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Abstract

The assurance — the verification and validation — of agent-based models is difficult,
because of the heterogeneity of the agents, and the possibility of the emergence of new
patterns of macro behaviour as a result of the interactions of agents at the micro level. We
use an agent-based model of the complex interactions among consumers, retailers, and
manufacturers to explore issues of model assurance. Our explorations indicate two challenges
for the agent-based models field. The first challenge is to address the critical issue of
software verification. The second challenge is to overcome the many methodological
challenges that exist in empirically validating these models, some of which we will outline in
our paper. We will also propose a method based on the Genetic Algorithm to address both
these challenges, but our experiments, and the lack of good data for many kinds of agents,

suggest a minimalist approach to building and assuring agent-based models in general.



1 Introduction

1.1 The purpose of the paper

Agent-based (AB) models are a relatively new and important approach to representing and
exploring phenomena of heterogeneous agents interacting. Such phenomena occur in many social
sciences, including economics, business, and marketing. Taking a disaggregate perspective to the various
agents of which such human systems are composed, and utilizing the power of modern object-oriented
programming languages, AB models have the potential to be more sophisticated, subtle and faithful to the
complexity of such phenomena than do more traditional modeling approaches such as econometrics or
game theory or indeed older approaches to simulation such as system dynamics. Recognizing this,
researchers in many fields have begun to develop, implement and publish many interesting AB models in
scholarly journals and on the web. These developments are encouraging to researchers like us, who
believe that many human systems are complex, non-linear, and exhibit emergent behaviour, and are thus
poorly modeled by existing approaches. Our fear is, however, that the potential of AB models may not be
fully realized unless the critical tasks of assuring — verifying and validating — such models are given
considerably more attention in the scholarly literature, and the many current hurdles to achieving adequate
assurance overcome by improved methodologies. We further believe that AB modeling will not be
recognized as an important scientific method unless those who develop them begin to pay greater attention
to assurance and in turn are supported by methodologists who develop improved methods to achieve these

ends.

The fact that these issues do not attract enough attention is easily demonstrated. In a recent issue
of this journal, Tay and Lusch (2005) clearly demonstrate the power of AB models to address problems
that other methods cannot—in this case competitive market strategy in complex and ill-defined
environments—and outline an interesting and valuable model addressing this topic. But these authors
declare their goal to be simply establishing face validity for their model, and for further validation refer

‘readers who are interested in rigorous analysis of simulation models’ to a citation that pre-dates AB



models. We demonstrate in our paper that this step is not so easily taken—many of the issues in the
rigorous analysis of ABMS are yet to be fully understood. Indeed, even the ‘simple’ step of establishing
face validity may itself be a significant challenge, requiring the development of new methodologies.
These issues of validation are also wider than the scholarly literature. An AB model addressing an
important policy issue (the deterrence effects of tax audits) developed by a US government department
remains as yet un-validated (Bloomquist, 2004). In their paper entitled ‘why are economists skeptical
about agent-based simulations,” Leombruni and Richiardi (2005) demonstrate that AB models have not
yet been accepted in many top journals—partly because lack of validation makes criticism that

‘simulations do not prove anything’ difficult to refute.

The purpose of our paper is to examine the issues in verifying (a vital step, not yet discussed in
the AB models literature) and validating AB models and to propose some methodologies that may be
helpful in achieving these goals. We do this using as an example a model we developed that addresses an
important and not well-understood issue in business. This example allows us to draw some important
conclusions about AB model assurance and to set out the challenges that these conclusions present to the
field of AB modeling. The two critical challenges we shall propose are (1) to value simplicity more than
theoretical sophistication in model specification, and (2) to incorporate assurance methodologies into

model development from the start.

1.2 Structure of the paper

The second section describes our example AB model—the Supermarket ABM—and its
implementation in RePast. We present the philosophy behind the design of this model and the detailed
specifications of the three types of agent. The third section discusses what we believe should be the first
step in the assurance of AB models, namely software verification. The fourth section looks at the issues
involved in what we believe should the second step, validation of the model. The fifth section proposes an
approach to assurance based on the ideas of Miller (1998) and the Genetic Algorithm and which we

illustrate with our results from assuring the Supermarket ABM. These results led us to change our



perspective on modeling AB models and to rethink how one might specify and test such models. The
sixth and final section of the paper sets out our conclusions and the challenges for the field, together with

a simple 4-step process that we believe should be taken in building and assuring any AB model.

2 An Example: the Supermarket ABM

2.1 The research problem

Understanding the complex interactions among consumers, retailers, and manufacturers that lead to
market and economic outcomes such as consumer satisfaction, and retailer and manufacturer profits is an
important issue in business, but it is not well understood. We are undertaking a research program

exploring this phenomenon, and our specific focus is that of non-durable products sold in supermarkets.

Individual aspects of this problem have been discussed in many literatures and from many perspectives.
For example, the field of marketing has a long tradition of modeling the impact of marketing actions on
the sales and market share of products (e.g. Cooper and Nakanishi, 1993; Hanssens, Parsons and Schultz,
2003). Similarly, game theorists have addressed the interaction between consumers and product
manufacturers (e.g. Carpenter, Cooper, Hanssens and Midgley, 1988) and between manufacturers and

distributors (e.g. Iyer, 1998).

