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Abstract 

This paper introduces a categorization of simulation models. It provides an explicit 

overview of the steps that lead to a simulation model. We highlight the advantages 

and disadvantages of various simulation approaches by examining how they 

advocate different ways of constructing simulation models. To this end, it 

discusses a number of relevant methodological issues, such as how realistic 

simulation models are obtained and which kinds of inference can be used in a 

simulation approach. Finally, the paper presents a practical guide on how 

simulation should and can be conducted. 
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1. Introduction 

 

In the last two decades simulation models have become increasingly popular in 

economics. They have been used for various purposes by employing different 

modelling strategies and methods. This variety led to a fuzzy picture of this field of 

research in economics. In particular, a standard model to which everyone can refer to 

when introducing their own model, such as the standard neoclassical model, is 

missing. This hampers communication between scholars. Obviously such a 

disadvantage goes in hand with the advantage that simulation models can cover a 

much broader range of research questions compared with alternative, traditional 

methods. Nevertheless, it would be helpful to have a clearer overview about how 

simulation models are built and how their results are derived. 

 

In order to get a better understanding on how results of simulation models are inferred 

and how the best match between research questions, research strategy and method can 

be found, we employ elements from two different scientific fields, i.e. simulation 

models and methodology. We start with some methodological considerations by first 

showing how simulation models can be categorized according to their degree of 

generalization and theoretical considerations (Section 2.1). Moreover, we introduce 

three general principles of inference (Section 2.2). Based on these methodological 

considerations we provide an overview of simulation models from the literature 

(Section 3.1) and derive four principal steps one has to follow when building a 

simulation model (Seciton 3.2). Based on our insights into the fields of simulation 

models and methodology, we derive a practical guideline to build simulation models 

in a methodologically adequate and efficient way (Section 4.). Our goal is to design 

an approach to building simulations that enables the simulation to address the research 

question in the most appropriate manner. 
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2. Methodological Considerations for Simulation Models 

 

2.1 Classification of Simulation Models According to Their Degree of 

Generalization and of Theory and Data Use 

 

The approaches found in the literature differ strongly in the simulation model set up. 

Two features are especially important. First, some authors develop a specific model, 

while others develop a general model. Second, the assumptions, on which models are 

based, could be obtained with the help of theoretical considerations or empirical data. 

 

We distinguish general and specific models as follows. There are some modellers who 

assume that the knowledge about the dynamics that are to be modelled is not 

sufficient to define a specific model. Instead, they try to keep the model as general as 

necessary or possible. This implies that a model with many unspecified parameters 

has to be set up. It might even be unclear how the model should be specified, i.e. how 

dependencies look like and what factors should be included. Hence, either different 

models have to be considered or the model has to be made more flexible by 

introducing more parameters. In contrast to a specific model, the unfixed parameters 

are not varied because their impact is studied, but because the modeller believes that 

their value is unknown. This approach is used initially, for example, in Bayesian 

simulations, where inferring knowledge about these parameters from empirical data 

about the system’s dynamics is the main goal. 

 

In contrast, in specific models the modeller tries to detail the model as much as 

possible. For the purpose of the study, the modeller assumes the possibility to design 

the model and fix the parameters adequately on the basis of theoretical considerations 

or empirical data related to the underlying mechanisms. Sometimes certain parameters 

are varied to conduct counter-factual analyses or to examine the robustness of the 

results. Similarly, sometimes different model specifications are examined. However, 

the modeller, in principle, believes that the model can be adequately specified. This is 

the usual approach in mainstream and heterodox economics. 
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Of course, most simulation models are neither purely general nor purely specific. 

These are extreme cases and most simulation models fall somewhere between them. 

Therefore, we use the specificity-generality dimension of categorizing simulation 

models as one axis of Figure 1. 

 

With respect to the way, in which the simulation model’s assumptions are obtained, 

we distinguish two approaches: theoretical considerations and empirical estimation. 

However, there are neither pure theoretical models nor pure empirical models, 

because every scholar builds assumptions on the basis of empirical knowledge at least 

in the form of experiences and common knowledge and every empirist builds 

assumptions on the basis of at least some basic theoretical considerations. 

Nevertheless, there are models that are called theoretic where the modeller does not 

try to justify the model using empirical data. This includes models based on axioms, 

which are not proven empirically elsewhere, as well as models that are based on ad-

hoc assumptions. We call these models “developed according to theoretical 

considerations”.  

 

Similarly, we do not know of any purely empirical model in economics. A purely 

empirical model would require that the modeller gathers the complete model from 

empirical studies. Such an approach is taken in natural sciences where the functional 

forms of dependencies are identified in numerous studies or experiments and put 

together in models. In economics the possibilities of such an approach are limited or, 

at least, still very limited. This implies that even if the modeller tries to base the 

model on empirical studies, it will always contain parts that are based on theoretical 

considerations. Hence, again there is a continuum of approaches that range from 

mainly theoretically to mainly empirically-based assumptions in the model set up. We 

use the theoretical-empirical characteristic as a second dimension to classify the 

approaches and as the second axis of Figure 1. It denotes the amount of empirical data 

used in the simulation model set up. 

 

Additional to the two mentioned dimensions we consider how realistically simulation 

models are represented. We call a simulation model realistic if it is able to exactly 

4



 #0602 
 
 

  

 

 

 

reproduce all features and dynamics relevant for the conducted study. If we run 

simulations, we usually aim at reproducing reality, meaning that we try to set up a 

model that shows the same features and dynamics as in reality. Usually we are not 

interested in all features and dynamics that exist in reality but in those of a certain 

subsystem. In economic studies we can rarely be sure that a developed model exactly 

represents even the relevant part of reality. However, we might estimate the likelihood 

that a simulation model exactly matches reality in all relevant aspects. Of course, an 

exact estimation of this likelihood is not possible. However, we can make a rough 

estimation. If a certain system is modeled, there are usually many different ways in 

which this can be done. To clarify, let us assume that there are 20 different ways in 

which the model could be set up. Let us furthermore assume that there is no empirical 

knowledge that would indicate which of the models is more likely to be suitable. 

