represents an improvement compared to f(z(™), i.e. the
vertex with the second highest value of the objective function.

Algorithm 5 Simplex search.

(n+1) of starting simplex

1: Construct vertices (1, ...,z
2: repeat

3: Rename vertices such that f(m(l)) <...< f(w("+1))

4: if f(z®) < f(zM) then

5: if f(z") < f(z®) then z* =2z" else z* =z®

6: else

7: if f(z®) < f(z(™)) then

8: ¥ ="

9: else

10: if f(2%) < f(z "+1)then

11: if f(z°) < f(z™*tY)) then z*=2z° else shrink
12: else

13: if f(z') < f(z"*Y) then z*=z' else shrink
14: end if

15: end if

16:  end if

17:  if not shrink then z(™*t1) = z* (Replace worst vertex by z*)
18: until stopping criteria verified

If the reflection point x® provides only an improvement compared to the worst
vertex, i.e. f(z®) < f(z™V)), but f(z®) > f(z™), an outside contraction is



tested, i.e. moving only a bit in direction of z®. If z® is even worse than z("*+!)
an inside contraction is tested. If outside or inside contraction fail to result in
an improvement over f("*1_ the simplex shrinks. The conditions for shrinking
of the simplex are met for a smooth function if the simplex moves closer to a
local minimum. However, in case of the stochastic approximation used in the
current application, shrinking may also result due to Monte Carlo variance.
Consequently, the simplex tends to shrink very fast and the algorithm gets
stuck without approaching any local or global minimum.

3.8 Threshold Accepting

Threshold accepting (TA) was introduced by Dueck and Scheuer (1990) and
is one among the many existing heuristic optimization techniques used with
increasing success in various disciplines (e.g. Pardalos et al. (2000); Pardalos
and Resende (2002)). The TA algorithm has the advantage of an easy parame-
terization, it is robust to changes in problem characteristics and works well for
many problem instances. An extensive introduction to TA is given in Winker
(2001). TA can be considered as a deterministic analog to simulated anneal-
ing (Kirkpatrick et al., 1983), where the stochastic acceptance criterion of
simulated annealing is replaced by a deterministic rule. TA is a refined local
search procedure which escapes local minima by always accepting solutions
which are not worse than a current solution by more than a given threshold 7.
A typical implementation uses an a priori number of rounds ny and explores
the local structure of the objective function with a fixed number of steps ng
during each round. The threshold 7 is decreased successively for each round
and reaches the value of zero in the last round.

If we formalize the optimization problem as f : X — R where X is either a
continuous or a discrete set and where we may have more than one optimal
solution defined by the set

Xoin = {SE eX | f(.’]?) = fopt} with Jops = gg}\} f(.’]?) )

the TA heuristic described in Algorithm 6 will hopefully, after completion,
provide us with a solution z* € X, or a solution close to an element in X_;,.
In fact, Althfer and Koschnick (1991) show that the algorithm converges to a
solution close to a global optimum with probability approaching one with the
number of iterations growing to infinity. The complexity of the algorithm is
O(X 7%, ng,) with the factor of proportionality depending on the complexity
of evaluating f.

Given the high computational cost of obtaining a high quality approxima-
tion to f by means of a high number R of Monte Carlo replications of the

10



Algorithm 6 Threshold accepting algorithm.

1: Initialize ng, ng, and the sequence of thresholds 7., r =1,2,...,ng
2: Generate starting point z,4 € X

3: forr =1 to ng do

4:  fori=1tong, do

5 Generate ., € N3, (neighbor of z,4)
6 if f(Zhew) < f(Toa) + 7 then

7 Told = Thew
8

9
10:

end if
end for
end for

agent based model, the optimization heuristic must resort to a limited num-
ber of function evaluations and try to hold the requirements for R as small
as possible. Given the apparent smoothness of the objective function f, it
seems promising to combine ideas of simplex search with the TA approach.
Consequently, we use the following strategies.