We do not, however, believe the complete system has been adequately modeled to date. Here we define
‘complete system’ to mean a set of consumers purchasing a category of products (for example, shampoo),
the competing retailers that make these products (amongst many others) available to consumers and the
competing manufacturers that supply these products to the retailers and promote them through advertising
and store displays. If we require realism in our specification of each agent within the system, and if our
objective is to model the multiple-period interactions of interest to managers as well as to scholars, then
modeling the complete system is indeed a very difficult problem. We might observe thousands of
consumers buying the category as a part of their weekly shopping trip, several retailers vying for their

custom not only for this category of product but many other categories besides, and several manufacturers



promoting their own brands in the focal category. All—consumers, retailers, and manufacturers—can be

viewed as goal-oriented agents who learn and adapt their patterns of behaviour over multiple interactions.

Existing approaches to understanding the supermarket setting have used analytical equations to represent
part of this system (for example, in the study of the impact of store promotions on consumers). The rest
of the system is, however, often viewed as exogenous to these models (which, for example, provide no
explanation of why retailers chose promotions in reaction to the past choices of consumers) and so these
models remain incomplete. Even where game theory has been employed to model the interactions among
different types of agent, this has often been for ‘one-period’ or ‘two-period’ games rather than the
interactions over multiple periods that characterize this setting. While the existing literature has
undoubtedly added greatly to our understanding, it might not capture the richness of agent interactions in
this setting or the longer-term dynamics of the market-place. As a consequence, our knowledge of these
interactions and dynamics remains incomplete and the normative prescriptions we make from such a

partial view of this system may well be incorrect.

Given all of the above, we believe there are three strong arguments for considering AB modeling
techniques as a way to gain a more complete, integrated and dynamic understanding of the supermarket
setting. First, it is easier to incorporate our existing knowledge about the nature of human-decision-
making processes into AB models than it is into analytical equations (for example, decision-makers using
elimination by aspects in their choices, or consumers paying selective attention to store displays). AB
models allow a flexibility of representation that is not found in more traditional approaches. Second, we
believe that individual consumers, retailers, and manufacturers have differing decision-making processes
and behaviors. For consumers, we naturally think of different market segments, but we would also not
expect Carrefour to make decisions in the same way as does Tesco, or Proctor and Gamble the same way
as does Unilever (for reasons of history, organization, costs, etc.). Incorporating heterogeneity in existing
econometric approaches, while not impossible, usually results in clumsy simplifications or in equations

whose solution is intractable. In contrast, heterogeneity is the essence of AB models. Third, many current



approaches are ‘top down’, imposing analytical structures on markets that are useful to the researcher. In
contrast, historical markets are built ‘bottom-up’ from the actions of independent agents of differing types.
By imposing structures, rather than allowing interactions, we might be artificially constraining the system
in ways which we do not understand and which might not reflect the historical dynamics or behaviour of

the system. AB models potentially allow us to overcome this limitation.

The objectives of our current work are thus to use a bottom-up approach to modeling the supermarket
setting, in particular the ideas and techniques of AB modeling. In taking this approach we shall build on
the existing literature to specify the decision-making and interactions of the three types of agents
(consumers, retailers, and manufacturers). In accordance with our opening remarks we shall, however,

also seek to assure (to verify and validate) this Supermarket ABM.

2.2 The basic modeling philosophy

The basic philosophy of our model is one of memory and decision rules. An agent has memory of what
worked for it in the past and rules for deciding which new opportunities to consider and how to evaluate
them against known alternatives. This basic philosophy applies to all three types of agent, although the
retailer and manufacturer agents are concerned with profits, whereas the consumer agent is concerned with
consumption satisfaction. The retailer and manufacturer agents are also conceptualized as having larger
memory and more systematic decision-making than does the consumer agent. Similarly the retailer and
manufacturer agents are fully informed of each other’s proposals through their close interaction, whereas
the consumer agent may only become aware of new offers through advertising or in-store promotion.
Finally, following industry practice the retailer and manufacturer agents operate on quarterly planning
periods, whereas consumer agents operate in a weekly time frame. We now describe each type of agent in

more detail.

2.3 The three types of agent

The consumer agent becomes aware of brand attributes (two features, plus price) in two ways. First, when

the agent sees advertising (with a probability that depends on the level of advertising of the brand relative



to its competitors). Observing advertising also reduces the agent's uncertainty on the advertised attribute.
Second, when the agent observes an in-store promotion on visiting the store during a week in which there
is such a promotion (with a simple probability of observing the promotion in the store). Observing a
promotion also reduces uncertainty on the price attribute. The probability that the consumer will go

shopping in any week is modeled as a Poisson process with an individual-specific parameter.

