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There are two types of simulation models: Demonstration etgycessentially existence
proofs for phenomena of interest, and Descriptive modeds attempt to track dynamic histor-
ical phenomena. Both types require verification. Desampthodels require validation against
historical data as well. More broadly, we can think of a pescef choosing the “best” of
several models. This paper examines three measures oftilargly of two sets of vectors,
here time series. The best known but flawed is the Kullbadkteeinformation-theoretic con-
struct. A second measure is what | have called the State&@itgiMeasure. The third measure
is a set-theoretic measure of similarity, the Generalizarl|ely Metric. For illustration, we use
data from a dynamic simulation model of historical branchlry.
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1. Introduction

Critics of simulation models and modelling argue that, sintodellers can make
any assumptions they wish, such models are little more tbgs But serious mod-
ellers see their models as tools in the scientific enterpiiibere are two types of sim-
ulation modelsDemonstration modelessentially existence proofs for phenomena of
interest, andDescriptive modelsthat attempt to track dynamic historical phenomena.
Most early simulation models were demonstrative (or qaiie), such as Schelling’s
(1971) segregation model. Although demonstrative simaramodels are useful, not
least at performing “what if” exercises of exploration offeiient models, policy anal-
ysis requires validated, descriptive simulation modelsthBypes require verification.
Descriptive models require validation against historidala as well. But validation of
any but very simple simulation models has been slow in appepar the literature.

This paper is an attempt to provide a new tool in validatingpsis simulation mod-
els: a means of measuring the distance (or similarity) betwgairs of sets of vectors,
such as time-series data. It outlines a new technique, tite Similarity Measure, for
tackling the fourth core issue of Fagiolo et al. (2007): dafing agent-based models
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using historical data. The SSM can measure the distancesbatitwo sets of vectors,
here time-series vectors; in effect, it measures the rosewlistance between pairs of
matrices.

What is model validation? Surely it's an attempt to assuea#ader that the model
is “good” at being able to generate the observed data. Loakéwm an information-
theoretic framework instead of a statistical perspective observed data contain infor-
mation, and the models we develop (from our theoretical tstdeding of the underlying
processes generating the observed data) can be thoughatéampts, in one sense, to
express this data in as compact a form as possible via a nfegelphrasing Burnham
and Anderson (2002, pp. 437): such a model represents ahegi®tand is then a basis
for making inferences about the process or system that gekthe observed data. All
simulation models are existence proofs (Marks, 2007)etle&ists at least one model —
this one — that is sufficient to generate data “close” to theeoled data. Necessity is
harder to establish.

A given set of observed data contains only a finite, fixed arho@imformation.
The ultimate goal of modelling is to derive a model (or set afd@ls) that produces the
identical set of output datalf this were achieved — although it’s realistically unattai
able — then no information would be lost in going from the alied data to a model
of the information in the data. Since models are only appnations of reality, the ide-
alised goal of a complete and accurate model is unattainabtoften undesirable be-
cause of over-fitting. With several contending models,daiion might be able to point
the researcher to the “best” model, in the sense that it lesas information.

We take a pluralist, realist approach, in which we compareetsby measuring
the distance between each model's brand price output t@ugthe historical brand
price traces of the real world, in order to choose the besteméaddoing so, our method
is closest to the “indirect calibration approach” of Fagiet al. (2007): we focus on a
single market (micro), using empirical data to validate madels’ simulated outputs,
although we do not then indirectly calibrate since our paepbere is to introduce our
new SMM measure for comparing sets of vectors, such as timessaot to outline a
full validation technique.

2. Our Simulation Model

To illustrate and compare the measures discussed herealysanhistorical data of
markets in which rivalry among brands of vacuum-packednednground coffee results
in a dynamic rivalrous dance, with abrupt changes in weekityep and sales volumes,
as shown in Figure 4 from Midgley et al. (1997), part of an on-going research paog

! This is case (e) in Marks (2007, Figure 2): the model is cotep@d accurate.

2 These historical data represent the weekly prices and satése brands in a supermarket chain over 50
weeks. We focus on the three most strategic of these: Folgets Maxwell House (purple), and Chock
Full O Nuts (green).
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(see Midgley et al., 2007).

FIGURE 1 HERE.

We model this market behaviour as the heterogeneous brandsing next week’s
price as a function of the state of the market, which is defioeiclude each of this
week’s prices (and possibly other marketing actions), bighiralso include the prices
(and actions) of past weeks, depending on the brands’ depthemory.