Nevertheless, let us assume that the modeler tests 5 of these 20 models and finds only 

one of these to correspond with empirical observations. We could then state that this 

model is, with a probability of 25%, the correct model because with a probability of 

75% the correct model is one of the 15 untested models. In practice, the various 

model specifications are not usually known. However, it can at least be estimated 

whether a modeler neglected a lot of plausible alternatives or not. Similarly, it can be 

judged whether parameters have been arbitrarily fixed or not. Hence, a rough estimate 

could be obtained on whether the model is realistic. 

 

There are two extreme ways to increase this likelihood: At one end of the spectrum 

models are developed on the basis of a tremendous amount of empirical knowledge 

and data (as usually done in natural sciences), hence an empirically based, specific 

model is developed. At the other end of the spectrum, the model might be kept very 

general. This means that the parameters of the model are not fixed and different 

model settings or specifications are analyzed. As more different specifications of the 

model are included in the analysis, the more likely it is that the real features and 

dynamics are reproduced. These extreme ways to obtain realistic models correspond 

to the upper left and lower right edge in Figure 1. Above we stated that these two 

extreme kinds of models do not exist in economics. However, there is a third way to 

achieve complete realism. We could use all available empirical data to specify the 

simulation model. For all aspects that cannot be specified on the basis of empirical 
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data we might generally formulate the model. This means that the model falls onto the 

line between the upper left and lower right edge in Figure 1 and represents the real 

system. Hence, if the simulation model is just as specific as the empirical data allows, 

it is realistic. If more theoretical assumptions are made, the model is located in Figure 

1 closer to the lower left edge where its realism decreases. Thus, the third dimension – 

realism – can be depicted in Figure 1 as the diagonal. 

 

 

 

 
Theoretical, general Empirical, general  

Degree of realism

Realistic models 

Theoretical, specific Empirical, specific 

 

 

 
 

 

 

 

 

 

 

Figure 1: Dimensions according to which simulation models can be classified and 

their correspondence with reality. 

 

Models that lie above the line of realistic model are not adequate for logical reasons. 

They are more general than necessary according to the empirical knowledge used. 

This means that, for example, a parameter that is fitted empirically is, nevertheless, 

kept unspecified in the simulation approach. A variation of a well-estimated 

parameter is adequate in a counter-factual analysis but not as a part of setting up a 

realistic model. Hence, all existing models can be found in the space on and below the 

line of realistic models. 
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2.2 Principles of Inference to Build and Analyse a Simulation Model 

 

In preparation for the structured overview on simulation approaches some basic 

categories and principles of inference are described here. Assumptions and 

implications are basic elements of inference. Independent from the approach taken, 

simulations always provide the tool to derive implications from assumptions in an 

analytical and logical way. Simulations are based on a simulation model that contains 

all assumptions made by the modeller. Running simulations means that we obtain 

knowledge about the implication of these assumptions, similar to the analysis of 

mathematical equations. The different simulation approaches vary in how they embed 

the simulation in the overall analysis, including such aspects as how many different 

simulation models are analysed, how assumptions are obtained, how the implications 

are interpreted, and so on. However, the essence of a simulation approach is the use of 

simulations to infer implications from assumptions. Premises and definitions are 

usually part of the assumptions as these elements set the boundaries for modelling. 

However, sometimes definitions and premises can also be part of the implications, 

especially if the results of a model indicate that premises and/or definitions have to be 

revised for further research. Data can be used in both parts of models. In assumptions 

data provides an empirical basis to start from. Whereas, in implications, data is used 

to corrobate implications stemming from premises, definitions and logical 

considerations. Logic is, of course, always at the heart of modelling in all parts and 

consistently amalgamates all elements of the model. 

 

Three different principles of inference can be distinguished: deduction, induction and 

abduction. Each principle works in different ways, although with the same result, 

namely inferring implications from assumptions. Deduction is often summarized as 

inferring “from general to particular” (cf. Lawson, 1997, 24). Let us use, as an 

example throughout this paper, the impact of different patent laws in different 

countries on the development of a certain industry in these countries. Deduction 

would mean in this context that we have or assume a theory about the development of 

industries dependent on the national patent law, e.g. that stricter national patent laws 

protect innovators’ property rights better thereby giving more incentives to innovate. 

From this theory we could deduce that an industry in a country with lax patent laws 
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innovates less compared to the same industry in a country with stricter patent laws. As 

one can readily see in the example, assumptions within deduction already contain all 

information available. Generally spoken, deduction sustains information already 

contained in the assumptions but does not create a new one. 

 

If A = B and B = C,              (assumptions) 

then A = C.                 (implication) 

 

In deduction assumptions contain all possible elements of models, like e.g. premises, 

definitions or causal relationship. Therefore, it is often claimed that in deduction, 

conclusions stemming from assumptions have to be true. In formal sciences like 

mathematics this holds, because assumptions are usually provided in the form of 

axioms, i.e. they are self-evident and need not be proven. However, in social sciences, 

like economics, such self-evident assumptions do not exist. Implications drawn from 

premises are in general true but only in the sense that they are logically derived. In 

social sciences, without self-evident premises available, it is virtually impossible to 

derive implications that are true in the sense of correctly describing, explaining and 

prognosticating reality. 

 

Induction is often summarized as inferring “from particular to general” (cf. Lawson, 

1997, 24). Its assumptions describe a part of a larger population and then infer 

conclusions about the characteristics of this larger population. In our example this 

would mean that we observe the innovative output of a number of industries in a 

number of different countries with different patent laws. We would then inductively 

infer general mechanisms, relationships and rules by examining the common 

characteristics of all observations and could come to the conclusion that industries in 

countries with stricter patent laws have a larger innovative output. As the inductive 

principle runs “from particular to general” it is often seen as creating information - 

however doubtful. The inference in induction says something not contained in the 

assumptions. If the inference arguments are strong it is probable that the claims made 

about the conclusions hold. Inductive inference is based on data. However, even if the 

number of observations in the data set is large it is, in principle, impossible to have all 

observations available, not the least because future events cannot be observed. This 
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means that the implications derived from data are uncertain. In the future, the same 

will only happen with an unknown probability. This probability is impossible to gain, 

because future observations, by definition, cannot be made now. 

