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Abstract 

 

In this paper we develop an advanced methodology that makes the results of simulation 

models in heterodox economics more reliable and acceptable. This methodology copes 

with the specific characteristics of simulation models in heterodox economics, in 

particular with inherent uncertainty. We base our advanced methodology on Critical 

Realism, because it deals with inherent uncertainty by categorizing empirical events into 

underlying structural driving forces. Data is centre-stage in our advanced methodology, 

because it is used to infer assumptions and implications. Eventually a combined use of 

theoretical and empirical analysis based on different data sets helps inferring statements 

about causal relationships and characteristics of a set of models, such as, e.g., the 

development of different industries in different countries.  
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1. Introduction1

 

In heterodox economics simulation models are used quite a lot to carry out 

mathematical experiments. However, the specification of the simulation model and 

the parameter set with which to run these simulations is, in general, quite an adventure 

into the unknown. Criticism is easily found with the procedure, as it is difficult to 

justify why to choose one specification of the model and its parameters and not 

another - especially if the results found in the simulation models are striking. Then, 

the audience cannot help but think that there has been quite some arbitrary trial and 

error going on to achieve this. To avoid this impression, we suggest empirically 

calibrating heterodox simulation models in a way that makes their results more 

transparent and thereby more acceptable. Data is centre-stage in the advanced 

methodology we will suggest in the following, because it is used to infer assumptions 

and implications. To calibrate models empirically is a general problem that models of 

mainstream economics face as well (cf. Kydland/Prescott, 1996). However, when 

working with heterodox simulation models we have to deal with additional problems, 

which stem from their very nature, in particular the inherent (Knightenian) uncertainty 

involved. 

 

Critical Realism as methodology helps to deal with this inherent uncertainty, because 

it categorizes empirical events actually taking place and determines the underlying 

structural driving forces, thereby distinguishing chance and necessity in historical 

data. We will show that a methodology based on Critical Realism is the most 

promising way to build simulation models in heterodox economics. By basing 

heterodox simulation models on Critical Realism they become a more reliable tool for 

understanding economic processes and developments. To show how empirical data 

can be used to make the results of simulation models in heterodox economics more 

widely acceptable and applicable, we first show how elements of models in general 

and empirical data in particular have been used in models so far (Section 2). Then, we 

                                                 
1 We are grateful for helpful comments by Giovanni Dosi, Giorgio Fagiolo, Koen Frenken and 
Christoph Meister on an earlier draft of this paper. Moreover, we would like to thank the participants of 
a session of the J.A. Schumpeter conference, Milan, June 2004, the participants of the 10th conference 
of the Society of Computational Economics, July 2004, as well as the participants of a LEM seminar at 
the St. Anna School of Advanced Studies in October 2004 for their suggestions. 
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look into different methodological approaches that can be used as a basis for 

modelling. We show the features of the methodological approaches “Positivism” as 

the standard approach in economics and “Critical Realism” as the one we use (Section 

3.). Based on this discussion we explore into the question of how Critical Realism can 

serve to examine the features of economic processes with the help of empirically 

founded simulation models in heterodox economics (Section 4.). We conclude with a 

brief summary and an assessment of our progress (Section 5.). 

 

2. Empirical Data in Models 

 

Empirical data is one important element for the advanced simulation methodology 

that we develop in the following. In order to show which role empirical data can play, 

we first introduce the elements of model building in general (Section 2.1) and then 

give an overview how empirical data has been used in heterodox simulation models in 

particular (Section 2.2). 

 

2.1 Elements of Models in General 

 

In general, models can be distinguished into two major parts: assumptions and 

implications. To model the real world, theories use different elements and abstract 

from what is actually going on in the part of reality they want to describe, explain, or 

prognosticate. Sometimes the term “model” is defined as being a “theory” that is 

expressed in equations. This leads to a couple of questions that are not interesting in 

the context of our analysis, e.g. is it sufficient that a theory can be potentially 

expressed in equations to turn it into a model. As these kinds of considerations are not 

important for our reasoning, we use the terms “model” and “theory” synonymically 

here. 

 

The most important elements of models are premises, definitions, logical sentences, as 

well as data. Every model starts from premises that limit the area of application of the 

model, e.g. concerning time, place, and agents involved etc. Not all premises are 

made explicitly. One famous premise, that is often not even mentioned, because 
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everybody is expected to know that it applies, is the “ceteris-paribus-clause”. 

Definitions are conventions about how to name elements of reality. They are not right 

or wrong. They simply help to communicate ideas. Not all definitions are formulated 

explicitly. Usually the exogenous and endogenous variables as well as parameters that 

are relevant in the theory are defined. However, definitions of terms, with which 

everybody in the field is familiar, are often not given. Logical sentences are at the 

very heart of putting together models, because they combine complex and 

complicated relationships in a consistent way. Axioms are important logical 

sentences, which normally can be expressed in mathematical terms. Another 

important kind of logical sentences are causal relationships, which give information 

about causes and effects. Causal relationships are also often co-notated as hypotheses 

and formulated in the form “if … then …” (cf. Machlup, 1978, 455f). Causal 

relationships can say something about the functioning of the real world in the past as 

well as in the future, i.e. they can serve to explain past events or to prognosticate 

future ones. 

 

Data is particularly important in our further discussions as it contains claims about 

parts of reality, which play an important role in inference (see Section 3.1). When 

discussing how to derive data it is crucial to be aware that 

 
"... (e)mpirical analysis in any research field is entwined in theoretical analysis. That is, empirical work 

depends on theory for concepts, definitions and hypotheses, all of which are used as foundations for 

empirical investigation" (Cowan/Foray, 2002, p. 540). 

