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There are two types of simulation models: Demonstration models, essentially existence
proofs for phenomena of interest, and Descriptive models, that attempt to track dynamic histor-
ical phenomena. Both types require verification. Descriptive models require validation against
historical data as well. More broadly, we can think of a process of choosing the “best” of
several models. This paper examines three measures of the similarity of two sets of vectors,
here time series. The best known but flawed is the Kullback-Leibler information-theoretic con-
struct. A second measure is what I have called the State Similarity Measure. The third measure
is a set-theoretic measure of similarity, the Generalized Hartley Metric. For illustration, we use
data from a dynamic simulation model of historical brand rivalry.
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1. Introduction

Critics of simulation models and modelling argue that, since modellers can make
any assumptions they wish, such models are little more than toys. But serious mod-
ellers see their models as tools in the scientific enterprise. There are two types of sim-
ulation models:Demonstration models, essentially existence proofs for phenomena of
interest, andDescriptive models,that attempt to track dynamic historical phenomena.
Most early simulation models were demonstrative (or qualitative), such as Schelling’s
(1971) segregation model. Although demonstrative simulation models are useful, not
least at performing “what if” exercises of exploration of different models, policy anal-
ysis requires validated, descriptive simulation models. Both types require verification.
Descriptive models require validation against historicaldata as well. But validation of
any but very simple simulation models has been slow in appearing in the literature.

This paper is an attempt to provide a new tool in validating serious simulation mod-
els: a means of measuring the distance (or similarity) between pairs of sets of vectors,
such as time-series data. It outlines a new technique, the State Similarity Measure, for
tackling the fourth core issue of Fagiolo et al. (2007): validating agent-based models
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using historical data. The SSM can measure the distance between two sets of vectors,
here time-series vectors; in effect, it measures the row-wise distance between pairs of
matrices.

What is model validation? Surely it’s an attempt to assure the reader that the model
is “good” at being able to generate the observed data. Lookedat from an information-
theoretic framework instead of a statistical perspective,the observed data contain infor-
mation, and the models we develop (from our theoretical understanding of the underlying
processes generating the observed data) can be thought of asattempts, in one sense, to
express this data in as compact a form as possible via a model.Paraphrasing Burnham
and Anderson (2002, pp. 437): such a model represents a hypothesis and is then a basis
for making inferences about the process or system that generated the observed data. All
simulation models are existence proofs (Marks, 2007): there exists at least one model —
this one — that is sufficient to generate data “close” to the observed data. Necessity is
harder to establish.

A given set of observed data contains only a finite, fixed amount of information.
The ultimate goal of modelling is to derive a model (or set of models) that produces the
identical set of output data.1 If this were achieved — although it’s realistically unattain-
able — then no information would be lost in going from the observed data to a model
of the information in the data. Since models are only approximations of reality, the ide-
alised goal of a complete and accurate model is unattainable, and often undesirable be-
cause of over-fitting. With several contending models, validation might be able to point
the researcher to the “best” model, in the sense that it losesleast information.

We take a pluralist, realist approach, in which we compare models by measuring
the distance between each model’s brand price output tracesand the historical brand
price traces of the real world, in order to choose the best model. In doing so, our method
is closest to the “indirect calibration approach” of Fagiolo et al. (2007): we focus on a
single market (micro), using empirical data to validate ourmodels’ simulated outputs,
although we do not then indirectly calibrate since our purpose here is to introduce our
new SMM measure for comparing sets of vectors, such as time series, not to outline a
full validation technique.

2. Our Simulation Model

To illustrate and compare the measures discussed here, we analyse historical data of
markets in which rivalry among brands of vacuum-packed, canned, ground coffee results
in a dynamic rivalrous dance, with abrupt changes in weekly prices and sales volumes,
as shown in Figure 1,2 from Midgley et al. (1997), part of an on-going research program

1 This is case (e) in Marks (2007, Figure 2): the model is complete and accurate.
2 These historical data represent the weekly prices and salesof nine brands in a supermarket chain over 50

weeks. We focus on the three most strategic of these: Folgers(red), Maxwell House (purple), and Chock
Full O Nuts (green).