 

Abduction - sometimes also called retroduction - classifies “particular events into 

general patterns” (Lawson, 1997, 24). For our example abduction means that we 

argue that industries vary in their development and are therefore affected by patent 

laws in different ways. Abduction means that we start by collecting detailed 

information about the development of different industries in different countries facing 

different patent laws. Based on this, we classify the different developments and 

identify the underlying driving forces. This also enables us to describe, explain and 

predict developments of other industries in other countries with respect to their patent 

laws. It is important to notice that abduction requires data based on substantial and 

detailed observations. Only then it is possible to find meaningful and sensible 

underlying mechanisms to infer from the assumptions to the implications. So, for 

example, if we observe that a number of low-tech industries develop in different 

countries independent of actual patent laws, we might conclude that all low-tech 

industries are not influenced by any change in the patent laws. Obviously, this is 

somewhat jumping to conclusions. Abduction requires much more detailed 

information to infer implications that are likely to hold when confronted with reality. 

In our example one would wish to know much more about the mechanisms behind the 

industrial development and the differences between national patent laws. It would 

especially be important to know what makes an industry’s development independent 

of patent laws. We could for instance choose to define classes of industries that show 

similar developments within one class and different developments between classes, 

e.g. the famous Pavitt taxonomy (Pavitt, 1984). By going back and forth between 

theorizing and empirical testing we might come to the conclusion that science-based 

industries profit more from stricter patent laws than scale intensive industries. This 

would allow transferring the experience to other industries. As more relevant data 

details are known they can be precisely classified into a general pattern. 

 

Abduction enables us to identify underlying structural elements, which explain 

observations we make, and to develop a theory of the part of the world we are 
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investigating. This takes us a substantial step further than pure deduction or induction, 

because abduction helps us to meet theory and data in a creative way. By using the 

principle of abduction we are able to create new information. According to Peirce 

(1867/1965, 5, 145f): 

 

“(Induction) never can originate any idea whatever. No more can deduction. All the ideas of science 

come to it by the way of abduction. Abduction consists in studying the facts and devising a theory to 

explain them. Its only justification is that if we are ever to understand things at all, it must be in this 

way.” 

 

 

3. Simulation Models from the Methodological Point of View 

 

3.1 Simulation Models: An Overview from the Methodological Point of View 

 

The simulation method has been widely used in economics. It has served different 

purposes such as description and explanation of economic processes as well as their 

prognosis. As we are interested in inference in simulation models it is crucial to 

understand the relationship between theorizing, on one hand side, and empirical data 

on the other hand, as well as the degree of generalization used. Economic models are 

neither free of theory nor free of data. However, the extent to which theory and data is 

used in simulation models differs considerably (see Section 2.1). 

 

In the following we will present an overview of simulation models, characterising 

them according to the above defined dimensions of categorisation (see Figure 1). This 

characterisation of the simulation approaches is complicated by the fact that in some 

approaches simulation models are set up at the beginning and then modified or 

specified during the simulation approach. In these cases, the simulation model can be 

categorized according to Figure 1 at the beginning or at the end of the approach. This 

topic is also taken up in more detail in Section 3.2. 
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We distinguish five different types of models: First, we will present models, which 

are rather specific and use stylised facts to evaluate the simulation results. Second, we 

will introduce models, which are rather specific and use case study data to specify the 

simulation model. Third, we will discuss methods based on specific models and the 

use of comprehensive empirical data. Fourth, we will show a method based on general 

models and test the simulation model implications using empirical data. Last but not 

least, we will present an approach in which the aim is neither to develop a specific nor 

a general model, but in which empirical data is used as much as possible and the 

model kept as general as necessary. We will show that these types of models usually 

go hand in hand with the specific use of the principles of inference, i.e. induction, 

deduction and abduction (see Section 2.2). 

 

In the past, simulation models have often been specific models, which incorporated 

data in the form of stylised facts to check the implications. This is called the 

traditional approach here. The models suggest specific levels of parameters and 

specific relationships between these parameters. The assumptions of these specific 

models are based on theoretical considerations, which result from axioms or ad-hoc 

modelling. Hence, these models are located in Figure 1 rather in the lower left edge at 

the time they are set up (see Figure 2). The aim of these models is usually to either 

show that they are able to produce certain phenomenon or to study how things vary if 

certain aspects of the models are changed. Empirical data enters the model via the 

implications of the simulation model. It is used in the form of stylised facts to check 

whether the theoretically set up model is realistic. To this end, stylised facts are used 

in accordance with Kaldor's original idea (Kaldor, 1968, 177f). Stylised facts 

comprise empirical statements about a wide application area. They mostly rely on 

common sense and the impression of the scholar using them. The problem with 

stylised facts is that they “fall from heaven” and often remain unmotivated (for a 

detailed critique see Schwerin, 2001, 92-98). As it is usually unclear how stylised 

facts are derived it is not possible to tell whether or not they comprise only the 

structural elements of economic processes or whether they partly mirror noise in the 

form of chance elements. Nevertheless, the use of stylised facts enables modellers 

who want to concentrate on specific theoretical considerations to integrate some 

empirical reality into their analysis. Often the simulation model is adapted such that it 
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is able to reproduce the stylised facts in a process that is not recorded in the final 

work. This empirical data is included in the model, so that it moves in Figure 2 to the 

right. However, it cannot be estimated how often the model has been adapted before 

the modeller was satisfied with the result. The major principle of inference used in 

this kind of model is of course deduction, because the focus lies on theoretical 

considerations. Induction is used by comparing the simulation results with stylised 

facts.  

 

 

 
Theoretical, general Empirical, general  

Empirical, specific Theoretical, specific 

Realistic models 

Traditional 
approach 

Abductive 
simulations 

Bayesian 
simulations 

Micro-
simulations 

History-friendly 
models 

 

 

 
 

 

 

 

 

 

 

Figure 2: Categorization of five different simulation approaches according to the 

dimensions theoretical-empirical and specific-general (the ellipses show where these 

approaches are located initial and the arrows show in which direction they develop if 

the model is modified during the simulation approach). 

 

Examples of simulation models, which use stylised facts in their modelling, are 

Harrison (2004), Fagiolo/Dosi (2003), Werker (2003), Winter et al. (2003) and 

Windrum/Birchenhall (1998). Harrison (2004) presents a simulation model that can 

reproduce stylized facts in the form of four different kinds of organizational evolution 

and firm growth. Fagiolo/Dosi (2003) present an endogenous growth model, which is 

able to reproduce stylized facts in the form of empirically plausible GDP time-series. 