 

This means, that we do not only use data to build our theories and to check their 

implications but also that we use theory to produce data from the complex and 

complicated processes going on in reality. Consequently, a number of problems 

emerge from data collection. Collecting data requires making a couple of choices and 

theorizing about how to observe and measure (cf. the following Machlup, 1978, 448-

450). When researchers collect the data themselves they can make these choices. 

Often researchers rely on data collected by others, which means that aspects important 

for their research questions might not sufficiently be taken into consideration. 

However, even if researchers collect the data themselves it might be difficult to 

observe the relevant aspects as there might emerge some measurement problems.  



 4

2.2 Empirical Data in Heterodox Simulation Models 

 

The simulation method has been used in heterodox as well as in mainstream 

economics. In heterodox models the simulation method has been used in order to cope 

with the specific characteristics of these models. In particular, uncertainty has been 

subject of heterodox simulation models ever since the seminal work by Nelson and 

Winter (1982). In the last decade the simulation method has also been used more 

frequently in mainstream economics. In particular it served purposes such as solving 

equation systems or analysing rational learning processes. In the following, we will 

concentrate on heterodox models, where heterogeneous agents decide under inherent 

(Knightenian) uncertainty in a bounded-rational way. Agents in these models act and 

interact in complex and open-ended economic systems, which are driven both by 

emerging novelty and by changes in micro-behaviour. The processes going on in 

these heterodox models are usually irreversible. 

 

How to deal with inherent uncertainty and the intertwined aspects of chance and 

necessity within heterodox models is crucial when calibrating these models 

empirically. Empirical data stems from the observation of historical events. Historical 

events take only place once and it is difficult to distinguish chance from the 

characteristics they have in common. In the past heterodox simulation models have 

used data in three different ways: first by using stylised facts, second by using case 

studies, and third by comparing a larger set of cases in a systematic way. These 

different ways of using empirical data also imply different ways of dealing with 

chance and necessity in economic processes. 

 

In the past, heterodox simulation models have often incorporated data in the form of 

stylised facts in accordance with Kaldor's original idea (Kaldor, 1968, 177f). Stylised 

facts comprise empirical statements about a wide application area. They mostly rely 

on common sense and the impression of the scholar using them. The problem with 

stylised facts is that they fall from heaven and often remain unmotivated (for a 

detailed critique see Schwerin, 2001, 92-98). As it is usually unclear how stylised 

facts are derived it is not possible to tell whether or not they comprise only the 

structural elements of economic processes or whether they partly mirror noise in the 
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form of chance elements. Nevertheless, the use of stylised facts enables modellers 

who concentrate mostly on theoretical considerations to integrate some empirical 

reality into their analysis. 

 

Examples of heterodox simulation models, which use stylised facts in their modelling, 

are Harrison (2004), Fagiolo/Dosi (2003), Werker (2003), Winter et al. (2003) and 

Windrum/Birchenhall (1998). Harrison (2004) presents a simulation model that can 

reproduce stylized facts in the form of four different kinds of organizational evolution 

and firm growth. Fagiolo/Dosi (2003) present an endogenous growth model, which is 

able to reproduce stylized facts in the form of empirically plausible GDP time-series. 

Windrum/Birchenhall (1998), Winter et al. (2003) as well as Werker (2003) present 

models, which are able to account for the stylized facts in the evolution of industry 

life cycles. Harrison (2004), Fagiolo/Dosi (2003), Werker (2003) and 

Windrum/Birchenhall (1998) model random effects and perform a sensitivity analysis 

by running the same specifications at least 100 times. They calculate some statistics 

and give some qualitative impressions of the results. Winter et al. (2003) concentrate 

more on the analytical results of their model and limit themselves to only few 

calculations to test for the sensitivity of their results. 

 

Case studies in the form of history-friendly models are the second way of how 

empirical data is incorporated in heterodox models. They rely on detailed empirical 

knowledge about real historical processes and try to find a model that leads to 

processes with the same characteristics. Although this is usually not mentioned in the 

final publications, different models are tested and rejected by the empirical knowledge 

until a model is found that is not rejected. It is then argued that the model might 

describe the mechanisms underlying the known empirical facts. Hence, an inference is 

made from one single case so that generalization is difficult. In the context of our 

discussion this is particularly problematic because - though usually most of the 

complicated and complex processes involved are depicted - it is not possible to 

sufficiently distinguish between chance and necessity. This means that scholars using 

history-friendly models have difficulties in identifying the underlying structural 

processes, which could be found back in similar historical circumstances. Usually, 

they provide some sensitivity analyses of their results, which can be and sometimes 

are explicitly interpreted as counterfactual histories. This gives some idea how stable 
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the results are and whether they crucially depend on random effects. Generally spoken 

history-friendly models share the advantage as well as the disadvantage with case 

studies: they give us deep inside knowledge about real economic processes but lack 

the possibility to generalize their results in a convincing way. 

 

Recent examples of history-friendly models are Eliasson et al. (2004), 

Brenner/Murmann (2003), Kim/Lee (2003), Malerba/Orsenigo (2002), Eliasson and 

Taymaz (2000) and Malerba et al. (1999). Eliasson et al. (2004) show with an 

empirically calibrated micro-macro model for the Sweden how the new economy 

affect productivity and growth processes. Brenner/Murmann (2003) simulate the 

history of the synthetic dye industry from 1856 to 1913 and study by counterfactual 

analysis why German firms became dominating the industry. Kim/Lee (2003) 

construct a history-friendly model for the DRAM industry. Malerba/Orsenigo (2002) 

and Malerba et al. (1999) concentrate on analyzing a history-friendly model of the 

computer-industry. Only Eliasson and Taymaz (2000) calculate the sensitivity of their 

results. All other authors run a number of counterfactual histories in order to account 

for the sensitivity of their results. Thereby, they produce data that can be analyzed 

statistically. Consequently, these scholars can use more sophisticated methods and can 

look into the statistical properties of their models in a systematic way. This gives 

some insights into how counterfactual histories could have run and on how much the 

results depend on random effects. 

