Statistical Validation of Spatial Patterns in Agent-Based Models

William Rand Daniel G. Brown Scott E. Page Rick Riolo Luis E. Fernandez Moira Zellner Project Sluce Modeling Group http://www.cscs.umich.edu/ sluce@umich.edu

Center for the Study of Complex Systems

Overview of Presentation

Project Overview and Urban Modelling
Validation of ABMs
SOME
Agents
Environment

- Interaction
- •Valid Results :)

Conclusions and Other Work

Project Sluce

(Spatial Land Use Change and Ecological Effects)

• Project Sluce focuses on land-use dynamics at the Urban-Rural Fringe

• Greater Detroit Metropolitan Area

Uses an ABM in synthesis with other modeling techniques
Results will be compared with historical data and theoretical models

Modelling of Urban Development

- •Understanding the Processes that result in Urban and Exurban Patterns
- •Suburban Sprawl = Negative Ecosystem Impacts
 - Habitat Destruction
 - Migration Corridor Destruction
- Make Prescriptive and Descriptive Statements about Processes
- Goal is to Minimize Ecological Damage

Two Types of Models

Physical Analog Models

- Examples Markov Random Field, Diffuse Limited Aggregation, Correlated Percolation
- Based on well understood formal systems
- Hard to translate into 'real world'

Agent-Based Models

- Examples Schelling's Tipping model of Segregation, Otter's ABLOoM model, Our model
- Easy to Incorporate New Ideas
- Ontology understood by Policy Planners
- Not well understood

Validation of ABMs

• A model is valid if it can correctly answer questions it was designed to answer (Casti, 97)

Two Methods of Validation

- Matching model outputs to measured variables
 - Micro-details
 - Macro-level patterns
- Matching component structures and interactions

Difficulties in Validation

• Validation is Hard

- Positive Feedbacks
- Path Dependence
- Extreme Sensitivity to Initial Conditions
- Unpredictability of Agent Adaptation
- Micro-details often impossible to match

Sluce's Solution

• Our goal is not to match micro-level detail

- We build our model from "first principles"
 - Heterogeneity
 - Bounded Rationality
 - Correspondence between virtual agents and real agents
- Matching of Macro-Level Patterns
 - Zipf's Law
 - Clark's Law

Zipf's Law

Zipf (49) showed that there is a power law relationship between city populations and their rank
Contemporary research has shown this also is true between frequency of developed clusters and size

$N(A) \approx A^{-r}$

• Universally $r \approx 2$, A is the size of a cluster, N(A) is the frequency of that size

Clark's Law

• Clark (51) showed that as the radius of a circle around a city increases the density of development decreases exponentially

$$y \approx Ae^{-bx}$$

• y is the density, x is miles from city center, b and A are constants

• The constants vary for different areas and times,

Overview of SOME

(Sluce's Original Model for Exploration)

• Three Main Components

- Environment
- •Agents
- Agent Interaction
- Modular Structure
- Landscapes are archetypal and GIS-based
- Implemented in Swarm

Environment

- Lattice (Variable; 301x301)
- Initial Distribution of Service Centers (1)
- Standard Characteristics (5-10 underlying maps)
 - Natural Beauty (exogenous; normal distribution from [0,1]; spatially autocorrelated)
 - Distance to Service Centers, nearest 8 service centers are used (endogenous)
 - And others...
- Many Output Variables (30-50 outputs per step)
 - Clustering Statistics
 - Radius vs. Density Statistics
 - And many more....

Agents

Residents
Several Preferences (Ideal and Weight)
Natural Beauty (0.5)
Distance to Service Centers (0.5)
Multiplicative utility model
Service Centers
Follow Last Resident in
Every 100 Residents, 1 Service Center enters

Agent Interaction

- Residents enter every time step (10)
- Look at random locations (10)
- Choose the location with the highest utility for their preferences
- Corresponding endogenous variables are updated

Valid Results: Zipf's Law

r of 2.067 is within the bounds found in empirical data

Valid Results: Clark's Law

Empirical data shows b to vary quite a bit, but is usually much larger than .0069

Results of Validation

•Model matches closely with empirical Zipf's Law data

- Our results through are only over a few decades
- •Model matches Clark's Law relationally
 - However slope is different than empirical models
- •Further validation is warranted

Future Work

•Validation on a Real Landscape

- Scio Township and Washtenaw County
- Satellite Data from 1978, Parcel Data from 1950s
- Examine Relationship between amount of Information and Predictability (Graceful Decay)
- •Other Pattern Analysis Metrics
 - Variant versus Invariant Regions, Certainty of Development
 - Kappa Statistics and Information Gain
 - Cross-Correlation of Development

Any Questions? sluce@umich.edu