The consumer agent is assumed to make screening decisions about which brand to put into their
consideration set using a lexicographic rule, and decisions about how to choose a brand in this set using a
compensatory rule. To be added to the set, a brand that the agent recently became aware of must be better
than any brand already in the consideration set on the most important attribute to that agent (and on the
second most important attribute if there is a tie between two brands on the first, etc.). ‘Better’ implies
having more of the attribute than any existing brand by an increment which represents the cognitive cost

of expanding the consideration set.

At the point of purchase the agent becomes certain of the actual prices of those brands in their
consideration set for that week, and applies a compensatory rule to choose which to buy. The rule is
applied by computing an overall score for each brand (the sum of the agent’s beliefs about attribute levels
weighted by their importance to that agent), a score which is corrected for risk when the agent is uncertain
about one or more of the non-price attributes. The brand purchased is the one with the greatest risk-
adjusted score. Once a brand has been purchased, the agent becomes aware of its true attribute levels,
uncertainty drops to zero, and the score is recomputed. Provided this score is above the agent’s individual
threshold level of satisfaction, the brand is retained for consideration on the next purchase occasion;

otherwise it is dropped as ‘unsatisfactory’.

In contrast, the focus of the retailer agent is on those store promotions that make the greatest total
category profit—reflecting the general interests of retailers, which are obviously different from those of
manufacturers selling brands within the category. The retailer agent retains a memory of previously

successful promotions, including attributes of the promotion itself (discount off normal price and whether
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an aisle display was used) as well as the total category profit generated. This memory is updated each

quarter so that it retains the best promotions.

For the retailer agent consideration is simple. They choose a certain number of weeks on which to run
promotions in the next quarter (a state variable they can change from quarter to quarter) and have a fixed
policy that only one brand can promote in any one week (which follows historical examples). Next, they
are aware of all the promotions being offered by manufacturers for the upcoming quarter. They consider
all proposals systematically, and choose a specific proposal for action in two steps. First, the proposed
promotions are compared with those in memory brand by brand, establishing which are most similar on
promotional attributes and then ascribing the category profit achieved previously to the new promotion.
Second, the agent simply chooses the number of promotions that earn it the most profit, without
considering which brand is associated with that promotion. In weeks where the retailer does not schedule
a promotion for a brand, the normal price of that brand applies and in some weeks all brands are offered at

their normal prices.

The focus of the manufacturer agent is also to make profits, in this case for their brand, but their world is
more complex than the retailer's. First, the manufacturer agent can choose to change their wholesale price
and their weekly advertising level from quarter to quarter. They can also choose which attribute to
emphasize in their advertising and what to say about that attribute (e.g. the level they wish to
communicate). Second, they need to remember two separate classes of events, corresponding to normal
and promotional periods in the retail store. For normal periods, the agent’s memory includes the
previously most profitable settings of price and advertising. For promotional periods, the agent
remembers the previously most profitable promotions (including discount, aisle display and brand profit).
Third, the manufacturer agent needs to make promotional offers to the retailer for the next quarter. They
do this by first asking the retailer how many promotions will be scheduled for that quarter. They then

offer the equivalent number of their most profitable promotions to the retailer. The manufacturer agent



will not, however, be awarded all the promotions they request, owing to competition from other

manufacturers.

For demonstration purposes the Supermarket ABM has been implemented in RePast and successfully run
with one retailer, five manufacturers, and 1000 consumers for many simulated weeks of interaction. With
these settings the model has the 37 parameters, which are shown in Table 1. These parameters should not
be confused with the variables and contents of the memories used by the agents in their decisions and
interactions. Rather they are (1) global constants which define items such as the size of memory,
allowable price changes, mark-ups, etc. or (2) means and variances of distributions used to generate
heterogeneity across agents for items such as attribute importance weights, risk propensity or the attributes

of different brands.

[Table 1 about here]

2.4 The realism of the model

Our AB model is built from two sources: the literature, especially that on consumer behaviour, and
industry knowledge. The resulting model is realistic—at least to some degree of face validity—but is
evidently complex in overall structure. Yet the model has limitations. For just a few examples, we would
note that in reality (1) manufacturers take explicit account of the actions of their competitors (here they do
not—rather competition is indirectly inferred from results), (2) retailers and manufacturers negotiate over
prices and promotions (here they simply accept/reject offers), and (3) consumers forget advertising (here
they do not). So while the model is complex, it is not fully based on either the literature or industry
knowledge—it remains a considerable simplification of both. This point is important because, as we shall
argue later, the trade-off between realism and simplicity is a difficult one to judge. We would also argue
that this is not a particular feature of the way we built our AB model. Anyone building an AB model for
the supermarket setting is likely to have to make similar trade-offs and arrive at AB models that are
complex but not fully representative of whatever theoretical literature or practical knowledge the modeler

might bring to bear on the problem. Moreover, this is also likely to apply to any AB model, marketing or
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otherwise, that attempts to model with systems with three or more sets of interacting agents. To develop
this point in a more general direction we now turn to the issues involved in assuring AB model such as

these.