 

The third way to incorporate empirical data in heterodox models is a systematic 

comparison of a larger set of cases. This approach allows for even more detailed and 

systematic analyses of statistical properties and sensitivities towards random effects. 

Two approaches with long tradition are worthwhile mentioning, which both have been 

used mainly for prognosis. The first approach starts from empirically based 

assumptions about micro-behaviour of agents. These assumptions are used to set up a 

simulation model and run so-called micro-simulations (surveys and general 

discussions can be found, e.g., in Merz, 1991, O`Donoghue, 2001, and 

Creedy/Duncan, 2002). The second approach tests the implications of a set of general 

models empirically and uses Bayesian inference to infer knowledge about the 

adequateness of different models (for an introduction to Bayesian inference see, e.g., 

Citro & Hanushek, 1991 and the original work by Zellner, 1971).  
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Bayesian inference has become more and more common in econometrics in recent 

years. Data is used in order to examine the ability of different models to describe 

observed processes and thereby plays a similar role as in approaches based on stylised 

facts or case studies. However, the Bayesian simulation approach deviates from the 

two other approaches described above in two ways. First, data about the economic 

situation or economic dynamics are used to check the adequateness of various models. 

For example, Tsionas (2000) uses stock market data to check different models about 

the stochastic movements of prices. Second, the trial and error process for finding an 

adequate model is made explicit by using Bayesian inference. This means that all, or 

many, different parameter sets and model specifications are repeatedly used. Since 

Bayesian inference deals with stochastic models, for each parameter set and model 

specification many simulations have to be run because the resulting dynamics vary. 

Then, for each parameter set and model specification the probability that the real 

development, which is described by the empirical data used, is obtained in the 

simulation can be calculated. According to Bayesian inference, this offers some 

knowledge about the likelihood that each of the parameter specifications is the correct 

one. The resulting likelihoods can be used in two ways: to make predictions for future 

developments (see, e.g., Jacobson/Karlsson, 2004 and Jochmann/Leon-Gonzalez, 

2004) or for checking the adequateness of different models (see, e.g., Kaufmann, 

2000 and Tsionas, 2000).  

 

Heterodox simulation models have used data in three ways, first by using stylised 

facts, second by using case studies, and third by comparing a larger set of cases in a 

systematic way. In the following, we will build on quite some of the above 

approaches in order to develop an advanced methodology, which heavily relies on 

empirical data (see Sections 3.3 and 4). 

 

3. Critical Realism as Methodology for Heterodox Simulation Models 

 

We want to show how simulation models can be empirically calibrated and which 

methodological principles have to be followed to achieve this in an appropriate and 

meaningful way. From the methodologies used to develop economic models we will 
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look into Positivism and Critical Realism. To discuss Positivism is important, as it is 

the mostly used methodological basis for economic modelling. In contrast, Critical 

Realism is used only rarely. However, we will show that this methodology is best 

suited to empirically calibrate simulation models. First, we depict the general 

principles of inference (Section 3.1). Based on these principles we show the 

difference of Positivism and Critical Realism (Section 3.2) and why a practical 

application of Critical Realism is best suited to meet the requirements of heterodox 

simulation models (Section 3.3). 

 

3.1 Principles of Inference in Modelling 

 

Assumptions and implications are basic elements of inference. From assumptions 

implications are derived in an analytical and logical way. Premises and definitions are 

usually part of the assumptions as these elements set the boundaries for modelling. 

However, sometimes definitions and premises can also be part of the implications, 

especially so if the results of a model indicate that premises and/or definitions have to 

be revised for further research. Data can be used in both parts of models. In 

assumptions data provides an empirical basis to start from. In implications data is 

used to corrobate implications stemming from premises, definitions and logical 

considerations. Logic is of course always at the heart of modelling in all parts and 

puts all elements of the models together in a consistent way. 

 

Three different principles of inference can be distinguished: deduction, induction and 

abduction. Each principle of inference works in different ways, although meeting the 

same end, namely inferring implications from assumptions. Deduction is often 

summarized as inferring “from general to particular” (cf. Lawson, 1997, 24). Let us 

use as an example throughout this paper the impact of different patent laws in 

different countries on the development of a certain industry in these countries. 

Deduction would mean in this context that we have or assume a theory about the 

development of industries dependent on the national patent law, e.g. that stricter 

national patent laws protect property rights of innovators better thereby giving more 

incentives to innovate. From this theory we could deduce that an industry in a country 

with lax patent laws innovates less compared to the same industry in a country with 
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stricter patent laws. As one can readily see in the example, assumptions within 

deduction already contain all information that there is available. Generally spoken, 

deduction sustains the information contained already in the assumptions but does not 

create new one. 

 

If A = B and B = C,              (assumptions) 

then A = C.                 (implication) 

 

In deduction assumptions contain all possible elements of models, like e.g. premises, 

definitions or causal relationship. Therefore, it is often claimed that in deduction 

conclusions stemming from the assumptions have to be true. In formal sciences like 

mathematics this holds, because assumptions are usually provided in the form of 

axioms, i.e. they are self-evident and need not be proven. However, in social sciences 

like economics such self-evident assumptions do not exist. Implications drawn from 

premises are in general true but only in the sense that they are logically derived. In 

social sciences without self-evident premises available it is virtually impossible to 

derive implications that are true in the sense of correctly describing, explaining and 

prognosticating reality. 