We model the priceP,, of brandb in weekw as a functionf, of the state of the
market)M,, 1 at weekw—1, wherelM,,_1 in turn might be a product of the set of weekly
pricesS,,—; of all brands over several weeks (depending on the depth ofang, as
shown in the following equation (see Appendix 1 for an exagdl deriving states of
the market from sets of prices with different depths of memor

wa = fb(Mw—l) = fb(Sw—l X Sw—2 X Sw—3 o )

In our research program (Midgley et al., 1997), we use theeGeAlgorithm to search
for “better” (i.e. more profitable) brand-specific mappings from market state to pric-
ing action, where each brand’s fitness function (the maxahanits weekly profit. We
use estimates of each brand’s cost function and the maifestygnmetric) response to
each brand’s price in any week, given its rivals’ priées.

Since we do not use the historical time series to estimatganameters of the
model, we can use the historical data as a yardstick agalishwo measure the perfor-
mance of our models: this multi-model selection shouldvalls to determine the best
of our GA-determined models, in a process of model selectiasquerading as model
validation. That is, following Burnham and Anderson (2Q0&g expand validation —
asking whether the model output is close to the historictd da to choose one of sev-
eral models which is “best,” where this means the model thptures as much of the
information in the historical data set as possible.

Can we measure the degree of similarity of the historicah datthe output from
a model of the phenomenon? If so, then we can use the meastomfmare simulation
models and choose the “best” model: that which generates af $ine series as its
output which is “closest” to the set of historical time serie

We discuss three possibilities for deriving such a meastisgnalarity: first, the
Kullback-Leibler construct, which is closely related togghon’s information-theoretic
measure of entropy; second, a new measure of the auth@r'Staite Similarity Measure;
and, third, a set-theoretic measure derived by Klir from arlyemeasure of Hartley’s,
the Generalized Hartley Measure.

3 Our program models each brand as an independent profit meedinsieeking brand-specific mapping
functions from market state to next period’s price for tharul, to maximise that brand’s profit, subject
to supermarket moderation and to brand exhaustion. The GAdd in a co-evolving interaction among
the strategic brands, each brand separately seeking theapping function, where the brands’ costs and
market demand responses are idiosyncratic. Midgley e1887) describe this in detail.
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Figure 1: Weekly Sales and Prices of Rival Brands(Source: Midgley et a., 1997)
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Before we discuss these three possible measures of sisnibeiween historical
data and the simulation models’ outputs, we discuss how weicaplify the “rivalrous
dance” into numerical measures, which can then be compared.

3. Defining States of the Historical and Simulated Markets

We focus on the brands’ prices, although other marketingpr&tmight also be
used (Midgley et al., 1997). We face a curse of dimensignalith the historical data:
every week, each brand can price anywhdretween about $1.50 per pound and $3.40
per pound, a choice of about 190 price points.

In modelling this, Marks and Midgley (1995) reduced the gaesprice points in
the model to four: three high and one Low. To reduce the diioealty still further, we
here use a dichotomous partition of the historical pricag:taand’s weekly price below
that brand’s midpoint price is designated “Low”, and anycerabove that midpoint
is “High.” We define the state of the market in any week by thelbimation of the
partitioned prices of the three strategic brands, Foldéaxwell House, and Chock Full
O Nuts® The number of possible states depends on the way in whicmfhes and
outputs are partitioned: the partitioning (coarseninghefprice space, and the depth of
memory of the players (brands). We use dichotomous pridéipaing in any week, so
that with three brands, each pricing Low or High, there Zire= 8 possible states per
week. Figure 2 shows the historical prices of the threeegratbrands, after equivalent
dichotomous partitioning, where each colour representistinct brand, and the time
periods are weeks. These are the historical data againshwi@ compare our models’
outputs, using SSM and GHM.

FIGURE 2 HERE.

Figure 3 shows the non-partitioned output from one of ouiveddrsimulation mod-
els (Model 26a) with these three strategic brands.

FIGURE 3 HERE.

With two-week memory, there ar®® = 64 possible states in any week, when
each brand’s response next week to actions this week anddadie considered; with
three-week memory there ag?> = 512 possible states, where third-order responses (a
brand’s response next week to others’ actions this weekwiask, and the week before)
can be considered.

The distribution of the eight possible 1-week states in iktlical chain store (H)
from Figure 2, and in three models (11, 26a, 26b) of the modeiputs from Figure
3, using 50 weeks of data, are shown. in Table 1 below, “0”"esponding to a “High”
price and “1” to a “Low” price. Modelling deeper memory forettbrands results in

4 Anywhere, that is, subject to moderation by the supermat&girevent more than one brand pricing Low
in any week, and to prevent any brand pricing Low two weeksiotassion. See Midgley et al. (1997).

5 As seen in Figure 1, these three brands are the most dynartfieiirpricing; they constitute an average
market share of 77%.
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Table 1
State frequencies from History (Chain 1) and three models.

State History = Model 11 Model 26a Model 26b

(Chain 1)
000 32 0 30 20
001 2 18 11 10
010 6 15 3 7
011 1 0 0 0
100 7 16 5 12
101 0 0 0 0
110 2 0 1 1
111 0 1 0 0
Total 50 50 50 50

similar distributions, but the tables are 64 rows and 512sraeep, with 2-week and
3-week memory, respectively.