3 Verification of the software implementation of the AB model.

3.1 The step before validation

As a consequence of our work, we have come to realize that there is an important step prior to the
validation of an AB model. This precursor step is the verification of the software—put simply, that the
software correctly implements the conceptual model the researcher intended. We believe that this step is
largely ignored in the AB model literature and must be given more attention if the field is to progress.
Moreover, this is not a trivial step or issue. In developing an AB model the conceptual ideas of the
researcher have to be translated into specific programming code, with many choices as to how the details
of these ideas are implemented. Often this may involve several academics, research assistants, and
computer programmers working together and bringing different skills and perspectives to the project.
This process is exactly analogous to software development in general, and so we believe there is much for

AB modelers to learn from the literature on that topic.

The importance of verification and validation, and the distinction between them, has been much debated in
the software development literature. To quote an early and influential text, one has to first demonstrate
that one is ‘solving the equations right’ before moving on to demonstrate that one has ‘solved the right
equations’ (Boehm, 1981). Another frequently quoted paper is that of O’Keefe et al. (1987, p82), who
argue that verification is ‘substantiating that a system correctly implements its specifications’, whereas
validation is ‘substantiating that the system performs with an acceptable level of accuracy.” Gonzalez and
Barr (2000) point out, however, that that many writers remain confused between the two steps and argue
that better definitions are needed. They review trends in this debate and put forward the following
definition of verification for the intelligent systems field ‘...the process of ensuring that the intelligent

system (1) conforms to specifications, and (2) that its knowledge base is consistent and complete within
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itself” (2000, p412). ‘Conforms to specifications’ they mean simply as the process of having a
documented specification and checking that the system conforms to this. We note that the written
specifications for many AB models are not readily available, nor is there much discussion of the checking
process. ‘Consistent and complete’ they mean as a software system which follows from the researcher’s
assumptions and which is free from internal errors. Internal errors could be conflicts, redundancies, or
circularities, which might lead to unreachable code, cycles, and other forms of non-termination,
pathological interactions between elements, dead-end modules, unneeded elements and missing links (all
of which are common problems in programming). Note that this type of error is not the same as a “bug”
(meaning an observed failure to execute)—verification sets a higher standard than simple debugging. It is
unclear how many AB models have been checked for such problems of internal consistency, since seldom

do AB model research papers mention such checks.

The natural question at this point is how one goes about verifying an AB model. For analytical models, it
is possible to verify that the equations have been correctly solved. The proof is normally presented in the
paper and open to inspection by reviewers and readers. For very simple programs, it is also possible for
reviewers or readers to inspect the code in a technical appendix. Verification is not, however, an easy task
for complex software such as an AB model, which may require several hundred lines of code, and which

moreover is often also embedded within a development platform such as RePast.

Indeed, whether software can be completely verified is topic of controversy in the software literature,
especially in the long-running debate over whether it is useful to have formal proofs of the correctness of
any program (Glass, 2002). More recently, while some writers still think it impossible to completely
verify large, complex systems with many parameters (Kelton et al 2001, Shervais et al 2003), others argue
that there are several methods and practical steps that can be applied which, while they may not
completely verify the software, can go a considerable way towards that goal. We shall focus on the latter

here.
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3.2 Verification methods

One practical step that is advocated by many writers is an “inspection process” akin to quality assurance in
manufacturing—an idea identified as one of the major turning points in improved software development
(Goldberg 1999), and originally developed by Fagan (1976) . The key component of this process is a
small number of experts with defined roles who go over the code in a structured manner using techniques
such as ‘paraphrasing’ (verbalizing the meaning of each line of code at a higher level than the source text).
Research has consistently shown that external review reduces errors significantly, even though there are
conflicting findings in the literature on the best way to organize this process (Glass, 1999). Inspections
have become a common feature of software development. This can be contrasted with AB modeling,
where code is often not externally reviewed either in development or before publication. This, of course,
requires that the code be available for reviewers and readers, if not in an appendix, then at least at an open
web page. We note that the possibility of external review of code, and the verification that results from

this, is a key reason for the commercial popularity and technical success of open-source software.

Beyond simple inspections, there are a variety of more formal methods that can be applied to code
verification. These include source code analysis (manual, tool-based or automated), automatic theoretic
verification, deriving automata from the program and finite state verification (Holzmann 2000; Hailpern
and Santhanam 2002; Cobleigh, Clarke and Osterweil 2002). Schreiber (2002) suggests a role for extreme
bounds testing—does the model continue to make sense at the margins?—and sensitivity analyses—to
which parameters or combinations of parameters is the model especially sensitive and is this consistent
with the specification? Later we shall add another method to this list—automated non-linear testing
(Miller, 1998)—since it has contributed much to the development of our own approach and also
incorporates several aspects of the preceding discussion. Our purpose here is not, however, to detail all
these methods, but to demonstrate that there is much that can be done to verify complex software, and to
contrast this with the little that is actually done in AB modeling. We would accept, of course, that many
AB models are not safety-critical or commercially important in the sense that some of the software

systems for which these formal verification methods were developed are—for example, air-traffic control
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or banking systems. Increasingly, however, such computer models might be used in decisions that result
in litigation, such as merger decisions or liability cases,: it is therefore worthwhile making some attempt to

verify the software implementing our models.