 

Induction is often summarized as inferring “from particular to general” (cf. Lawson, 

1997, 24). Its assumptions describe a part of a larger population and then infer 

conclusions about the characteristics of this larger population. In our example this 

would mean that we observe the innovative output of a number of industries in a 

number of different countries with different patent laws. We would then inductively 

infer general mechanisms, relationships and rules by examining the common 

characteristics of all observations and might come to the conclusion that industries in 

countries with stricter patent laws have a larger innovative output. As the inductive 

principle runs “from particular to general” it is often considered as creating 

information - however doubtful one. The inference in induction says something not 

contained in the assumptions. If the inference arguments are strong it is probable that 

the claims made about the conclusions hold. Inductive inference is based on data. 

However, even if the number of observations in the data set is huge it is in principle 

impossible to have all observations available, not the least because future events 

cannot be observed. This means that the implications derived from data are uncertain. 



 10

In the future, the same will only happen with an unknown probability. This 

probability is impossible to gain, because future observations can by definition not be 

made now. 

 

Abduction - sometimes also called retroduction - classifies “particular events into 

general patterns” (Lawson, 1997, 24). For our example abduction means that we 

argue that industries vary in their development and are therefore affected by patent 

laws in different ways. Abduction means that we start by collecting detailed 

information about the development of different industries in different countries facing 

different patent laws. Based on this we classify the different developments and derive 

underlying driving forces, which enable us to describe, explain and predict 

developments of other industries in other countries with respect to patent laws as well. 

It is important to notice that abduction requires data based on substantial and detailed 

observations. Only then is it possible to find meaningful and sensible underlying 

mechanisms to infer from the assumptions to the implications. So, e.g., if we observe 

that a number of low-tech industries develop in different countries independent of the 

actual patent laws, we might conclude that all low-tech industries are not influenced 

by any change in the patent laws. Obviously, this is quite jumping to conclusions. 

Abduction requires much more detailed information to infer implications that are 

likely to hold when confronted with reality. In our example one would wish to know 

much more about the mechanisms behind the industrial development and the 

differences between the national patent laws. Especially, it would be important to 

know what makes an industry’s development independent of patent laws. We could 

e.g. choose to define classes of industries that show similar developments within one 

class and different developments between classes, e.g. the famous Pavitt taxonomy 

(Pavitt, 1984). By going back and forth between theorizing and empirical testing we 

might come to the conclusion that science-based industries profit more from stricter 

patent laws than scale intensive industries. This would allow transferring the 

experience to other industries. The more relevant details are known about the data the 

more precisely they can be classified to a general pattern. 

 

Abduction enables us to identify underlying structural elements, which explain 

observations we make, and to develop a theory of the part of the world we are 

investigating. This takes us a substantial step further than pure deduction or induction, 
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because abduction helps us to meet theory and data in a creative way. By using the 

principle of abduction we are able to create new information. According to Peirce 

(1867/1965, 5, 145f): 

 
“(Induction) never can originate any idea whatever. No more can deduction. All the ideas of science 

come to it by the way of abduction. Abduction consists in studying the facts and devising a theory to 

explain them. Its only justification is that if we are ever to understand things at all, it must be in this 

way.” 

 

3.2 Positivism and Critical Realism as Methodologies of Inferring Models 

 

Methodologies use principles of inference in order to derive models. From the 

methodologies used to develop economic models we will look into the approaches of 

Positivism and of Critical Realism. By and large economic scholars use Positivism as 

methodological basis for modelling, whereas they use Critical Realism only rarely. 

Positivists combine induction and deduction as principles of inference. They start 

from general assumptions and infer implications for economic processes from them. 

Therefore, models based on Positivism are often considered to be purely deductive. 

However, in case data is included in the modeling, the implications from deduction 

are confronted with inductively found results. The aim of such empirically founded 

models is to objectively measure and quantify observable facts as well as to search for 

empirical regularities that help to describe, explain and predict reality. Some criticize 

these kinds of models for implicitly claiming that all knowledge is grounded in 

experience and deny the existence of an unobservable deep or non-actual level of 

reality (Lawson, 1997, 19). 

 

Positivism has two problems that are particularly important for our discussion of how 

to empirically calibrate simulation models: the first one is that general axioms do not 

exist in social sciences; the second one is that heterodox models imply inherent 

uncertainty. The impossibility to find axioms in social sciences that hold in general 

(see also Section 3.1) stems from the fact that these sciences always analyze situations 

where human beings are involved who do not necessarily behave similarly under 

similar circumstances, as their mood and preferences change. This limits the value 
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deduction has for theoretical work in social sciences in general and in economics in 

particular. To make statements on such deductively inferred implications is already 

doubtful. Even if the model’s inferred implications is confronted with empirical data 

in an inductive way the problem that it is impossible in social sciences to infer 

theoretically the initial axioms remains. The second problem stems from the fact that 

we want to develop a methodological basis for simulation models used in heterodox 

economics that imply inherent uncertainty. This inherent uncertainty leads to complex 

and complicated patterns of the economic processes to be described, explained and 

prognosticated. These patterns cannot be covered by the conditions of closure used by 

positivists, which suggest that one cause has one effect and the other way around. 

Positivists 

 
“… have a notion of causality and connectedness in their theorising, though make closure assumptions. 

Two forms of closure are central to this perspective. The intrinsic condition of closure - which can be 

characterised loosely as implying that a cause always produces the same effect  ... The extrinsic 

condition of closure - which loosely can be understood as implying that an effects always has the same 

cause ...” (Downward et al., 2002, 482). 

 

In contrast to Positivism, Critical Realism acknowledges that different causes can lead 

to the same effect and that the same cause can lead to different effects. Critical 

Realism, which we will suggest as an appropriate methodological basis for heterodox 

simulation models, uses abduction as one major principle of inference and uses so-

called semi-closure to account for the fact that different reasons can have the same 

effect and the other way around. Protagonists of this school of thought recognise that 

the world is structured into different layers (Downward et al., 2002). They aim at 

describing and explaining empirical facts in terms of their underlying structures, i.e. 

in terms of other layers of reality. This approach uses abduction to infer from 

empirical facts and observations to the general patterns underlying them, thereby 

giving a causal explanation on a deeper level and distinguishing chance from 

structural elements. 