Windrum/Birchenhall (1998), Winter et al. (2003) as well as Werker (2003) present 
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models, which are able to account for the stylized facts in the evolution of industry 

life cycles. Harrison (2004), Fagiolo/Dosi (2003), Werker (2003) and 

Windrum/Birchenhall (1998) model random effects and perform a sensitivity analysis 

by running the same specifications at least 100 times. They calculate some statistics 

and give some qualitative impressions of the results. Winter et al. (2003) concentrate 

more on the analytical results of their model and limit themselves to only a few 

calculations to test for the sensitivity of their results. 

 

Specific models, which use case study data, are often called history-friendly models. 

They rely on detailed empirical knowledge about real historical processes and try to 

find a model that leads to processes with the same characteristics. These models focus 

mainly on induction, because the case study is the core of the analysis. The case study 

is used in two ways. On the one hand, it provides some knowledge about the 

underlying processes that are modelled in the simulation. On the other hand, it 

provides information about the realistic dynamics of the simulation. Hence, in the 

model set up some theoretical considerations and some empirical knowledge are 

involved. The model is therefore located somewhere in the lower middle of Figure 1 

when it is first set up. Although this is usually not mentioned in the final publications, 

different models are tested and rejected by the empirical knowledge on the system 

dynamics until a model is not rejected. To this, additional empirical knowledge is 

included and the model moves to the right in Figure 1. How far this process is taken 

cannot be stated because in the final publications the authors do not usually reflect on 

this process. Finally, it is argued that the model might describe the mechanisms 

underlying the known empirical facts. An inference is made from one single case to 

general mechanisms. This is of course problematic, because - though usually most of 

the complicated and complex processes involved are depicted - it is not possible to 

sufficiently distinguish between chance and necessity. This means that scholars using 

history-friendly models have difficulties in identifying the underlying structural 

processes, which could be found back in similar historical circumstances. Usually, 

they provide some sensitivity analyses of their results, which can be and sometimes 

are explicitly interpreted as counterfactual histories. This gives some idea on the 

results’ stability and whether they crucially depend on random effects. Generally 

spoken history-friendly models share the advantage as well as the disadvantage with 
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case studies: they give us deep inside knowledge about real economic processes but 

lack the possibility to generalize their results in a convincing way. Although induction 

is widely used as a principle of inference, deduction also plays a role in these 

approaches once a satisfying simulation model has been found. The authors, then, use 

the developed model to analyse certain model characteristics or conduct counter-

factual analyses.  

 

Recent examples of history-friendly models are Eliasson et al. (2004), Kim/Lee 

(2003), Malerba/Orsenigo (2002), Eliasson and Taymaz (2000) and Malerba et al. 

(1999). Eliasson et al. (2004) show, with an empirically calibrated micro-macro 

model for Sweden, how the new economy affects productivity and growth processes. 

Kim/Lee (2003) construct a history-friendly model for the DRAM industry. 

Malerba/Orsenigo (2002) and Malerba et al. (1999) concentrate on analyzing a 

history-friendly model of the computer-industry. Only Eliasson and Taymaz (2000) 

calculate the sensitivity of their results. All other authors run a number of 

counterfactual histories in order to account for the sensitivity of their results. Thereby, 

they produce data that can be statistically analyzed. Consequently, these scholars can 

use more sophisticated methods and can look into the statistical properties of their 

models in a systematic way. This gives some insights into how counterfactual 

histories could have occurred and on how much the results depend on random effects. 

 

The third kind of simulation model are micro-simulations, i.e. specific models, which 

are based on comprehensive empirical data. In this approach the dynamics of the 

previously studied system is thoroughly examined. Statistical methods are applied to 

detect the crucial dependencies between variables and the trends in the dynamics of 

these variables. The findings lead to a simulation model that describes the previously 

observed dynamics. The crucial theoretical assumption is that, in the future, the same 

mechanisms and dynamics take place as in the past. We have already stated above, 

that this is not necessarily given in economics. However, this seems to be the only 

limitation to the realism of the models in this approach, given that all important 

processes are considered. In Figure 2 this approach is located in the lower right edge, 

deviating from the edge only by the fact that the future is theoretically assumed to be 

the same as the past and by the fact that maybe some important variables or 
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mechanisms are not included in the model. However, the applicability of this 

approach has some limitations. Two requirements have to be satisfied. First, the 

dynamics that are studied have to be so simple that they can be completely analysed. 

Second, sufficient empirical data has to be available to examine the underlying 

mechanisms. Given that these requirements are satisfied, the obtained simulation 

model can be used, for example, to make predictions about future developments. 

Hence, while in this approach the simulation model is obtained in an inductive way, it 

is used in a deductive way. 

 

Micro-simulation approaches can be frequently found in the literature (surveys and 

general discussions can be found, e.g., in Merz, 1991, O`Donoghue, 2001, and 

Creedy/Duncan, 2002). They typically either aim at investigating the effect of certain 

policies or at predicting future developments. For example, Atkinson et. al. (2002) 

study the impact of a European Minimum Pension. To this end, they use a simulation 

model that is based on detailed data about household income in the five largest EU 

countries and simulate the impact of a European Minimum Pension on these incomes. 

Based on similar data for the UK and a similar simulation approach, 

O’Donoghue/Sutherland (1999) study the impact of alternative family tax treatments 

on the tax paid by these families and work incentives. The different approach of 

various European countries are compared on the basis of the situation in the UK. 

Many other works exist in this field that cannot all be presented here. 

 

The fourth kinds of models are Bayesian simulation models, i.e. general models, 

which incorporate empirical data by systematically comparing the simulation results 

to larger sets of empirical observations. This approach allows for very detailed and 

systematic analyses of statistical properties and sensitivities towards random effects, 

because it starts from the assumption that little is known about the models’ parameters 

and often also about the relationships between the variables of the model. Moreover, 

the large set of empirical observations, which is typically used, enables the modeller 

to thoroughly test the different specifications of the simulation model. In Bayesian 

simulations usually a lot of empirical data is available for the phenomenon but little 

for the processes that cause this phenomenon. Therefore, a very general simulation 

model is developed that includes all plausible processes that could cause the 
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phenomenon. Hence, the approach starts with a model that lies in the upper left edge 

of Figure 2, because the model is general and almost no empirical data is used. 