4 Validating the AB Model

If verification is solving the equations ‘right’, then validation is showing that one has solved the ‘right
equations.” And most writers see the proof that the ‘right equations’ have been solved by reference to
some empirical reality or test. For example, in the intelligent systems field, Gonzalez and Barr (2000) see
validation as ‘the process of ensuring that the output of the intelligent system is equivalent to those of
human experts when given the same inputs.” In the simulation field, Dijkum and Kuijk (1999) also see
empirical testing as key when they ask (echoing the Turing test) ‘can human beings discriminate between
the outcomes of a computer model and the outcomes of the real system the computer is modeling?’ And in
the view of one profession, validation is ‘the process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended uses of the model’ (AIAA
1998). Thus the central approach to the ‘validation’ of AB models will most likely continue the scientific
tradition of empirical validation and testing. We say ‘will most likely’ not only because validation has
only recently become a major topic of concern within the AB modeling field, but also because validation
of AB models will involve many novel methodological challenges such as to make the direction of the
field as yet unclear. Here we shall focus on the empirical approach because we believe it is the central
challenge facing the field and because it is the focus of our work (and we shall not discuss other useful
approaches such as ‘docking,” Axelrod 2003).

Among these novel challenges are Moss and Edmonds’ (2005) conclusion that for AB models there are at
least two stages of empirical validation, corresponding to the (at least) two levels at which AB models
exhibit behaviour: the micro and the macro. The first stage is the micro-validation of the behaviour of the
individual agents in the model, which they suggest might be done by reference to data on individual
behaviour. An example of this kind of micro-validation (which might also be called agent calibration) is

the work by Garcia, Rummel and Hauser (2006) on the wine industry. They calibrated the preferences of
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their consumer agents from conjoint analyses based on surveys of actual consumers. These agents then
interacted with agents representing profit-maximizing wine producers. The second stage is macro-
validation of the model’s aggregate or emergent behaviour when individual agents interact, which Moss
and Edmond suggest can be done by reference to aggregate time series. Moreover, since the interactions
at the micro level may result in the emergence of novel behaviour at the macro level, there is an element
of surprise in this behaviour, which, with the possibility of leptokurtosis and clustered volatility, may be
highly non-Gaussian and difficult to verify using standard statistical methods. As Moss and Edmonds
note, at the macro level only qualitative validation judgments might be possible as a consequence. A
similar point has been made by McKelvey and Andriani (2005), who note that analyses of such data must

take account of extreme events and infinite variance.

In similar vein, LeBaron (2006) suggests three steps to empirical validation. First, attempt to replicate
difficult empirical features: for example, does the model fit facts not otherwise explained? Second, put
the parameters under evolutionary control, when the AB model is using evolutionary processes (such as
the Genetic Algorithm) in order to search the parameter space for better combinations of values. Third,

use the results from laboratory experiments with human subjects to validate features of the model.

The two-stage approach of Moss and Edmonds appropriately reflects the complexity of AB models, where
interaction among agents at the micro level emerges as behaviour exhibited at the macro level. There
could, however, be more than two levels: for instance, the individual, the family, the neighborhood, the
city, the state, and the nation. Since the forms of interaction could depend on the level, this is not just a
scheme of aggregation or categorization. That is, the macro level behaviour is not simple superposition of
the micro behaviour of the agents, bur arises through their interactions. As Bar-Yam (2003) notes, there
may exist a class of AB models where the emerged, macro behaviour is insensitive to variation in, say, the
initial conditions of the simulation of each agent in the AB model. Ideally, we should like to identify such

equivalence classes of models, but the essence of emergence means that the problem of equivalence class
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identification is complex, with no simple way to predict emergent behaviour from initial conditions, apart

from actually simulating the model and observing the macro behaviour.

5 A Common Methodology for Destructive Verification and Empirical Validation
5.1 Miller’s approach extended
Both Schreiber (2002) and Midgley and Marks (2004) have suggested that a possible approach to the

assurance of AB models might lie in Miller’s Automated Non-Linear Testing System. Miller (1998)
demonstrated the use of optimization algorithms (such as the Genetic Algorithm) to ‘break’ the target
model. This is done by searching for a set of reasonable perturbations to the model’s parameters that
produce an extreme deviation from the original prediction of the model. That is, the objective function in
the optimization is specified to reward lack of fit. As Miller points out, by careful choice of objective
functions, one can test different aspects of the model. Miller applied this approach to the World3 model
of the Club of Rome (Meadows, 1974) and was able to show that small changes to just a few parameters

3

resulted in significantly differing results from those originally published. As he notes °‘...the occurrence
of such events does not necessarily imply a faulty model—good models must be responsive to their
parameters. Nonetheless, they do indicate the potential for extreme errors, as well as suggest structural
areas of the model that might require further investigation and refinement’ (1998, p829). In essence,
Miller proposed an automated system for the destructive testing of complex models—combining ideas of
extreme bounds, sensitivity analysis and robustness. If we apply this system to an AB model that has been
documented and ‘inspected,” and we are not able to produce extreme, excessively sensitive or excessively

insensitive or non-robust behaviour across a range of relevant objective functions, then we would be more

confident in the verification of our model.