 

The way Critical Realists look at the world does by no means suggest that virtually 

everything is possible. Quite the contrary, there are stabilizing features available. 

Critical Realists point out, for example that institutions co-evolve with agents own 
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mental models, thereby providing a situation of quasi-closure, i.e. institutions provide 

stable conditions upon which agents can base their behaviour for a certain period of 

time (Downward et al., 2002, 481f). This means that a specific connection between 

cause and effect might remain for a while but also changes over time (Downward et 

al., 2002, 495). The goal of modelling can thus not be to detect insights into the real 

world that hold forever but to detect structural elements of historical processes, which 

hold for a while but than evolve further. To detect these more fundamental periods of 

transitions of systems and the conditions for them is another goal of heterodox 

simulation models based on Critical Realism. 

 

This different view on how causes and effects are connected has severe implications 

for how to deal with data. For Positivism dealing with data is rather clear-cut, because 

according to its protagonists one cause is always connected with one effect and one 

has only to identify these straightforward causal relationships. On the contrary, the 

situation is much more difficult when using Critical Realism, because such a 

straightforward connection between cause and effect is missing. However, it is this 

feature of Critical Realism, which helps us to cover models with inherent uncertainty, 

as in the context of uncertainty cause and effect are never connected in such a clear-

cut way. 

 

It is, though, not completely clear which implications Critical Realism has for 

empirical research methods (Downward et al., 2002), as in general protagonists of 

Critical Realists restrain themselves in using empirical data to 

 
“… (t)he measuring and recording of states of affairs, the collection, tabulation, transformation and 

graphing of statistics about the economy, … detailed case studies, oral reporting, including interviews, 

biographies, and so on.” (Lawson, 1997, 221). 

 

Lawson approves of all kinds of ways to collect data but restricts its use to a local and 

specific analysis (Brown et al., 2002, 782). The reason for this is that he and other 

Critical Realists do not approve of using statistics and mathematics in order to 

compare larger sets of cases in a systematic way or in order to test deductively 

inferred models empirically. They believe that the use of statistics and mathematics 

only serves to detect intrinsic and extrinsic conditions of closure, i.e. that one cause 
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has one effect and the other way around. However, this is quite jumping to 

conclusions: As Reiss (2004) shows in a very convincing way the use of statistics and 

mathematical modelling does by no means imply that these strict conditions of closure 

are used. In particular, there are some mainstream modellers who employ statistics 

and mathematics in such a way that they account for the historical context, i.e. that 

their specific data only hold in the context of a particular time and place. 

 

Critical Realists basically approach empirical data the way scholars carrying out case 

studies do and therefore face the same kinds of problems (see Section 2.): Data 

collected and analysed lack the potential to generalize results. To overcome this 

problem one has to compare larger sets of cases in a systematic way and to identify 

what they have in common independent of their specific historical circumstances. In a 

first attempt to do so Brown et al. (2002) suggested combining Critical Realism with 

“systematic abstraction” as a means to achieve a historical level of generality and to 

identify the inner connection of social phenomena. However, they do not provide a 

guideline how to put their suggestion into practice. We will in the following employ 

and further develop these insights in order to provide a methodological basis for the 

empirical calibration of simulation models and to put it to practical use. 

 

3.3 An Advanced Methodology of Heterodox Simulation Models 

 

In line with Critical Realism, we argue that what we observe in reality is the result of 

processes on a deeper level, which might be (partly) observable but is not the level on 

which we observe the phenomenon that is to be studied, explained or predicted. 

Therefore, it is not sufficient to describe the relationships on the observation level – 

the level where the phenomenon that is to be studied occurs. We need to understand 

these relationships on the basis of the processes of the underlying level. Critical 

Realism asks for empirical data to be used but does not provide a clear practical 

guideline. We will provide such a practical guideline in the following. Our suggestion 

to calibrate simulation models relies on abduction as the major inference principle. 

However, this does not mean that the other principles of inference, i.e. induction and 

deduction, are not used. In fact, they are used quite substantially in the first two steps 

to prepare the final abductive step. 
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In all three steps of our methodology we will heavily rely on empirical data, thereby 

building on all three approaches, in which heterodox simulation models have used 

data. These three approaches have been using stylised facts, investigating case studies 

or comparing a larger set of cases in a systematic way (see Section 2.2). We suggest 

to use all approaches if necessary but will in particular use insights of Bayesian 

simulation approach which assumes, as we do in the following, that economic 

dynamics are based on chance elements as well as causal relationships. This means 

that wherever possible we recommend using larger sets of data to calibrate the model, 

thereby giving a broader empirical basis to the models. Where no larger sets of data 

are available we suggest relying on either stylised facts or case studies in order to give 

some empirical underpinning. By proceeding like this it is possible to cope with 

uncertainty, because empirical data is used to reduce the degrees of freedom of the 

complex systems modeled, thereby identifying the structural elements, which drive 

systems. This specific way of dealing with data in calibrating simulation models is 

one element of the advanced methodology presented here. It helps to categorize 

empirical events into classes and to distinguish the underlying structural elements of 

historical processes from chance elements using abduction (see Section 4.). 