However, the Bayesian approach is based on the idea that running all plausible 

simulation models and comparing their results with empirical data regarding real 

dynamics can identify the right specification of the simulation model. Hence, the final 

result is a clearly specified model that is obtained by extensively using empirical data 

about the dynamics or characteristics of the system. This means that, finally, in the 

Bayesian approach a model is obtained that is located in the lower right edge of 

Figure 2. Thus, Bayesian simulations are not that much different from micro-

simulations in our categorisation. In both cases a specific simulation model is finally 

obtained using a large amount of empirical data. The difference is that in the case of 

micro-simulations, empirical data is directly used to set up the model, while in 

Bayesian simulations, data about the outcome of the simulation runs is used to induce 

the correct specification of the simulation model. The intention of Bayesian 

simulations is to inductively obtain an adequate model specification. 

 

Bayesian inference has become increasingly widespread in econometrics in recent 

years (for an introduction to Bayesian inference see, e.g., Citro & Hanushek, 1991 and 

the original work by Zellner, 1971). Examples for Bayesian simulations are, 

Kaufmann (2000), Tsionas (2000), Jacobson/Karlsson (2004) and Jochmann/Leon-

Gonzalez (2004). Tsionas (2000) uses stock market data to check different models 

about the stochastic movements of prices. To this end, he simulates a number of 

existing models with different parameters. Since the models are stochastic, for each 

model and each parameter set, the simulation has to be run numerous times in which 

he counts how often the results are in line with empirical observations. According to 

Bayesian inference, this offers some knowledge about the likelihood that each of the 

parameter specifications and each model is correct. This allows us to judge the 

adequateness of the various existing models. A similar approach is taken by 

Kaufmann (2000). Bayesian simulations, however, can also be used to make 

predictions for future developments (see, e.g., Jacobson/Karlsson, 2004 and 

Jochmann/Leon-Gonzalez, 2004). Jacobson and Karlsson (2004) use the Bayesian 

approach to evaluate the relevance of a number of potential indicators in forcasting 

inflation in Sweden. The resulting knowledge about the adequate indicators can then 

16



 #0602 
 
 

  

 

 

 

be used to make predictions. Jochmann and Leon-Gonzalez (2004) predict the 

demand for health care with a model that classifies the population into classes 

according to their health status, where they used the Bayesian principle to estimate the 

parameters and features of the model. 

 

The fifth kind of model are abductive simulation models, i.e. simulations in which 

empirical data is used as much as is available to specify the model, while keeping the 

model as general as necessary. In this kind of approach, the aim to develop a realistic 

model is put before all other criteria, such as keeping the model simple or developing 

a well-specified model. Hence, in contrast to the other four approaches, usually no 

specific model is obtained at the end of this approach (the approach does not 

necessarily end in the lower range in Figure 2). This has had quite some impact on the 

interpretation and analysis of the simulation results. 

 

The approach starts, similar to Bayesian simulations, with the set up of a very general 

model that should represent all mechanisms and processes that could occur in reality 

and play a role for the analyzed subject. In contrast to Bayesian simulations, empirical 

knowledge about the modeled mechanisms and processes is then immediately used to 

reduce the generality of the model. However, it is crucial in this approach that the 

generality is reduced only as far as empirical data allows. For example, if empirical 

evidence is available that shows that certain parameters fall into certain ranges, these 

ranges are used to restrict the model parameters. As a consequence, the simulations 

are started with a model based on some empirical knowledge but is still quite general 

and therefore located in the middle in Figure 2. Because of the model’s generality, 

many different specifications have to be run, as done in the Bayesian approach. 

Furthermore, empirical data about the real characteristics and dynamics of the 

modeled system is also used, as in Bayesian simulations. However, it is not used to 

find the best specification of the model, but only to eliminate those specifications that 

are unable to produce the real characteristics and dynamics of the system. This means 

that empirical data about the system’s behavior is used to further reduce the model’s 

generality. Nevertheless, the model is usually not completely specified. It is argued 

that a set of model specifications remains that are all potential candidates for 

representing reality. Only characteristics that hold for all these specifications can be 
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concluded to be real. Hence, this approach is based on an inference process in which 

empirical data about specific systems is used to reduce the generality of a simulation 

model and in which the resulting set of model specifications is used to generate 

knowledge about the kind of systems that are studied. This is a reductive process. 

 

The approach was first used in Brenner (2004) in order to develop knowledge on the 

emergence of local clusters. To this end, all processes claimed in the literature to be 

involved in the emergence of local clusters have been included in a simulation model 

with varying importance and the common characteristics of the resulting dynamics 

have been studied. The approach was formalized and applied to the synthetic dye 

industry by Brenner and Murmann (2003). They used the empirical knowledge 

available for the synthetic dye industry to model its development from 1856 to 1913. 

The real development was used to check the realism of different model specifications. 

Finally, statements about the importance of the university system’s responsiveness 

and the availability of chemists have been inferred. A more elaborate method 

description is presented in Werker and Brenner 2004.  

 

 

3.2 Four Steps to Build and Analyse a Simulation Model 

 

Most simulation approaches can be separated into three steps. These steps are usually 

conducted successively: first, the definition of assumptions and the set up of the 

simulation model, second, the conduction of the simulations, and third, the analysis of 

the simulation results. In some cases the simulation results are used to adapt the 

simulation model. This might be done with or without declaration in the final 

publication. If it is done according to a clear procedure that is declared in the 

publication, we treat it as part of the analysis or as a separate four step, which we call 

the classification of simulation models. The steps are successively presented in detail 

in the following. 

 

 

In the first step of a simulation model assumptions are defined and the model is set up. 