How significant is the degree of partitioning? In Marks (201@e used three-week
memory and dichotomous price partitioning throughout, fanthe historical data (from
seven supermarket chains), considered three-brand antrad interaction. Compar-
ing the outputs of three simulation models with a single $étistorical time series of
price (from Chain 1), we used three-brand interactiond @4t 2-, and 3-week memory.

4. Measures of Closeness or of Information Loss

A variety of proposals have been made to measure simildmitymost of them
have been inspired by two measures: Shannon entropy andydaformation. Shannon
(1948) entropy § F) is based on probability and can be defined as:

SE(p(x)lz € X) = =) _p(z)logy(p(x)),

wherep is a probability distribution of random variable FunctionSFE fulfills some
useful properties such as additivity, branching, nornadilim and expansibility. Shannon
entropy led to the Kullback-Leibler (1951) measure of infation loss from historical
to model, which has some attractions theoretically, bubisantrue metric, as we shall
see.

4.1. Kullback-Leibler information loss

The Kullback-Leibler (K-L) information loss provides a nseme of the informa-
tion lost when modey is used to approximate full reality:

9)= /f(z) og <9];§|:9))> ”
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in the continuous version, where the modgksre indexed by, or

I(f,9) = gpi x log (%)

in the discrete case, with full-reality distribution0 < p; < 1, and model; distribution

0 < m < 1,with Y-p; = Y m; = 1. Here, there aré possible outcomes of the
underlying process; the true probability of thil outcome is given by;, while the
m, ..., T COnstitute the approximating model. Hen¢gegndg correspond to thg; and
m;, respectively.

But the K-L information loss is not a true metric: it is not syretric and does not
satisfy the triangle inequality, sindg f, g) # I(g, f): it is a semi-quasimetric. More-
over, bothr; andp; must be positive, while in our data, even for the coarse, dichoto-
mous partition we are considering, one or both of these gdkikkely to be zerd.

Alternative measures are the author’s State Similarity $dea (which uses rec-
tilinear or Minkowski's L; or the cityblock distance), and Klir's Generalized Hartley
Measure.

5. The State Similarity Measure (SSM)

The SSM counts the absolute difference in the frequency df passible state in
each of two sets of vectors (or time series), and sums thesbtéin the SSM for the
pair of sets of vector®.In effect, SSM treats each time series set as a vgctarann-
dimensional, non-negative, real vector space with a fixedeS@n coordinate system,
where there are possible states in the sets of vectors. The SSM between t&/® sand
Q of vectors (or time series) is calculated as the rectilimeaityblock distance (Krause
1986) d; between their two constructed vectgrsandq, given bydfQ = di(p,q) =

5 The K-L measure is defined only = 0 wheneverr; = 0.

" As Akaike (1973) first showed, the negative of K-L informatiis Boltzmann's entropy. Hence mini-
mizing the K-L distance is equivalent to maximizing the epy; hence the term “maximum entropy
principle.” But, as Burnham & Anderson point out, maximiiantropy is subject to a constraint—the
model of the information in the data. A good model contaimsitiiormation in the historical data, leaving
only “noise.” It is the noise (or entropy or uncertainty) tlmaximized under the concept of the entropy
maximizing principle. Minimizing K-L information loss thmeresults in an approximating modglthat
loses a minimum amount of information in the dgtaThe K-L information loss is averaged negative
entropy, hence the expectation with respecf to

Fagiolo et al. (2007, p. 211) note further that “K-L distargas be an arbitrarily bad choice from a
decision-theoretic perspective ... if the set of modelssdua contain the true underlying model ... then
we will not want to select a model based on K-L distance.” Tihibecause “K-L distance looks for
where models make the most different predictions—everesgeidifferences concern aspects of the data
behaviour that are unimportant to us.”

8] am grateful to Daskalova, who pointed out to me that the SSM Version of what has been called
cityblock distance, rectilinear distance, or taxicab getsgn
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Table 2
SSMs calculated between the six pairs of sets.
Pair 1-week  2-week  3-week
memory ~memory —memory
a History (Chain 1), Model 11 70 88 92
b  History (Chain 1), Model 26a 18 36 54
¢ History (Chain 1), Model 26b 28 48 68
d Model 11, Model 26a 62 76 88
e Model 11, Model 26b 42 60 80
f Model 26a, Model 26b 22 42 60

> |pi — ¢il, wherep; is the number of occurrences (or frequencies) of staterector

setP. That is, SSM is the sum of the absolute differences of thedioates of the two
sets of vectors as-dimensional constructed vectors. (See the Appendix 1dtaild of

this procedure.)