 

Although abduction has been a popular concept since the seminal work by Peirce 

(1867), until today scholars have remained relatively vague on how to implement 

abduction (sometimes also called retroduction) in practical terms: 

 
“Not much can be said about this process of retroduction independent of context other than it is likely 

to operate under a logic of analogy or metaphor and to draw heavily on the investigator’s perspective, 

beliefs and experience.” (Lawson, 1997, 212) 

 

In the following we will show how – in quite practical terms - abduction helps us to 

produce classes of models, which combine assumptions and implications based on 

empirical findings (Section 4.3). Only those models are included, which are not 

rejected by confronting either their assumptions or their implications with reality 

(Sections 4.1 and 4.2). Note that we do not aim to find one simulation model that 

describes reality. We believe that this is impossible. As in statistics, all that can be 

done with the help of empirical data are two things. First, we can reject some models 
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meaning that we restrict the parameters of the general model to certain ranges. This 

means that only a subset of all model specifications is considered that is not in 

contrast with empirical findings. Second, we can study the correctness of these 

specifications with the help of empirical data on implications (see below). 

 

4. A Practical Guide to an Advanced Methodology for Heterodox Simulation 

Models 

 

In the following we will show how the methodology of Critical Realism can be used 

to calibrate simulation models in practical terms. First, we will show how the set of 

assumptions is put together by induction and deduction (Section 4.1). We suggest 

including empirical data available on assumptions. Based on that, implications are 

inferred by deduction and induction (Section 4.2). Here, empirical data is confronted 

with implications inferred from the dynamics of the described economic system. The 

two kinds of data that are used have to be different, because different levels of the 

whole system are concerned. Moreover, this safeguards the models from being self-

evident. In a third and final step, abduction is used to combine empirical findings and 

to derive causal relationships. This results in theoretical knowledge about the part of 

the world we want to explain (Section 4.3). 

 

4.1 Inferring Assumptions by Deduction and Induction 

 

We start with setting the assumptions of the model and defining the system that the 

simulation model is intended to describe. In order to do so we combine deduction and 

induction. The relevant variables have to be chosen and their interaction has to be 

built into the structure of the simulation model. This is usually done according to 

theoretical consideration and common knowledge. However, we argue here that the 

details of the model, the specification of relationships and especially the choice of 

parameters should be fixed using a broad empirical basis. This is rarely done in the 

field of computational and evolutionary economics (for the use of empirical data in 

these models see Section 2.2). We argue that more can be achieved by using 

simulations in combination with empirical data, especially with respect to the 
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reliability of the results and the clearness of the method. The first step towards this 

end is based on the statement that the assumptions on which the model is built should 

be induced from empirical data whenever this is possible. Of course, the 

conceptualisation of variables and parameters can never be theory-free. However, it is 

important to base as many central assumptions of the model as possible on empirical 

knowledge, because there are no self-evident axioms in social sciences and logic is 

not sufficient to come to a full set of assumptions. 

 

Since the method that is proposed here is based on a practical application of Critical 

Realism, we need to clarify a number of terms that will be used in the following (see 

Table 1). 

 

Term Definition 
Bundle of assumptions All assumptions on which one specific simulation 

model is based 
Set of simulation models All simulation models that are considered. They 

differ in their assumptions about the relationships 
between variables as well as in the parameter 
specifications 

Model specification One specific simulation model with given 
relationships between the variables and specified 
parameters 

Theoretical implication The implications of one model specification 
Set of theoretical implications Set of all potential implications of all simulation 

models that are included in the study 
Empirical realization Dynamics observed in reality 
Specific system One specific part of the real world, such as a specific 

industry in a specific country 
Class of systems A certain group of specific systems that share some 

characteristics 
 

Table 1: Definition of terms used 
 

Whenever no sufficient data is available or whenever the model should capture 

different kinds of systems, the model should be defined as general as necessary. This 

implies, for example, that many parameters cannot be fixed but can only be restricted 

to certain ranges. The ranges of parameters have to be chosen such that the modeller 

is sure that the real values lie within these ranges. Logical sentences and premises that 

restrict the area of application of the model can be used to reduce the ranges of the 

parameters. However, it has to be made clear how this reduction is reached. If the data 
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does not allow for determining between different forms of relationships between the 

variables of the model, all of them should be included in the model with the help of 

additional parameters. 

 

In our example of the industrial development dependent on the existing patent laws 

this means that the simulation model has to describe the mechanisms by which the 

patent laws influences firm’s strategies, innovative success and growth. For each 

impact of patent laws on firms’ activity the available data and empirical evidence 

should be examined and stated and the assumptions should be inferred from this 

evidence. The available knowledge and data will not allow for the restriction to one 

simulation model with a clear specification of all parameters. Instead, it is likely that 

some variants of the model have to be included in the analysis and that most 

parameters can only be restricted to certain ranges.  

 

Hence, we argue that parameters should not be fixed to one value, except if the 

empirical data allows for such a fixing. This means that we do not aim for developing 

one specific simulation model that reflects one bundle of assumptions. Instead, we go 

for a set of simulation models of which each represents one bundle of assumptions. 

Each specific simulation model – in the following we use for simplicity the term 

`model specification´ -- represents one specific choice of parameters, relationships 

and premises (see Figure 1). 

   
 

 

 

 

 

 

 
Set of simulation 
models   

One model 
specification   

 

 

Figure 1: Set of model specifications 
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4.2 Inferring Implications by Deduction and Induction 

 

When inferring implications by deduction and induction semi-closure, i.e. the fact that 

the same cause can have different effects and vice versa, has to be translated into 

practical terms. In order to do so, we run each model specification many times so that 

we can distinguish random effects from necessity. It is likely that different effects 

emerge from the same model specification. In order to obtain knowledge about the 

various possible model specifications, we use the Monte-Carlo method and we pick 

some of the infinite number of possible model specifications randomly. 