Schreiber and Midgley and Marks also point out, however, that if an AB model is embedded in an
optimization algorithm, then it is equally possible to fit that AB model to empirical data using the same
algorithm. In this case the objective function would be specified to reward closeness of fit. Furthermore,
building on the ideas of (Bleuler et al, 200?) if we separate the required software into three distinct

modules — namely, AB model, objective function specification, and optimization algorithm — and have
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these communicate via a common data interface, we can envisage a flexible platform for advanced AB
model assurance. Bleuler et al point out the advantages of separating the software into distinct modules.
These advantages stem from a separation of the problem-specific code (e.g. the AB model) from
algorithm-specific (e.g. choice of optimization algorithm) and the flexibility of choice and development
that result. Here we extend these ideas a little further and note that there are also advantages in having the
objective function as a separate module—especially when, first, we wish to use this for assurance, and,
second, we may wish to optimize against multiple objectives (as will be discussed later). No such platform
currently exists in a complete form but we shall illustrate our application of some of these ideas in the

following section and we hope these go part way toward this perhaps ambitious goal.

5.2 An Illustration of the Common Method Applied to the Supermarket ABM

We have implemented some elements of the common method by embedding the Supermarket ABM in a
Genetic Algorithm (GA) optimizer (using the readily available JGAP code). This is illustrated in Figure

1.

[Figure 1 about here]
We chose the GA because of its robust optimization properties—especially given the non-linear nature of
our AB model—and because of our prior familiarity with the GA. We should point out, however, that
with separation of modules proposed above, the researcher has complete flexibility to choose the

optimization algorithm best suited to their problem (e.g. hill-climbing, tabu search, etc.).

5.3 Destructive verification

Here our goal is to produce extreme, excessively sensitive or excessively insensitive or even non-robust
behaviour from the AB model. To that end we tried various objective functions such as: maximize the
market share of one producer at the expense of all others, equalize the market shares of producers,
maximize the retailer’s profit, maximize the manufacturers’ profits, maximize the satisfaction of

consumers. Many other possibilities can be envisaged here. We should also note that we did these
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exercises independently; later we will raise the issue of whether verification and validation should both be

seen as the simultaneous optimization over several criteria.

Following Miller the search space was constrained to reasonable perturbations from our original parameter
settings (even good models might fail with extreme perturbations). To reduce the search space, we
selected 16 parameters of particular interest from the 37 parameters in the model. These parameters were
perturbed by the optimizer within +/- 20% bounds of their original values and only allowing integer
increments on the perturbations to further reduce search time. The GA was run with an adequate
population size and for sufficient generations to obtain convergence (25 and 50, respectively). An
example of the sort of output obtained from these exercises would be a set of parameter perturbations that
resulted in a market share of 82% for one producer. While this outcome is not completely implausible, it
is of concern because we are modeling an oligopoly with fairly equal competitors. And this concern is
heightened when inspection revealed that only four of the 16 parameters had been pushed even close to
the 20% bounds. This suggests that the Supermarket ABM is overly sensitive to some combinations of
some parameters. Equally, we found that it is much less sensitive to other combinations. This imbalance
suggests flaws in either the conceptual specification or the software implementation of this specification.
An example of the former could be the inclusion of a parameter at the micro-level that does not have a
significant influence on macro-level behaviour. An example of the latter could be a parameter whose
expression is wrongly implemented in the code. These example dampen sensitivity, equally we can

imagine flaws that magnify it.

A number of other critical issues arose during these verification exercises. First, we found code that was
not invoked during the runs and needed to be examined for possible deletion. Second, we found code that
was incorrect and needed to be modified. Third, we found an issue with the use of random distributions to
generate the requisite degree of agent heterogeneity (particularly for consumer agents). This introduces

considerable noise into the optimization process, often such as to make it difficult to get convergence. As
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an expedient, we drastically reduced the variance of these distributions. This allowed the GA to converge

but obviously sacrifices many of the benefits of the disaggregate approach.

5.4 Empirical validation

We can also use the optimizer to fit the model to historical data. For example, we could simply change the
objective function to be the fit between one or more of the AB model’s output time series and historical
time series data on market share, sales or profits, and we would then seek to maximize this. But we have
not done this for the Supermarket ABM for three reasons. First, as discussed above, in the verification
stage it became apparent that the model is either wrongly specified or our software implementation
flawed. Second, adequate data on a total retail system—which might include several manufacturers and
retailers as well as many consumers—are not readily available; this itself raises important issues about the
design of AB models. Third, the very process of implementing the common method raises an important
philosophical trade-off between the simplicity and realism of our AB models that we believe deserves
more debate. This trade-off is the first of two important issues that we shall return to in our conclusions;
here we shall briefly touch on data availability, as this leads to the second important issue for our

conclusions.