We use three models from simulations undertaken in Marks. €1995). Each
model has three interacting brands, and each brand agepandently chooses its price
from its own set of four possible prices in order to maximiteweekly profit, in a
process of co-evolution using the Genetic Algorithm. Witlvéek memory, each agent’s
action is determined by the state of the market in the preweeek, which means® =
64 possible market states for each agent to respond to. The Gések the mapping
from perceived state to action for each brand (with weekbfipas its “fitness”).

Each model of the three brands’ interactions corresponassteparate run of the
GA search for model parameters, using weekly profits of thads as the GA “fitness”.
Given the complexity of the search space and the stochamticenof the GA, each run
“breeds” a distinct model, with distinct mappings from stat brand price, and hence
different patterns of brand actions associated with eaatheicFigure 3 (above) shows
a fifty-week period of simulated interactions among threntdragents (Brands, 1, 2,
and 5) in Model 26a, where each brand chooses from one of fossilple prices per
week.

The six pairs of SSMs between the partitioned prices of theetmodels' and the
historical data (from Chain 1), using 50-week data seriespeesented in Table 2 for 1-,
2-, and 3-week memor}P

Characteristics of the SSM measure (Marks, 2010): Firs§&3aN of zero means
that the two sets of vectors are identical; larger SSMs ingsg similarity. Second, the

® The three models differ in more than the frequencies of thhtestates (Table 1): each model contains
three distinct mappings from state to action, and, as détéstic finite automata (Marks, 1992), they
are ergodic, with emergent periodicities. Model 26a hasragef 13 weeks, Model 26b of 6 weeks,
and Model 11 of 8 weeks. It is not clear that the historicahdathibit ergodicity, absence of which will
make simulation initial conditions significant (Fagiolceét 2007). Initial conditions might determine the
periodicity of the simulation model.
1015 Marks (2010) there was a bug in the code used to calculatetties of the three simulation models
(11, 26a, and 26b), now corrected.
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maximumD of an SSM measure occurs when the intersection betweendies if the
two sets of vectors is null, witth = 2 x S, whereS is the number of window states,
which depends on the memory length, inter alia. Here, maxiniuwould be 100 for
1-week memory? x 49 = 98 for 2-week memory, anfl x 48 = 96 for 3-week memory,
(given that there are 50 observations per set of time sefi&gd, we can, using Monte
Carlo stochastic sampling (Marks, 2014), derive somestiedito argue that any pair of
sets is not likely to include random series (see below).

As the partitioning becomes finer (with deeper memory of pagbns), the SSMs
increase as the two sets of vectors (or time series) becossesimilar. This should
not surprise us. We also note that with these four sets of siemes, the rankings do
not change with the depth of memory: (from closer to moreadigt(Chain 1, Model
26a), (Model 26a, Model 26b), (Chain 1, Model 26b), (Model Mbdel 26b), (Model
11, Model 26a), and (Chain 1, Model 11). Which of the three ef®ds closest to the
historical data of Chain 1? The SSM tells us that Model 26a#&,Hollowed by Model
26b, with Model 11 bringing up the rear.

As defined here, the SSM is an absolute measure, where itsrmaxdistanceD
is a function of the equal length of the pair of sets of vectdise lower the SSM, the
closer the two sets of vectors. Itis possible to define a nlisethmeasure, call it SSMN,
where SSMN is between 0% and 100%:

SSMN = 100 x (1 — SS—M> ,
D
where D is the maximum SSM distance apart of the two sets of vectopsalgo the
length of each vectdt Hence SSMN = 100 implies identity between the two sets, and
SSMN = 0 means maximum distance between the two, with nulay#?

5.1. Monte Carlo simulations of the SSM

Table 3 presents the distances between historical Chamitha three simulations,
Model 11, Model 26a, and Model 26b from Marks et al. (1995hv@-week memory.
Model 11 is far from any of the other sets, and Model 26b iseso$0 Model 26a, but
Model 26a is closer to the Chain 1 historical data (at 54/B&h it is to the closest other
simulation, Model 26b (at 60/96). (Note: * in the Table inalies we cannot reject the
null at the 5% level.)

Null Hypothesiseach of two sets of time series is random.

With this null hypothesis, we can set 1% and 5% one-sided dende intervals
to the SSM numbers. With three brands ahd 48, the maximumD is 96. 95% of
pairs of sets of three random time series are at least 80, @palt99% of pairs of sets

1 In our analysis, this length is a function of the number ofesbations (equal for historical and simulated
data) and the depth of memory.
12 | am grateful to a reviewer for suggesting this.
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Table 3
SSMs between Historical Chain 1 and Three Models

Chainl Model1ll Model26a Model 26b

Chain 1 0 92* 54 68
Model 11 92* 0 88* 80*
Model 26a 54 88* 0 60
Model 26b 68 80* 60 0

of three random time series are at least 76 aparhis means that, in Table 3, we reject
the null hypothesis of random data for the pairs (Chain 1, &1@éa), (Chain 1, Model
26b), and (Model 26a, Model 26b), since all SSMs here arethess76, so the data are
significantly non-random, and the null hypothesis is rg@cilhe other three pairs (all
comparisons with Model 11), with SSMs above 80, are not Saanitly (5%) different
from random, and the null hypothesis cannot be rejected.dBgteuction, none of the
simulated data sets is random, although they are not plrtigsimilar (see Table 1).