Here, we can use the three dimensions explained in Section 2.1: theoretical-empirical 
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and general-specific as well as the likelihood that the model correctly represents 

reality (see the ellipses in Figure 2). Data might be used for all aspects of the 

simulation model. We distinguish two very different uses here. A simulation model is 

always built on the basis of assumptions about the interaction between the model 

elements. The simulation is then used to transfer these assumptions into dynamics or 

characteristics of the whole model. Hence, we can distinguish between the underlying 

interactions and mechanisms built into the simulation model and the resulting 

dynamics and characteristics of the simulation model. Let us call the former the 

underlying level and the latter the resulting level. We might then also distinguish data 

into empirical data about the underlying mechanisms that corresponds with the 

underlying level and empirical data about the system’s dynamics and characteristics 

that corresponds with the resulting level. All data used in simulation approaches is of 

one of these two types. In the first step, usually only empirical data about the 

underlying level is used. However, as mentioned above, some approaches, especially 

traditional simulations and history-friendly models, use some knowledge about the 

resulting level in the model set-up. This is often done without stating it in the final 

publications. Different models are developed and tested and the one that fits the 

empirical knowledge about the resulting level best is taken as final and exclusively 

presented. 

 

The second step is the conduction of the simulations. Once the assumptions are 

defined and the simulation model is set up, simulations can be run. Simulations are 

always a deductive act. They provide us with information about the implications of 

assumptions. 

 

The differences between the approaches taken in the literature in how they conduct 

simulations are of less interest in this paper. Of course, the simulations are run in 

different computer languages and on different platforms. Furthermore, in some cases 

one simulation is run for each setting while, in other approaches, multiple runs are 

conducted. However, this is mainly caused by the structure of the simulation model. 

Stochastic models make multiple runs necessary. 
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Many other differences are caused by the way in which simulation results are 

analysed. If it is intended to analyse the robustness of the results with respect to some 

parameters, the simulation has to be run for various values of these parameters. If a 

general model is used, meaning that the modeller assumes that some parameters 

cannot be specified, for all possible values of these parameters simulations have to be 

conducted. Usually some parameter ranges can be defined (a comprehensive 

discussion can be found in Werker & Brenner 2004). This implies an infinite number 

of possible values for parameters, so that not all possible values can be simulated. A 

Monte-Carlo approach is used in such a case. 

 

To sum up, the way in which the simulation runs are conducted depends very much 

on the set up of the simulation model and the way in which the results are analysed. 

Therefore, the discussion in this paper concentrates on the first and third step, the set 

up of the model and its analysis. 

 

In the third step the simulation results are derived. There are many different ways in 

which the results of simulations can be used. The approach taken depends very much 

on the research question addressed. This is further discussed in Section 2. Here, we 

technically discuss various analyses and uses possible and used in the literature. We 

identify three different ways to deal with the results of simulations: 

• Characterisation: In many simulation approaches the simulation results are 

used to study the characteristics of the system that has been modelled. This 

means that the simulation results are treated similar to empirical data. 

Sometimes the resulting dynamics or characteristics are simply described. 

Sometimes they are analysed with the help of statistical tools. Such an analysis 

also allows to analyse the relationship between parameters, initial conditions, 

or specifications of the simulation model and the dynamics or outcomes of the 

simulation runs. This is usually done in order to detect causal relations 

between the model assumptions and their implications. The aim is to obtain 

detailed knowledge about the system described by the simulation model. 

Whether valid knowledge is obtained depends crucially on the realism of the 

simulation model. 
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• Comparison: It is also quite common to compare the simulation results to 

empirical data, in this case empirical data about the system’s dynamics and 

characteristics (resulting level). The approaches that use such a comparison 

conduct the comparison in very different ways. Many simulation approaches 

in heterodox economics simply use stylised facts to check whether the 

simulation results are plausible. In contrast, in the Bayesian approach a 

statistical comparison of the results of various simulation runs with different 

parameter values or model specifications with empirical data is conducted. 

The aim is to identify those model settings for which the simulation results are 

in line with the empirical data. Also many approaches that aim to predict 

future events use a comparison of simulation results with empirical data to 

check the adequateness of their simulation model. 

• Prediction: Simulations are also frequently used to predict future 

developments. Both, deterministic and stochastic predictions are possible, 

depending on the characteristics of the model. In both cases the modeller is 

usually interested in predicting one or a few variables, so that the analysis 

concentrates on these variables. 

 

 

 

In addition to the usual steps described above, we add a potential fourth step of 

classifying the systems of models here. This fourth step is based on the abductive 

simulation approach. In this approach the available empirical data on the underlying 

level is used to specify the simulation model as much as possible. Then, with the help 

of a Monte-Carlo approach and a comparison of simulation results with empirical data 

on the resulting level, the model is further specified. The result is a simulation model 

with some degree of generality. Two ways of a further procedure are possible. 

 

On the one hand, the resulting model can be used for different analyses, such as 

characterisation, relationship analysis or prediction. On the other hand, if empirical 

data is available on the resulting level for different real systems, we could separately 

compare each real system. We could also group these real systems in different classes 

and conduct to an analyse for each class of systems. Through this we obtain different 
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specifications of the simulation models that refer to different groups of real systems. 

The characteristics of these specifications can be analysed and compared. We might 

even do the comparison for each real system separately and use the comparison of the 

characteristics of the resulting model specifications for the classification of the real 

system (see Werker & Brenner 2004 for a description of this procedure). In this way, 

we obtain classes of systems and knowledge about their characteristics and dynamics. 

 

All these proposals imply that we go back and forth between the underlying level and 

the resulting level with the help of simulations. By this we transfer empirical 

knowledge from on a level to the other and create new knowledge. This is a process 

of abduction and we believe that this process is very helpful for understanding 

economic systems and that simulations are very adequate tools to support this logical 

process. 

 

To sum up, we classify the above-described frequently used approaches according to 

the structure that has been developed above. This aims to give an overview on what 

combinations of the above steps are possible and often used in the literature. It also 

gives a picture of how much methodological variance there is in the existing 

literature.  

 

Approach Step 1 Step 2 Step 3 Step 4 

Traditional Rather 

theoretical, 

specific 

Usually one 

specification 

run 

Characterisation - 

Microsimulations Empirical, 

specific 

One 

specification 

run 

Prediction, 

sometimes 

Comparison 

- 

Bayesian Theoretical, 

general 

Many 

specifications 

run 

(sometimes 

Monte-Carlo) 

Comparison - 

History-friendly Rather One Comparison - 
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empirical, 

specific 

specification 

run, with 

sensitivity 

analysis 

and 

Characterisation 

Abductive As empirical 

as possible, 

as general as 

necessary 

Many 

specification 

runs (Monte-

Carlo) 

Comparison 

and 

Characterisation 

Classification 

 

Table 1: Common simulation approaches and the steps that they use. 