Excellent data on consumer purchasing patterns exist and are often integrated with data on the advertising
and store promotions that consumers have been exposed to prior to purchase. Indeed, such data exist not
only in aggregate form but also from individual household purchasing panels, making it possible to
calibrate our consumer agents at the micro-level, as suggested by Moss and Edmonds (2005), as well at

the macro-level through aggregate sales and share data.

Data on the retailers and manufacturers are, however, much harder to find, particularly data on costs and
profits, but, more critically, data on decision-making. The problem is not only access to confidential data,
but also what is not observed or recorded. For example, we do not observe the total set of promotional
offers that producers make to retailers, simply the ones the retailers accept and implement and that

therefore appear in the consumer panel data. And since these negotiations are often not well documented,
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we must either to get access to firm meetings or possibly design other calibration methods, such as choice
experiments with representative retail managers. Similarly, we do not observe all the decision-making
inputs to the producer, simply the resulting actions as implemented through agreements with the retailers,
which again may make micro-validation (at the decision-making level) difficult. Contrast this with the
availability of data for the consumer. There we have data on the total marketing environment faced by the
consumer when making a decision. The prospects for micro-validating consumer agents definitely look
very promising, but the prospects for micro-validating retailer and producer agents appear more

challenging from the perspective of both methodology and access.

This suggests that, at least in marketing, AB models may need hybrid approaches to validation, in which
only some micro agent types are validated. Absent the possibility of validation of all micro types, macro
validation (even if only qualitative in nature) bears a heavier burden in validation of the entire AB model.
Given the difficulties of validation at the emergent, macro level discussed above, those seeking greater

confidence in the AB model via traditional econometric statistics might be disappointed.

Nor should those who seek to validate AB models under-estimate the issues involved in obtaining data on
other variables, such as costs and profits. Both are much more commercially sensitive information to
firms than are sales or market share, and are also subject to complex measurement issues (cost allocation
procedures, aggregation of accounting entities, etc.) especially at the product category level that marketing

scholars and managers primarily focus on.

Another central issue, and one on which we have not seen much debate in the AB modeling literature, is
that of the initial conditions/parameter values and their relationship to empirical validation. In building
the Supermarket ABM we face this dilemma because we are very unlikely to obtain data from the
beginning of the commercial history of any chosen market. Rather, any data we obtain will relate to a
particular window in time, for example, weekly scanner panel data for the last three years. In general, any
available historical data will capture a system of interactions among reasonably savvy actors —

consumers, retailers, and producers — that have already been through a process of learning about each
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other's patterns of interaction before the available time series begins. In one sense this is convenient, since
an older system will exhibit less variance than one in which most agents are still experimenting and
learning through trial and error. But if our AB model includes the possibility of learning, as it does, how
should we initialize it? At any point (perhaps never observed historically), and then allow our agents to
learn? Or at a historically observed point, which may provide less opportunity for our agents to learn?
Especially if we seek robustness in our model to rare events in its environment, absence of sufficient
model learning might result in a "brittle" model (Holland 1983), vulnerable to an unprecedented event. We
need to think carefully about how incorporate this separation between history and the observed data into
our model, in particular how to specify parameters relating to initial conditions and parameters relating to
observed behaviour. This problem is analogous to the market-share modeling of price and advertising
impacts where brand preferences developed before the data window might be modeled as the intercept
term in an econometric model. What are the ‘intercepts’ in our AB model, and how might these be either

estimated from the given data or calibrated from independent sources?

The major conclusion from our efforts to develop an empirical validation methodology is that we need to
be much more influenced by the type and nature of the data we can plausibly obtain before we begin to
specify our AB models, rather than developing from theory and then seeking appropriate data to fit the

demands of this theory. We shall return to this second important issue in our conclusions.

Last, there are conceptual issues in fitting AB models to historical data concerning how the differing
degrees of fit to various output variables are combined and/or weighted. AB models can generate a
multiplicity of outputs at different levels of analysis and observation windows. For example, how would
we value the degree of fit to the individual behaviour of a consumer agent as compared to the fit to the
aggregate producer market share? We might have excellent fit to the aggregate output, while
simultaneously having counter-balancing poor fits to different segments of agents. This issue is well-
known in econometric modeling of consumer data, but with AB models we have a much broader canvas to

consider. For example, we may have excellent fit to consumer data but poor fit to retailer or producer
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data. How do we value that model as compared to one with good fit to the retailer data but poor fit to the
consumer data? While we shall not develop these ideas in this paper, we believe the recent literature on
evolutionary multi-objective optimization may be of relevance here (Coello et al 2002), and, in particular,
concepts relating to the optimization of chaotic systems with conflicting criteria (Rodriguez-Vasquez and

Fleming, 2005).

6 Conclusions and next steps

Working on the construction and verification of the Supermarket ABM enabled us to reach one conclusion
regarding the trade-off between realism and simplicity when we specify ABMs. Thinking about the data
realistically available for validation enabled us to reach a second conclusion also shaping the specification

of these models.