First, in the beginning of the optimization procedure a coarse approximation
f to the objective function f is employed requiring only a small number of
replications R in the Monte Carlo simulation procedure (Algorithm 4). The
resulting high variance of f is compensated by larger values of the threshold
parameter 7,, which is chosen proportionally to the estimated Monte Carlo
variance of f . As the algorithm proceeds, 7, is reduced and R is increased
allowing for a more accurate estimation of f. The unavoidable Monte Carlo
variance is still taken into account for by the threshold height 7,, which also
allows to escape local minima of the non globally convex objective function f.

Second, instead of working on a single current solution, the TA algorithm is
applied to a simplex. In order to obtain a local improvement of the solution,
two methods are employed which are chosen with a given probability £&. The
first strategy consists of a random shift of the simplex in the parameter space,
where the length and the direction of the shift are chosen randomly. This
neighbor solution is accepted, if the best vertex of the new simplex is not worse
than the best vertex of the previous one by more than the given threshold 7,.
The second method, which is used with probability (1 — &) is a simplex search
step as described in Algorithm 5. However, in the Statements 4, 5, 7, 10, 11
and 13 of the simplex search algorithm (5), where we compare two function
values, we augment the function on the right-hand side by the threshold 7 in
order to allow for a temporary worsening of the simplex. Both methods are
implemented by replacing Statements 5-8 in the original TA algorithm 6 by
the code given in Algorithm 7.

This first implementation of the hybrid algorithm requires the choice of some
parameters like the number of rounds and the number of Monte Carlo repli-
cations for the different rounds. However, we assume that it will be possible

11



Algorithm 7 Step 7 in round r for TANM.
: Draw uniform random variable u
if u < ¢ then

Generate Z,.., € /\/'g[;01 4 with random shift

if f(Tnew) < f(Toq) + 7, then z,., is accepted
else

Generate z,., € N,
end if
if z,.. is accepted then

.q With simplex search and check whether it is accepted

Told = Tnew

end if

—_
e

to transfer ideas from TA implementations for optimization problems on dis-
crete sets to the current implementation allowing for an automatic data driven
parameter setting.

4 Estimation Results for an Agent Based Model

We will now present the results for the indirect estimation of the three para-
meters ¢, 6 and o,. The estimated parameters minimize the objective function
defined in (1). In order to benchmark the performance of our optimization
heuristic we computed the approximations of the objective function for a grid
with 32 steps in each of the directions of the three parameters. The approxima-
tions of the objective function on this grid have been computed with R = 500
repetitions and the overall computing time for the ~ 102 prices (500 x 323
price path with 50 000 interactions) was 7 days on a Pentium ITT 600 MHz PC.
The plot of the objective function in the e~ and e-0, grid is given in Figure 3
and the plot in the 6—0, grid is given in the left panel of Figure 4.

Fig. 3. Approximations of the objective function in the -6, (o, = 0.219) and e-oy
(6 = 0.264) grid.

For the TA implementation, we choose ng = 3 for the number of rounds, and

12



Fig. 4. Left panel: Approximations of the objective function in the 6-o, (¢ = 0.0001)
grid. Right panel: Evolution of the simplex in the parameter space.

a variable number of steps ng, = 50, ng, = 20 and ng, = 10. The number
of repetitions R for the approximation of the objective function evolves as
follows in the different rounds: R; = 100, Ry = 200, and R3 = 500. The
value for &, i.e. the probability for a random shift in Algorithm 7, was set to
0.15. Consequently, with a probability of 85% the construction of an adjacent
simplex was performed.