We show these results in Figure 4, which plots the Cumuladitass Function of
the MC parameter bootstrap simulation against the six SSthe@airs'* The red lines
are the CMF of pairs of sets of random series (3 series, 4&\aigms) from 100,000
Monte Carlo parameter bootstraps.

FIGURE 4 HERE.

The one-sided confidence interval at 1% corresponds to a SSM, @nd at 5%
80. That means that any SSM above 80 could have resulteddith probability) from
two sets of random vectors; or above 76 with a 1% probabilitye higher the SSM,
the greater the likelihood that the two sets are random, sseB with the rising CMF.
For SSMs to the left (below 76) we reject the random hypo#hé&dius we cannot reject
the null hypothesis (random sets) for any pairs comparingélia1; but reject the null
(random) hypothesis for the other three pairs.

6. Classical Possibility Theory

Possibility theory offers a non-additive method of assigna numerical value to
the likelihood of a system assuming a specific state, one @fenget of states. The
likelihood expressed is that @ossibility, for this reason, the possibility assigned to a
collection of possible events is the maximum (rather thaghm) of the individual
possibilities (Ramer, 1989).

Hartley (1928) solved the problem of how to measure the amoliancertainty

13 This number was determined by a Monte Carlo bootstrap siionlaf 100,000 pairs of sets of four
quasi-random time series, calculating the SSM between paichand examining the distribution. The
lowest observed SSM of 64 appeared twice, that is, with aifraqy of 2/100,000, or 0.002 percent.

4 The CMF of a discrete random variable is defined as'x = Pr(X < z), where the right-hand side
represents the probability that the random variableakes on a value less than or equattdiere, X is
the SSM between two sets of random numbers.
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Figure4: Chain 1 and Three Models; SSMs against Random CMF.
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associated with a finite sét of possible alternatives: he proved that the only meaningfu
way to measure this dichotomous amount (when any altemaieither in or out: no
gradations of certainty) is to use a functional of the form:

clog, > _ |E|,

zeX

where setEy contains all possible alternatives from the larger (finge).X, and where
|E| denotes the cardinality of sét b andc are positive constants, and it is required that
b # 1.1f b =2 andc = 1 (or more generally, itlog, = 1), then we obtain a unique
functional, H, defined for any basic possibility functiong, by the formula:

H(rg) = log, |El,

where the measurement unit&fis bits. This can also be expressed in terms of the basic
possibility functionrg as
H(rg) = log, Z re(z).
zeX

H is called aHartley measur®f uncertainty, resulting from lack of specificity: the
larger the set of possible alternatives, the less spec#icédintification of any desired
alternative of the sef. Clear identification is obtained when only one of the coasd
alternatives is possible. Hence this type of uncertaintylmacallechon-specific

This measure was first derived by Hartley (1928) for clasoasibility theory,
where any alternative element of sétis either possible (i.e. in séf) or not. The basic
possibility function,rg, is then

(@) 0 whenx € E,
re(r) =
g 1 whenz & E.

and is derived explicitly in Klir (2006, pp. 28). To be meagiul, this functional must
satisfy some essential axiomatic requireménts.

6.1. The Generalized Hartley Measure (GHM) for Graded Ruktés

Following Klir (2006), we relax the “either/or” charactstic of the earlier treat-
ment and allow the basic possibility functiénon the finite setX to take any value
between zero and one: X — [0, 1] Note that

max{r(z)} =1,

15 See further discussion in Appendix 2.
161t is not correct to call functiom a possibilitydistributionfunction, since it does not distribute any fixed
value among element of the skt 1 <} . r(x) < |X]|.
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a property known as possibilistic normalization.

The Generalized Hartley Measure (GHM) for graded possisliis usually de-
noted in the literature by/, and is calledU-uncertainty U-uncertainty can be ex-
pressed in various forms. A simple form is based on notatwrgfaded possibilities:
X = {x1,x9,...,z,} andr; denotes for each € N,, the possibility of the singleton
eventx;. Possibilities can (although need not) be estimated by&rdges. Elements of
X are appropriately rearranged so that the possibility @rofil

r= <ry,ro,...,rp >
is ordered in such a way that
l=r1>ro>...2r, >0,

wherer, 11 = 0 by convention. Moreover, set; = {z1, z2,...,;} is defined for each
1 € N,,.