6.1 Realism versus simplicity

Our experiences with verification have taught us that it is very difficult to verify even moderately complex
models. And if one cannot verify one's model, it is not clear that one should be attempting to validate it.
We came into this project with the traditional science mindset of building on the extant literature and a
deep knowledge of the context. It is possible that this is the wrong approach. Any developed literature
tends to emphasize nuances and sophistications leading to complexities in the model. Deep knowledge of
the context tends to further add to this complexity. As a result we end up with a model with many
parameters, distributional assumptions, and complex interactions and housekeeping. The resulting search
space for verification is large indeed and the possibility of building adequate confidence in the basic

workings of the model is not that high.

In contrast, we now think the emphasis should be on minimalism. For example, what are the one or two
key aspects of consumer behaviour that will explain 80% of the variance in purchases? Equally, what is
the simplest decision-making model for a retailer faced with competing promotional offers? And so forth,
with the over-riding goal of building the simplest model that will capture a substantial part of the actual

phenomena.
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This might be seen as an appeal to Occam’s Razor. Parsimony is highly valued in science and most
researchers building a model with deep theoretical and unobservable constructs would indeed seek good
fit to the data with as few parameters as possible (Simon and Wallach, 1999). However, for AB models
we think this goes further than simple parsimony. AB models are inherently complex in and of
themselves because of the interactions between the various classes of agents and the emergent behaviour
that results. Thus we would argue for minimalism rather than parsimony, especially in terms of the
number of parameters that need to be verified or calibrated. Too many parameters make it very difficult

or almost impossible to assure these models.

Note this is a substantial challenge. It is easy to build minimalist models; it is far less easy to build ones
that capture a substantial part of the actual phenomena. Here we might echo Einstein, ‘make everything as
simple as possible, but not simpler.” And as a field we need to develop norms as to what is ‘as simple as

possible.’

6.2 Models should be built with validation data in mind

In our particular example it has become clear that the most reliable data will relate to individual consumer
purchasing behaviour. This is simply because more commercial investment goes into collecting those
data. Therefore in this area lies the best opportunity for micro-validation. In contrast, the retailer and
manufacturer models will always be harder to micro-validate. This suggests to us a changed modeling
approach, whereby the consumer agent is built essentially bottom-up from the data. The more
assumption- and parameter-based modeling might then refer to the other types of agents, who could be
calibrated by the fitting exercise. This would also reduce the number of parameters—and thereby

considerably facilitate model assurance.

Although we have not yet fully articulated this idea, we do think that the nature of available data should
play a greater role in the formulation of AB models than it does in the current literature. This is not to say
it should be the only determinant: theory needs also to be evident and indeed may suggest the need for

new measures. We believe, however, that all models should be built with validation more clearly in mind.
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6.3 Next steps

The next steps for us in building our Supermarket ABM are clear. We have already specified a second
version with simpler agent decision-making and interactions and half the number of parameters.
Consumer researchers or behavioral decision theorists may well be uncomfortable with these
simplifications. But we believe they will allow us to assure this model. Once that step has been achieved
we can move forward to address sophistications that advanced theory or the validation itself suggests are
worthwhile. But we will do this with a minimalist approach, only adding complexity where the payoff in
improved validation is compelling. And we have thought more about the sorts of data that will be
available for this validation, thinking that has influenced the redesign of the model from the bottom-up.
We are currently working on obtaining these data and once they are to hand we will complete the final
specifications of the model. From that time we want to follow a 5-step process that we would also

recommend to the AB models field as a whole, namely:

1. Publish the detailed specifications of the model on the web;
2. Enlist the help of a small number of programming experts to inspect and correct the code
implementation of this specification;
3. Subject the code to destructive testing using the GA with the aim of establishing parameter
sensitivity and identifying pathologies arriving from agent interaction;
4. Empirically validate the model against real data, using the GA to;
a. Calibrate the model parameters on half the data;
b. Validate by testing the fit of the calibrated model on the remainder; and
5. Compare this model with other models in the nested manner recommended by methodologists (do
even simpler models explain the phenomena as well, if theory suggests any sophistications do
these explain the phenomena substantially better, etc.)
We recognize this is a broad and ambitious agenda, but it is an agenda we believe must be addressed if AB

models are to achieve their evident potential.
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Table 1

Parameters of the model

Number of
parameters
Consumer agent
Global constants
Number of weeks for 1
advertising awareness
calculations
Size of consideration set 1

Mean and variance of distributions

Attribute importance

6

Cognitive costs

Risk adjustment

Satisfaction threshold

Inter-purchase time Poisson
lambda

NS A \SRE SRS

Chance of observing a store
promotion

Retailer agent

Global constants

Number of best promotions
remembered

Slotting fee

Quarterly increment/decrement
to mark-up

Range of mark-ups allowed

Manufacturer agent

Global constants

Quarterly increment/decrement
to wholesale price

Range of advertising levels
allowed

Quarterly increment/decrement
to advertising level

Size of normal memory

1

Size of promotional memory

1

Fixed and variable costs

2

Mean and variance of distributions

Product attributes

| 6
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Figure 1

An approach to verifying & validating agent-based models
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