The choice of the threshold sequence 7,, » = 1,...,nr has to be made in
relation with the Monte Carlo variance of the objective function, which is a
function of the number of repetitions R, used in the simulation which approx-
imates the objective function. This functional dependency has been estimated
in a preliminary step using empirical estimates of the Monte Carlo variance
0, for different numbers of replications R;. We fitted the model

Ry,

Ofp, =0 RP +&

to our data. As expected, our estimates for § were very close to and not
significantly different from —1/2 and for o we obtained estimates very close
to 1.3. For a given number of Monte Carlo replications R,, the threshold value

is then determined automatically with the following relation

T =7a\/ R, r=1,...,ng,

where only ~ has to be set for the implementation. The parameter v determines
how likely the TA algorithm will leave a local minima caused by Monte Carlo
variance in a single iteration. The value of 7 was set to 2 for the present
implementation.

Further implementation details, which have not been mentioned in Section 3,
are that we have to check whether the simplex moves out from the feasible
region for the parameters and the fact that we must prevent the simplex
from expanding too large and shrinking too small. In the application we allow
the simplex to expand by a factor of 2 and shrink by a factor of 0.2 from its

13



initial volume. A future refinement of the algorithm will adjust these factors in
dependence of the shrinking Monte Carlo variance as the algorithm proceeds.

The best results obtained with these settings are € = 0.0001, 6 = 0.264 and
o, = 0.219 with f = .279. The computing time for this solution is less than 1
hour on a Pentium IIT 600 MHz PC. The starting values for the minimization
have been ¢ = 0.02, 69 = 0.10 and 0, = 0.20. Starting values and
solutions have been marked in the three plots of the objective function in
Figures 3-4.

Asymptotic results on the convergence of Markov chains provided in Kirman
(1993) allow for the conclusion, that the process generated from the agent
based model exhibits large shares of fundamentalists and chartists, respec-
tively, with high probability, if ¢ < (1 —0)/(n — 1). For our estimates we find
e = 0.0001 < 0.0074 = (1 — 0.264) /(100 — 1) = (1 — ¢)/(n — 1). Thus, our
estimates indicate that, in fact, the foreign exchange market can be better
characterized by switching moods of the investors than by assuming that the
mix of fundamentalists and chartists remains rather stable over time.

We also experimented the algorithm with different starting values and ob-
served that it always ended in the deep portion of the objective function, not
necessarily for the same parameter values, as this region is quite flat. In fact, a
standard approach when working with optimization heuristics like TA is to use
several restarts with different initializations of the random number generator
and different starting values (Winker, 2001, pp. 129ff).

Figure 4 and 5 provide some insight about how the algorithm works. The right
panel of Figure 4 visualizes the sequence of adjacent simplexes the algorithm
constructs in the search to the minimum. In Figure 5 we plot the corresponding
values taken by the objective function. Notice that the TA strategy allows to
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Fig. 5. Value of objective function in the succeeding steps.

accept intermediate solutions for which the objective function increases. More-
over, in each new round, starting at steps marked in Figure 5 with a vertical
line, we increase the number R of replications. This reduces the variance of the
Monte Carlo approximation of the objective function, making it smoother and
thus reducing the depth of local minima due to this variance. This explains

14



why the value of the objective function can increase when we move from one
round to another.

5 Conclusion and Further Research

The global optimization heuristic introduced in this paper allows for the indi-
rect simulation based estimation of agent based models of financial markets.
It takes into account the fact that moments of the series generated from the
simulation models can only be approximated using Monte Carlo methods. The
specific features of the threshold accepting algorithm, implemented to over-
come local minima due to Monte Carlo variance, also help to obtain close
approximations of global minima for the non globally convex objective func-
tion.

The present application is restricted to three parameters for a specific model.
Further research will concentrate on higher dimensional problems. At the same
time, parameter settings of the algorithm will be made data dependent to allow
for easy application. We will also implement a restart option based on ideas
of uniform design to improve the robustness of the results.

A further field of future research will consist of using the algorithm for vali-
dation of agent based models against actual data. For this purpose, we have
to consider further moments of the time series. Then, it might become pos-
sible to discriminate among different agent based models and improve their
structure. Still, citing LeBaron (2002): “...this field is only in its infancy, and
much remains to be done.”
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