 

 

4. A Practical Guide to Simulation Models 

 

This section aims to give advice about how to conduct simulations depending on the 

research question scholars seek to answer. Computational economics still misses 

some universal standards in how simulation approaches should be conducted. Every 

researcher proceeds according to her own preferences. Above, we have distinguished 

a number of different steps that are usually conducted in simulation approaches. A 

standard would give some advice about which steps have or can be taken and how 

they should be conducted. One specific standard for all computational economics 

cannot be established because different research questions require different 

approaches. However, some advice that differentiates between different research 

questions can be given. To this end, the simulation steps are discussed in a sequence.  

 

4.1 Set up of simulation model 

 

Above we have shown that the set up of a simulation model can be characterised in a 

two-dimensional space (see Figure 1). We have also shown that there is a line of 

realistic models in this space. It is evident that if we want to study real causal 

relationships, make predictions, or characterise and compare different real systems, 

we must have a realistic simulation model. Therefore, it is important – also for the 
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reputation of computational economics – that the reader can judge the realism of the 

model. This means that modellers should state all considerations made and all other 

models tested to reach the model presented. Furthermore, all assumptions made have 

to be explained. All assumptions not empirically proven (within the paper or in the 

literature) move the simulation model away from the realistic frontier. How decisive 

such assumptions are can only be subjectively estimated. However, the reader should 

be able to make an individual judgement. 

 

In most cases a completely empirically based model, as used or intended in micro-

simulations, is not feasible. There is, however, an alternative option, which is usually 

neglected in the literature, to deal with insufficient empirical knowledge. The 

simulation model can be kept as general as necessary, as it is proposed in the 

abductive approach. This means that in all aspects in which we cannot or will not use 

empirical data to specify the simulation model we have to keep the model general. In 

practical terms, we have to allow all parameters that we are not able to fix or restrict 

on the basis of empirical data, to take all logically possible values. A trade-off 

between collecting empirical knowledge to restrict the generality of the model and 

conducting a lot of simulation runs for different parameter values is the consequence. 

This trade-off is further discussed in Section 4.3. 

 

Sometimes it is claimed that the realism of a simulation model is not an important 

criterion. There are three arguments in favour of this. First, realistic models are 

usually very complex, so that it is difficult to understand and analyze the relevant 

mechanisms in the model. Hence, many authors argue for simple models. However, 

we should clarify what can be reached with these models. Let us exclude from this 

discussion situations where simple models adequately represent the studied part of the 

real world (these situations are rare), and consider situations where reality is very 

much simplified by the simulation model. In such a case, the simulation model is not 

realistic. What we obtain by running the simulations is knowledge about the 

implications of the assumptions put into the model. These assumptions are of a 

theoretical nature because they do not match reality. Thus, we have an applied 

mathematical exercise in which we obtain the implications of theoretical assumptions. 
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This is, of course, of some value, but should not be mixed up with knowledge about 

reality. It depends on the research question whether such an approach is adequate. 

 

Second, it is sometimes argued that the consequences of hypothetical situations or 

hypothetical changes of the real situation are to be studied. In this case, the model’s 

realism seems to be less important. However, if the results of the study should not 

serve purely theoretical purposes, the system modelled should, at least, to some 

extent, be realistic. This is the case, for example, if questions, such as whether a 

different market system could change trading efficiency or whether certain previous 

policies would have changed historical developments, are to be answered. The 

simulation model should in these cases be realistic, except for the aspects that are 

explicitly changed to study the impact of this change.  

 

Third, in some cases, for example if the aim is to predict developments, it might be 

less important to correctly model the underlying processes and mechanisms as long as 

the resulting dynamics are realistic (this is the old as-if-argument by Freeman). The 

same holds for parts of a model that are not at the centre of the research question. 

However, if such an argument is used, it is very important to prove that the model 

leads to real dynamics and characteristics. A comparison with empirical data about 

the real system’s dynamics and characteristics is, therefore, much more important 

than with empirical data related to the underlying level. When interpreting the results 

some care is necessary: Obtaining a good fit of the simulations dynamics and 

characteristics does not mean that the underlying mechanisms are adequately 

described. Many different models might be set up that cause the same characteristics 

and dynamics. What is obtained is a model that does nothing more or nothing less 

than adequately describes reality on the resulting level. 

 

4.2 Conduction of simulation 

 

The conduction of simulation depends mainly on how Steps 1 and 3 are taken. Hence, 

we do not differentiate our proposal for the second step because its aim mainly 

influences the procedure in Steps 1 and 3. Here, only one general aspect is discussed: 

the use of multiple simulation runs because the real value of parameters is unknown. 
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It has been discussed above that a realistic model is reached by empirically fitting the 

structure and parameters of the model and by keeping the model general whenever 

such a fitting is not possible. In economic modelling, a fitting of the complete 

structure and all parameters to exact values is not possible in most cases. Let us 

assume that all aspects of the model’s structure and all parameters that cannot be 

empirically measured are reflected by unfitted parameters. Furthermore, let us assume 

that for all these parameters ranges have been defined, into which real values fall with 

a probability of almost one, either by logical arguments or by empirical estimations. 

 

In order to obtain a realistic analysis, we need to run the simulation for each set of 

parameter values that fall into the defined ranges. If we do this, we can be almost sure 

that one of the simulation runs represents reality. If the model set up is less general in 

those aspects that are not empirically proven, the less sure we are that the simulation 

represents reality. However, if we keep the model sufficiently general, only for one 

set of parameters, the model will represent reality and we do not know for which 

parameter set. This has to be kept in mind in interpreting the result. Furthermore, it 

should be clearly stated in simulation approach if and where the simulation model is 

specified more than the available empirical data allows. 

 

Furthermore, a trade-off clearly appears here. The collection of empirical data for the 

set up of a simulation model is usually very cumbersome. The use of empirical data 

can be substituted by keeping the model very general. However, this has two impacts. 

First, more simulations have to be run because there are more possible parameter sets. 

This increases the necessary computer time. Second, only one of these many 

simulation runs represents reality, although we do not know which simulation run is 

the most realistic. As a consequence, only those results are reliable that result from all 

simulation runs for all possible parameter sets. We obtain, in general, less reliable 

results than with a more specific simulation model. 