Using this simple notation, th&-uncertainty is expressed for each given possibil-
ity profile r by the formula

n

U(r) = (ri — riy1)logy | Ay 1)
=1

Since, clearly

n

D (ri—rip1) =1,

=1
the U-uncertainty is a weighted average of the Hartley measuradts 4;, i € N,,,
where the weights are the associated differemges-; 1, in the given possibility profile.
These differences are values of the basic possibility asstgt function for setsl;.

Since|4;| = ¢ andlog, |A;| = log, 1 = 0, the above equation can be rewritten in

the simpler form

n

Ur) = (ri — ris1)logyi (2)

=2
or, alternatively, in the form

U(r) = 2;; oga (5 ) ©)

U-uncertainty preserves the ordering of possibility prefitefined on the same set:
U('r) < U(?r) for any pair of probability profiles defined on the same set sunch
that'r <2 r. Moreover,

0 < Ur) < log, | X|
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for any possibility profiler on X. The lower and upper bounds are obtained, respectively
for the smallest (expressing no uncertainty) and the la(@spressing total ignorance)
possibility profiles< 1,0,...0 >and< 1,1,...,1 >:

U(<1,0,...0>)=0
U<1L1,...,1>)=log, | X]|.
6.2. Ordering of Possibility Profiles

Possibility profiles of the same length can be partially cedein the following
way: given any two possibility profiles of length(wherer,, .1 = 0 by construction):

Jr=<IriJry, ..., >,

k k

r=<FrFry . Fr, >

Following Klir (2006), we define
jI' §k1‘ < j?“i §k T

for all i € Ny. For any’r,*r € Ry, if ’r < *r, then®r represents greater uncertainty
than doedr; that is,’r contains more information than doks

Klir (2006, p. 160) notes something relevant to our purptse: “Another impor-
tant interpretation of possibility theory is based on theaapt ofsimilarity, in which
the possibilityr(x) reflects the degree of similarity betwegrand an ideal prototype,
x p, for which the possibility degree is 1. Thatig;) is expressed by a suitable distance
betweenr andz p defined in terms of the relevant attributes of the elemenislvad.
The closerr is to x p according tahe chosen distan¢céhe more possible we consider
to be in this interpretation [our emphasis].”

6.3. Applying U-uncertainty to our data

From the frequencies of Table 1 (one-week memory), we camle€d the possi-
bilities (observed frequencies) of the three runs and ththcal data, to get the four
reordered, non-normalis&tipossibility profiles:

Using equation (2), the four Hartley measures are calatite

71t might be objected that this reordering loses informatiBnt this overlooks the fact that the order of
the states is arbitrary. It should not be forgotten that #fendion of the states with more than one week’s
memory captures dynamic elements of interaction.

'® Normalisation here means = 1, not>_ r; = 1.

19 For clarity, we have included thg = 1)th element(r; — r2) log,, 1, which is always zero, by construc-
tion, consistent with equation (2).
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Table 4
The four possibility profiles, one-week memory.
History (Chain1): 32 7 6 2 2 1 0 O
Model 11: 18 16 15 1 0 0 0 O
Model 26a: 30 11 5 3 1 0 0 O
Model 26b: 20 12 10 7 1 0 O O
Table 5
GHMs calculated for three memory partitions.
Process 1-week  2-week  3-week

memory ~memory memory
History (Chain 1) 0.383 0.495 0.782

Model 11 1.399 2.179 2.787
Model 26a 0.516 0.679 1.085
Model 26b 1.054 1.657 2.542

1. History (Chain 1:)

1
Ur) = 5(25log2 1+ 1logy 2+ 4logy 3+ 0logy 4 + 1logy 5 + 1log, 6)

= 0.383

2. Model 11:

1
U(r) = 1—8(210g2 1+ 1logy 2 + 141logy 3 + 1log,y 4)

= 1.399

3. Model 26a:

1
Ur) = %(1910g2 1+ 6logy 2+ 2logy 3 + 2logy 4 + 1logy 5)

=0.516

4. Model 26b:

1
U(r) = %(SIOgQ 1+ 2logy 2 + 3logy 3 + 6logy 4 + 1log, 5)

=1.054

The GHMs for the three models and Chain 1 have been calculatetie three
cases of 1-week, 2-week, and 3-week memory, as seen in Table 5

These GHMs are true metrics (they satisfy the triangle inétyu unlike the K-L
information loss), and so we can compare the differencesableTé between the four
measures. We can readily see that Model 26a (0.516) is tltustee historical data of
Chain 1 (0.374); next is Model 26b (0.516), with Model 11 @ABfurthest from the



14 Marks / Three Similarity Measures

Table 6
GHM differences calculated for the six pairs of sets.