Marks / Three Similarity Measures 3

(see Midgley et al., 2007).
FIGURE 1 HERE.
We model this market behaviour as the heterogeneous brands choosing next week’s

price as a function of the state of the market, which is definedto include each of this
week’s prices (and possibly other marketing actions), but might also include the prices
(and actions) of past weeks, depending on the brands’ depthsof memory.

We model the pricePbw of brandb in weekw as a functionfb of the state of the
marketMw−1 at weekw−1, whereMw−1 in turn might be a product of the set of weekly
pricesSw−j of all brands over several weeks (depending on the depth of memory), as
shown in the following equation (see Appendix 1 for an example of deriving states of
the market from sets of prices with different depths of memory):

Pbw = fb(Mw−1) = fb(Sw−1 × Sw−2 × Sw−3 · · · )

In our research program (Midgley et al., 1997), we use the Genetic Algorithm to search
for “better” (i.e. more profitable) brand-specific mappings, fb, from market state to pric-
ing action, where each brand’s fitness function (the maximand) is its weekly profit. We
use estimates of each brand’s cost function and the market’s(asymmetric) response to
each brand’s price in any week, given its rivals’ prices.3

Since we do not use the historical time series to estimate theparameters of the
model, we can use the historical data as a yardstick against which to measure the perfor-
mance of our models: this multi-model selection should allow us to determine the best
of our GA-determined models, in a process of model selectionmasquerading as model
validation. That is, following Burnham and Anderson (2002), we expand validation —
asking whether the model output is close to the historical data — to choose one of sev-
eral models which is “best,” where this means the model that captures as much of the
information in the historical data set as possible.

Can we measure the degree of similarity of the historical data to the output from
a model of the phenomenon? If so, then we can use the measure tocompare simulation
models and choose the “best” model: that which generates a set of time series as its
output which is “closest” to the set of historical time series.

We discuss three possibilities for deriving such a measure of similarity: first, the
Kullback-Leibler construct, which is closely related to Shannon’s information-theoretic
measure of entropy; second, a new measure of the author’s, the State Similarity Measure;
and, third, a set-theoretic measure derived by Klir from an early measure of Hartley’s,
the Generalized Hartley Measure.

3 Our program models each brand as an independent profit maximiser, seeking brand-specific mapping
functions from market state to next period’s price for that brand, to maximise that brand’s profit, subject
to supermarket moderation and to brand exhaustion. The GA isused in a co-evolving interaction among
the strategic brands, each brand separately seeking the best mapping function, where the brands’ costs and
market demand responses are idiosyncratic. Midgley et al. (1997) describe this in detail.
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Figure 1: Weekly Sales and Prices of Rival Brands(Source: Midgley et al., 1997)
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Before we discuss these three possible measures of similarity between historical
data and the simulation models’ outputs, we discuss how we can simplify the “rivalrous
dance” into numerical measures, which can then be compared.

3. Defining States of the Historical and Simulated Markets

We focus on the brands’ prices, although other marketing actions might also be
used (Midgley et al., 1997). We face a curse of dimensionality with the historical data:
every week, each brand can price anywhere4 between about $1.50 per pound and $3.40
per pound, a choice of about 190 price points.

In modelling this, Marks and Midgley (1995) reduced the possible price points in
the model to four: three high and one Low. To reduce the dimensionality still further, we
here use a dichotomous partition of the historical prices: any brand’s weekly price below
that brand’s midpoint price is designated “Low”, and any price above that midpoint
is “High.” We define the state of the market in any week by the combination of the
partitioned prices of the three strategic brands, Folgers,Maxwell House, and Chock Full
O Nuts.5 The number of possible states depends on the way in which the inputs and
outputs are partitioned: the partitioning (coarsening) ofthe price space, and the depth of
memory of the players (brands). We use dichotomous price partitioning in any week, so
that with three brands, each pricing Low or High, there are23 = 8 possible states per
week. Figure 2 shows the historical prices of the three strategic brands, after equivalent
dichotomous partitioning, where each colour represents a distinct brand, and the time
periods are weeks. These are the historical data against which we compare our models’
outputs, using SSM and GHM.