 

Each model specification is run separately. This is the usual approach in the literature, 

where mainly one specification (with respect to the parameters) of the simulation 

model is run and its characteristics are studied. Due to the existence of stochastic 

processes in the models, many runs are necessary to obtain a complete picture of all 

possible implications of each model specification. Whenever a simulation is run for 

one model specification, a certain development of the artificial system results. We call 

this the theoretical implication of the assumptions on which the model specification is 

based. Rerunning the simulation for the same model specification might lead to 

exactly the same theoretical implication. However, because of the stochastic processes 

that are included in the model, it is more likely that the outcome is a different 

theoretical implication. If one model specification is simulated many times, a set of 

theoretical implications is the result. For each model specification we can determine 

such a set of theoretical implications. It should be noticed here that this means that we 

do not obtain a unique matching between assumptions and implications, as it is 

assumed in Positivism. In the terminology of Critical Realism this means that each 

bundle of assumptions can lead to different effects. 

 

There are an infinite number of model specifications. Therefore, not every model 

specification can be studied. A Monte-Carlo approach is chosen. This means that 

many model specifications have to be randomly picked, if available according to an 

ex-ante probability distribution and the set of theoretical realisations (depicted as an 

ellipse in Figure 2) for each of the picked model specifications have to be studied by 

deduction. The more model specifications are examined the higher is the validity of 
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the obtained results. Therefore, a high number of simulation runs is required for the 

procedure that is proposed here. However, with increasing computer power this will 

become less of a problem in the future. 

 

Notice that the random choice of model specifications has nothing to do with the 

chance elements that are included in the models. Examining only a (high) number of 

randomly picked model specification is simply a device to deal with the problem that 

simulations cannot be run for an infinite number of model specifications. This is the 

only disadvantage of this method compared to a mathematical analysis of models. 

This disadvantage becomes the smaller the larger the number of analysed model 

specifications. The stochastic elements in the models are responsible for the fact that 

one model specification can cause different theoretical realisations. As a consequence, 

two different model specifications might cause the same theoretical realisation (see 

the overlapping ellipses in Figure 2). In the terminology of Critical Realism we 

thereby have a situation where different causes can have the same effect. 
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model specification

empirical 

realisation

 

Figure 2: Set of model specifications and sets of implications 

 

Now a second data set is used to test the theoretical implications against empirical 

realisations. The simulation models that are considered here describe the dynamics of 

a system that is part of the whole economy. Usually it will not describe only one 

specific system but a number of systems that share common features. Concerning our 
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example, we would consider one industry and its development in a specific country as 

a specific system. The simulation model that is set up to describe this development 

can be expected to be applicable to other industries and other countries as well. 

Whenever one such system and its dynamics are observed, we call this one empirical 

realisation of the class of systems that our models aim to represent. Of course, many 

different variables can be observed that describe the dynamics of the specific system. 

The more variables are recorded and used for the test of the theoretical implications, 

the more selective this part of our method becomes with respect to the model 

specifications and the more robust become the final results of the method. Hence, a 

huge amount of data is preferable but not always available. 
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Figure 3: Explaining an empirical realisation 

 

The method proposed here allows for dealing with any amount of available data. 

Naturally, as in econometrics in general, more data leads to more significant results; 

something that is usually not considered in simulation approaches in heterodox 

economics. Usually it will be possible to gather data about several empirical 

realisations. Nevertheless, let us first consider the treatment of one empirical 

realisation. We can examine for each model specification whether the observed 

realisation falls into the range of theoretical implications that this model specification 

predicts (see Figure 3). According to the above statements, there is not necessarily 

only one model specification that is able to predict the empirical realisation. However, 

we can reject a number of model specifications on the basis of the empirical 
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observations. Hence, for each model specification we can statistically state whether or 

not it is rejected by the empirical data about one specific realisation of the system’s 

dynamics. A subset of model specifications that are not rejected remains. 

 

Furthermore, for all model specifications that are not rejected by the empirical data 

the likelihood for their validity can be given. A Bayesian approach can be used to do 

this (for a detailed discussion of this approach see Section 2.2). However, we extend 

the usual simulation approach that is based on Bayesian inference in two ways: First, 

we use empirical data extensively also for the development of the set of models that 

are tested. Second, we are not only interested in checking models but also we aim to 

obtain more knowledge about the underlying causes for the observed dynamics. 

Hence, the Bayesian approach is used here to check different assumptions about the 

relationships and parameters of the model and to structure the described systems 

according to their characteristics (see next paragraph). Though we here show our 

modeling methodology for description and explanation it is also possible to use it for 

predictions, which it is usually used for in Bayesian simulations.  

 

4.3 Inferring Underlying Relationships by Abduction 

 

In this last step we identify the underlying mechanisms driving the part of the world 

we want to describe and explain. In some studies the method might lead to a full 

theory, in others it might only provide some causal relationships that do not form a 

complete theory. In the latter case the results would imply additional questions and 

additional necessity for research. 

 

Above we have determined all model specifications that are in line with the 

observation of one empirical realisation of the dynamics of the system (ellipse in set 

of assumptions in Figure 3). In our example this would mean that we would have 

identified all model specifications that might explain the observed developments in 

one specific industry in one specific country. This procedure allows us to obtain a 

subset of model specifications for each empirical realisation. For each empirical 

realisation observed the subset of model specifications, which cannot be rejected, can 

be determined. Now these subsets can be used to find out the characteristics of the 
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system. Generally spoken, we look for models that can explain a number of similar 

systems (e.g. the developments in different industries or in different countries). For 

each single empirical realisation the above method leads to a subset of model 

specifications that are in line with this realisation (see the coloured ellipses in Figure 

4). If we have a number of empirical realisations, a number of subsets of model 

specifications will be identified. 
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Figure 4: Abduction Between Set of Model Specifications and Set of Realisations 

 

 