Pair 1-week 2-week  3-week
memory memory memory

a History (Chain 1), Model 11 1.016 1.684 2.005
b  History (Chain 1), Model 26a 0.133 0.184 0.303
¢ History (Chain 1), Model 26b 0.671 1.162 1.760
d Model 11, Model 26a 0.883 1.500 1.702
e Model 11, Model 26b 0.345 0.522 0.245
f  Model 26a, Model 26b 0.538 0.978 1.457

historical data. Moreover, we can see that Model 26a is cliosthe historical Chain 1
data than it is to Model 26b.

Table 6 shows the six pairwise differences in GHM, derivenhfrTable 5. It can
be compared with the six pairwise SSMs of Table 2. For 1-weekpry the maximum
GHM, corresponding to 50 equi-likely stateslig, 50 = 5.644; for 2-week memory
logo 49 = 5.615, and for 3-week memorjpg, 48 = 5.585. These numbers are the
maximum pairwise difference between GHMs; the minimumedéhce is zero in all
three depths of memo#.

7. Comparing the distances measured by SSM and GHM

From Table 2, for 1-week memory, the SSMs are ranked (cldsdsrthest):{b,
f, c, e, d, &; but, from Table 6, the GHM differences are ranked (smaliesargest):
{b, e, f, c, d, &. Model 26a is closest to History using either measure, andeid1
is farthest, Note, however, from Table 2, that although tB&Sankings are the same
for 1-, 2-, or 3-week memory, the GHM rankings are sensitivéhe depth of memory.
That is, the two methods do not always produce identicalingsk although the degree
to which these two measures result in similar rankings dbdises is noteworthy, given
their quite different foundation-

8. Conclusion

The two measures, SSM and GHM, are true metrics that allow useiasure the
degree of similarity between two sets of vectors, here tigrees. The SSM between
two sets of vectors is the absolute distance between twadrootsd vectors in non-
negative n-dimensional vector space, whetas the number of possible states that each
set of vectors can exhibit. GHM is a measure of the possililitany setP of vectors
occurring as a vectags in n-dimensional space.

20 We could also define a normalised GHM, as above.
21 We postpone exploration of these differences to a laterrpape



Marks / Three Similarity Measures 15

Since GHM is a metric, differences of sets of vectors’ GHMsm@meaningful. SSM
is also a metric (symmetric and satisfying the triangle uaditly). As such, both mea-
sures can be used to score the distance between any two setsdaf, such as sets of
time series, which previously was unavailable. The Kulkskeibler measure, although
based in information theory and Shannon’s entropy measunef a true metric, despite
its relationship to maximum likelihood methods.

The two measures, SSM and GHM, allow us to measure the exiemhich a
simulation model that has been chosen on some other critégig. weekly profitability)
is similar to historical sets of time series. The measurss allow us to measure the
distance between any two sets of time series and so to estieparameters, or to help
validate a model against history. The measures can thusdektaddentify the model
which is “closest” to history, as measured by comparing itipot set of time series to
the historical set of time series, that is, by identifying thodel that has captured most
information of the historical set of time series, given oafidition of model states.

The SSM and the GHM have demonstrated closeness in measimiigrity of
sets of time series, although the two measures’ rankingstafrites are not identical, as
seen above. The SSM is intuitive: it uses the cityblock roétricount up the differences
in the states between two constructed vectors. It can beildeddn six simple steps, as
outlined in Appendix 1. The GHM is anything but intuitive,deal on arcane possibility
theory. It is developed and applied in four pages of mathiesiabove. Using Occam’s
Razor, the SSM, as a simpler, more transparent measureféesned.

The two measures, SSM and GHM, are not restricted to meastingsimilarity of
(or distance between) two sets of time series: they are nerergl, as we have reminded
the reader, in that they can be applied to pairs of sets ob{dength) vectors. The data
used here are illustrative only: the two measures can beeadpia any simulated data
and historical data, so long as the number of observatioiseomodel output and the
historical data are equal, with equal numbers of vectorghbservations. Even more
generally, the two measures can be thought of alternatihods of measuring the
row-wise distance between any two matrices of equal dirsensi
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Table 7

An example: three brands, 1-, 2-, and 3-week windows.

Week Brandg;,,) 1-Week 2-Week 3-Week
Red Purple Green S, Moy, M.,

18 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0 0
21 1 0 0 4 32 256
22 0 1 0 2 20 160
23 1 0 0 4 34 276
24 1 1 0 6 52 418
25 0 0 1 1 14 116
26 0 0 0 0 1 14
27 0 0 0 0 0 1
28 0 1 0 2 16 128
29 1 0 0 4 34 272
30 1 1 0 6 52 418

Appendix 1: Calculating the SSM

1. First, construct the weekly states of the market: For essthpartition the time
seriesp, ,, of price P, ,, of brandb in weekw into {0,1}, where O corresponds to
“high” price (above brand’s mid-point) and 1 corresponds to “low” price to obtain
Pb w*

2. For the set of 3- or 4-brand time series of brands’ partﬁd)prlcest calculate
the time series of the state of the market each wggk}, whereS,, = Py, %
Py
For a 3 brand time series,, = 4 x P ,, +2 x P;,, + P3,,. Then construct the
windowed states of the market (as in Table 7).