 

Finally, we have to address the question of how we treat model parameters that could 

take an infinite number of different values. While defining ranges for parameters that 

are not restricted to natural numbers, this might easily happen. A Monte-Carlo 
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approach seems to fit here. In such an approach the parameter values are randomly 

picked from their range for each simulation run. The more simulations are run in this 

way, the more likely the realistic parameter set is also used. However, we can never 

be sure that the realistic parameter set has been randomly picked. But there are 

methods to calculate the probability that a certain characteristic holds for the realistic 

model dependent on how many simulations are run and whether this characteristic 

holds. 

 

To sum up, this section is a plea for the use of empirical data to specify the simulation 

model. However, we do not claim that every modeller has to do so. What we claim is 

that if less or no empirical data is used, it must be stated by the modeller including the 

way in which the model could deviate from being realistic or to keep the model 

general. A general simulation model is scientifically fine but has some disadvantages 

as stated above. 

 

 

4.3 Inference of Simulation Results 

 

The simulation outcomes can be used in a variety of ways depending on the research 

question. If the aim is to infer knowledge about the reality, such as predictions about 

the future or knowledge about causal relationships or characteristics of the system, the 

simulation results can be analysed to obtain this knowledge. This means that in these 

cases simulations are interpreted as representations of reality. In these cases, the 

realism of the simulation model is of crucial importance. 

 

A somewhat different situation occurs if the aim is to infer knowledge about 

mechanisms on the underlying level from the comparison of simulation results with 

empirical data on the resulting level. This means, in principle, that there are different 

models about the underlying mechanisms and processes that cause a certain 

empirically observed system behaviour. The aim is to identify those mechanisms and 

processes that cause this behaviour. To this end, all possible specifications of the quite 

general simulation model are simulated and results are compared with the empirical 

knowledge about the system’s behaviour. If the simulation model is stochastic, a 
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Bayesian approach can be used. For each studied specification we are able to state 

whether it is able to produce real behaviour or with what probability it produces real 

behaviour. If the simulation model is sufficiently general to contain reality with 

almost certainty (realistic line in Figure 1), we obtain a list of all potential underlying 

mechanisms or a list of their likelihood to be real. In the case of a simulation model 

that falls short of being realistic (below the realistic line in Figure 1) we obtain such a 

list only for the studied underlying mechanisms. There might be others that cause the 

same system behaviour and one of them could be the real one. Two situations could 

occur. First, there might be only one specification that is able to reproduce the real 

system’s behaviour. If one can be quite sure that all potential mechanisms and 

processes on the underlying level are tested, it can be presumed that the suitable 

model is found. If only part of all potential underlying mechanisms and processes are 

studied, all that is gained is that some underlying mechanisms and processes can be 

excluded from the list of potential causes. Second, there might be different 

specifications that represent the real behaviour of the system. The results can then be 

used to reduce the generality of the simulation model. The resulting model, in turn, 

can then be used to study model characteristics – being a representation of reality – as 

described above. It might also be further used to classify systems of models (see the 

next section). 

 

 

4.4 Classification of systems 

 

Above we discussed how empirical knowledge could be transferred from the resulting 

level to the underlying level. To achieve this, various model specifications have been 

checked by comparing their results with empirical data on the resulting level. Hence, 

a simulation approach allows knowledge transfer in both directions between the 

underlying and resulting level. Let us assume that we start from a very general 

simulation model with many unspecified parameters. Then, we can use empirical data 

on the underlying level to estimate parameters or restrict them to certain ranges. As a 

second step, we can use empirical data on the resulting level to check for which 

parameter sets the simulation leads to the correct results. This can be used to further 
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restrict the parameters. Finally, the resulting model can be analysed as described 

above. 

 

Alternatively, we can also use this procedure to classify systems. There are two ways 

to do this. First, we could already classify the real systems and use for modelling each 

category of systems (e.g. manufacturing versus service sector) only data that is 

empirically obtained for this category. We obtain differently specified simulation 

models for the different categories of systems and can study the resulting differences 

in their characteristics, relationships between variables and predicted future 

developments. 

 

Second, we might have a number of different systems (e.g. industries) without 

knowing how to classify them. Using each time only the empirical data for one of 

them, we obtain a specification of the simulation model. The resulting simulation 

models can be examined for similarities and differences and a categorisation can be 

established on this basis. 

 

In any case a set of categories finally results for which we know or may create via 

simulations a number of aspects, such as the underlying mechanisms, characteristics, 

relationships between variables, dynamics and predictions. The different facts are 

related to each other via the simulation approach. Therefore, knowledge about certain 

characteristics can be used to categorise a new system, which in turn leads to 

knowledge about other characteristics. This is called abduction. The simulation 

approach is perfectly suited to do such abduction, although it is, so far, rarely used in 

the literature. 

 

5. Conclusions 

 

In this paper we introduced a categorization of simulation models. Moreover, we 

provided an explicit overview of the steps that lead to a simulation model. This 

enabled us to highlight the advantages and disadvantages of various simulation 

approaches in the light of the different ways in which the steps are taken. 
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There two main conclusions that we draw. First, we argue that computational 

economists should be much more careful in setting up their model. First of all, we 

show that empirical data should be used more often where it is available, because this 

leads to much better founded simulation models. In addition, modelers should be 

more explicit about the way in which they set up their model, because this makes it 

easier for others to understand the working of simulation models when reading about 

them. In particular, if different kinds of models are tested and compared with 

knowledge about the real dynamics, this should be made explicit. If no empirical 

evidence is used, the model should ideally be kept general or the lack of evidence 

should, at least, be stated and also discussed. This would make the restrictions of  

such an approach visible. 

 

Second, simulations seem to be the perfect tools to transfer (empirical) knowledge 

from the underlying level to the resulting level and vice versa. This means that in a 

simulation approach one can go forth and back between the assumptions in the 

simulation model and the resulting characteristics and dynamics of the system. 

Empirical data on both sides can be used to improve the knowledge about the system. 

Even a classification of systems on the basis of such inference is possible. Simulation 

approaches offer scientific potentials that are far from used in the existing literature, 

because they can truly use abduction. 
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