It is now possible to classify the empirical realisations in groups, either according to 

empirical characteristics (e.g. high-tech and low-tech industries) or according to the 

similarity of the obtained subsets of model specifications (e.g. if the resulting subsets 

of model specifications show obvious differences for different empirical realisations 

as depicted in Figure 4). This means that we define kinds of systems, for which we are 

interested in their common features. This is the major aim of abduction: to classify 

events, facts or processes and to analyse the characteristics of each class. Here, it 

means that we want to define a class of systems and study the characteristics that all 

systems in this class have in common. This is done on the basis of model 

specifications. A class of systems is defined by the set of model specifications, which 

includes all model specifications that might explain at least one of the developments 

of the systems that are included in this class. Hence, defining the set of model 

specifications for a class of systems has two consequences at the same time. First, it 

offers a definition of the class of system because it can be tested for each new 
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empirical observation whether this observation might be predicted by one of the 

model specifications in the defined set. Second, it defines the common characteristics 

of the class of systems, which can be inferred from the set of model specifications 

with the help of simulations. This is the step of abduction, which is central to Critical 

Realism. 

 

Concerning our example, this means that we define a set of parameter specifications 

(e.g. by defining ranges for the parameters) of the simulation model. For each industry 

and country it is possible to collect data about the developments of this industry and 

country. The data can be used to check whether the observed developments can be 

explained by the set of model specifications that has been chosen. If this is the case 

the system of this specific industry and country belongs to the defined class of 

systems. This means that we can examine which systems belong to the defined class. 

At the same time, we can examine our original question: how do patent laws in a 

country influence the development of an industry there. To this end, we simulate all 

model specifications that belong to the defined class of systems. If we obtain the same 

influence of the patent laws for all these simulations, we can state that this influence 

holds in general for the defined class of systems. 

 

Simulating various model specifications of a class of systems allows studying any 

characteristic of these systems. This also includes relationships between variables and 

processes involved. What kind of characteristics is studied depends on the research 

question. Everything is possible that is also done in the common simulation 

approaches that are based on theoretical models. In contrast to the common 

approaches, however, the model specifications that are used here are based on an 

extensive use of empirical data that causes a high validity of the obtained results. All 

implications that the whole group of model specifications share are characteristics of 

the studied class of systems. This means that, instead of arguing that there is one 

model that explains all systems within a certain class, we argue that a subset of model 

specifications can be obtained by abduction. This subset of model specifications 

contains all possible bundles of assumptions that cannot be rejected by the empirical 

data about the systems that are to be studied. If the model specifications in this subset 

share characteristics, these characteristics can be expected to hold also for the real 

systems. Hence, we obtain robust knowledge about the characteristics of a certain 
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kind of systems. If the characteristics within a group of model specifications differ, 

the causes of these differences can be studied. It can be examined which factors in the 

models are responsible for the differences. Although we will not know the 

characteristics of the real systems in this case, we will therefore obtain knowledge 

about which factors cause different characteristics.  

 

5. Conclusions 

 

The purpose of our exercise was to make the results of simulation models in 

heterodox economics more reliable and acceptable. In order to do so we stepped into a 

methodological discussion, i.e. into the question how Critical Realism can serve as a 

methodological basis for heterodox simulation models. Most economists are educated 

in the tradition of Positivism. As a consequence heterodox as well as mainstream 

economists pretend - at least in their papers - that there are theoretical concepts that 

they can deduce a priori and then test by confronting them with data. Despite the way 

economists following Positivism organize their papers it is correct to say that when 

working on their analysis they do not really deduce all abstract concepts a priori in a 

first step. Instead they also use empirical insights, mostly emerging from stylized facts 

in the form of a few observations interpreted by common sense. Based on this a 

theory is developed and then tested. What we argue in this paper is that these steps 

should be made more explicit. Models should be based in a well-described way on 

empirical data. Assumptions that are not based on empirical knowledge should be 

avoided if possible or made at least explicit. Preferably models should rely on more 

sophisticated ways to incorporate empirical data like suggested here. 

 

In order to calibrate heterodox simulation models we developed a methodology based 

on Critical Realism, which enables us to deal with the uncertainty inherent in these 

models. We do this by categorizing empirical events into underlying structural driving 

forces. Data is centre-stage in our advanced methodology, because it is used to infer 

assumptions and implications. So far heterodox simulation models have used data in 

the three different ways: first by using stylised facts, second by using case studies, and 

third by comparing a larger set of cases in a systematic way (Section 2). We propose 

to use as much detailed data as possible and to only refer to less detailed data, e.g. in 
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the form of stylised facts, if other data is unavailable. Generally spoken, a combined 

use of theoretical and empirical analysis based on different data sets helps us to infer 

statements about causal relationships and characteristics of a set of models, such as, 

e.g., the development of different industries in different countries. We did not only 

provide methodological considerations on Positivism as the usual methodology in 

economics and Critical Realism as the one we propose to use (Section 3) but also a 

practical guide for creating simulation models (Section 4). We suggest first putting 

together the set of assumptions by induction and deduction and by including empirical 

data available. In a second step, implications are inferred by deduction and induction 

using again empirical data – naturally stemming from another data set. In a third and 

final step, we look for a theory about the part of the world we want to describe and 

explain by deriving causal relationships from them. 

 

We have argued that the results of this proceeding in three steps can be used to create 

knowledge about classes of systems, where the classes can be chosen according to 

different considerations. Compared with other methodologies this advanced 

methodology is rather time-consuming, because it requires detailed research for 

available data and a lot of simulation runs. However, this methodology leads us 

beyond the common use of simulation model, as we are able to infer characteristics of 

classes of systems that have a general validity. The examined characteristics might 

include causal relationships as well as predictions of future developments. Hence, we 

are also able to add to the understanding of economic processes. It is crucial to realize 

that in line with Critical Realism these results hold only temporarily, because either 

the underlying mechanism might change in time or because more detailed information 

might be available later on so that the underlying causal relationships can be studied 

in more detail. 
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