3. For each set, calculate the time series of states of the3week moving window
of partitioned pricesM,,, from the per-week stategS,,}, where M, = S, x
Sw—l X Sw—2 o
For a 3-week windowMs,, = 64 x S, + 8 X Sy_1 + Sw_2. (The powers of 8
are because, with three brands, there are 8 possible sfates marketS,, each
week.) This means that for a 2-week memory there8argossible states, and for a
3-week memoryg? = 512 possibilities. Table 7 provides an example.

Then construct the SSM:

4. Count the numbers of each stdtg, observed for the set of time series over the
given time period. Convey this by anx 1 vectorp, wherep, > 0 is the number
of observations of window stateover the period.

With T longitudinal observations, the maximum SSM distance agfawo sets of
time series i2 x (T' — w + 1), wherew is number of weeks remembered. (This
would happen when the two sets of states are disjoint.)

5. Subtract the number of observations in set P of time séides the number ob-
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served in set Q, across allpossible statedDPQ = p — q.
6. Sum the absolute values of the differences across alippestates:

P
de:Z|pi_qi|

This numberde = d?P is the distance between two time series sets P and Q.
This is the State Similarity Measure.

Appendix 2: Properties of the Hartley and Generalized Hartey Measures
8.1. Properties of the Hartley Measure.

Its uniqueness was proved on axiomatic grounds by Rénydj19ho showed that
the only functional that satisfies the axioms of Branchingnigtonicity, and Normali-
sation isH (n) = log,(n) (see Klir, 2006, pp. 29).

As Klir explains, the Additivity axiom l/(n x m) = H(n) + H(m)) involves a
set withm x n elements, which can be partitioned int@ubsets, each withh elements.
A characterization of an element from the full set requites amountH (m x n) of
information. But we can also proceed in two steps by takingaathge of the partition
of the set. First, we characterize the subset to which thaesté belongs: the required
information isH (n). Then we characterize the elements within the subset: theresl
information isH (m). Since these two amounts of information completely charéam
an element of the full set, their sum should eghdin x n), as required by the axiom.

The Monotonicity axiom I (n) < H(n + 1)) is obvious and necessary: when the
number of possible alternatives increases, the amounfaimation needed to charac-
terize any one of them cannot decrease.

8.2. Further Properties of the Hartley Measure
First, it is readily seen that the Hartley measure satisfiesrtequalities:
0 < H(E) < log, | X|

for any E € the power set?(X): the lower bound is obtained when only one of the
alternatives is possible; the upper bound is obtained wheadtarnatives are equally
possible — complete ignorance.

If a given set of possible alternatives, is reduced by the outcome of an action to
asmaller set’ C E, then the amount of informatioh 4. s, ) generated by the action
A: E — FE'is measure by the differendé(E) — H(E'):

E
Luppr = logy (%) — log, |E| — logy E| = H(E) — H(E').
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When there is only a single possibility (iJ&’| = 1), thenwe gef 4.5 5 = log, |E| =
H(E), so thatH (F) can also be viewed as the amount of information needed tachar
terize a single element of sét

Hartley information () is based on set theory: given a finite s&t,of cardinality
n, where each element represents a possible alternativéetd, s sequence is defined
as a set selected alternatives, and therefore there cam’lpossible sequences. Hartley
information is defined as:

I(n*) = I(N) = logy(N).
8.3. Properties of the GHM

U-uncertaintyis a special case of a family of functions that (as does Sh@sno
entropy) satisfy the five properties of Additivity, Subatildiy, Expansibility, Symmetry,
and Continuity, together with a Branching property (Rant89).

Klir (2006, p. 200) describes a definition 6f-uncertainty without requiring an
ordered possibility profile: Let =< r(x)|z € X > denote a possibility profile oxX
that may not be ordered and let

“r={zre X|r(zx) > a}
for eacha € [0,1]. Then
1
U(r) :/ log, |“r|da 4)
0

Klir (2006) provides proofs and elaborations of generaipessibility theory and
Hartley functions. His Table 5.1 (p. 159) compares the nrattial properties of prob-
ability theory versus possibility theory for finite sets:daof each measure, Body of
Evidence, Unique Representation, Normalisation, Adidtior Max/Min Rules, To-
tal Ignorance, Conditionalities, Non-interactions, anddpendence. Moreover, Ramer
(1987) shows that the generalized Hartley function sasisdiethe usual axioms (see
Klir, 2006, pp. 197) of an information measure: SubaddijvAdditivity, Monotonic-
ity, Continuity, Expansibility, Symmetry, Range, BranogConsistency, Normalisation,
and Coordinate Invariance.
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