FIGURE 2 HERE.
Figure 3 shows the non-partitioned output from one of our derived simulation mod-

els (Model 26a) with these three strategic brands.
FIGURE 3 HERE.
With two-week memory, there are82 = 64 possible states in any week, when

each brand’s response next week to actions this week and lastcan be considered; with
three-week memory there are642 = 512 possible states, where third-order responses (a
brand’s response next week to others’ actions this week, last week, and the week before)
can be considered.

The distribution of the eight possible 1-week states in the historical chain store (H)
from Figure 2, and in three models (11, 26a, 26b) of the models’ outputs from Figure
3, using 50 weeks of data, are shown. in Table 1 below, “0” corresponding to a “High”
price and “1” to a “Low” price. Modelling deeper memory for the brands results in

4 Anywhere, that is, subject to moderation by the supermarket, to prevent more than one brand pricing Low
in any week, and to prevent any brand pricing Low two weeks in succession. See Midgley et al. (1997).

5 As seen in Figure 1, these three brands are the most dynamic intheir pricing; they constitute an average
market share of 77%.
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Figure 2: Partitioned Historical Weekly Prices of Four Brands
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Table 1
State frequencies from History (Chain 1) and three models.

State History Model 11 Model 26a Model 26b
(Chain 1)

000 32 0 30 20
001 2 18 11 10
010 6 15 3 7
011 1 0 0 0
100 7 16 5 12
101 0 0 0 0
110 2 0 1 1
111 0 1 0 0

Total 50 50 50 50

similar distributions, but the tables are 64 rows and 512 rows deep, with 2-week and
3-week memory, respectively.

How significant is the degree of partitioning? In Marks (2010), we used three-week
memory and dichotomous price partitioning throughout, andfor the historical data (from
seven supermarket chains), considered three-brand and four-brand interaction. Compar-
ing the outputs of three simulation models with a single set of historical time series of
price (from Chain 1), we used three-brand interactions, with 1-, 2-, and 3-week memory.

4. Measures of Closeness or of Information Loss

A variety of proposals have been made to measure similarity,but most of them
have been inspired by two measures: Shannon entropy and Hartley information. Shannon
(1948) entropy (SE) is based on probability and can be defined as:

SE(p(x)|x ∈ X) = −
∑

p(x) log2(p(x)),

wherep is a probability distribution of random variablex. FunctionSE fulfills some
useful properties such as additivity, branching, normalization and expansibility. Shannon
entropy led to the Kullback-Leibler (1951) measure of information loss from historical
to model, which has some attractions theoretically, but is not a true metric, as we shall
see.

4.1. Kullback-Leibler information loss

The Kullback-Leibler (K-L) information loss provides a measure of the informa-
tion lost when modelg is used to approximate full realityf :

I(f, g) =

∫

f(x) log

(

f(x)

g(x|θ)

)

dx
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in the continuous version, where the modelsg are indexed byθ, or

I(f, g) =
k

∑

i=1

pi × log

(

pi

πi

)

in the discrete case, with full-realityf distribution0 < pi < 1, and modelg distribution
0 < πi < 1, with

∑

pi =
∑

πi = 1. Here, there arek possible outcomes of the
underlying process; the true probability of theith outcome is given bypi, while the
π1, . . . , πk constitute the approximating model. Hence,f andg correspond to thepi and
πi, respectively.

But the K-L information loss is not a true metric: it is not symmetric and does not
satisfy the triangle inequality, sinceI(f, g) 6= I(g, f): it is a semi-quasimetric. More-
over, bothπi andpi must be positive6 , while in our data, even for the coarse, dichoto-
mous partition we are considering, one or both of these values is likely to be zero.7

Alternative measures are the author’s State Similarity Measure (which uses rec-
tilinear or Minkowski’s L1 or the cityblock distance), and Klir’s Generalized Hartley
Measure.

5. The State Similarity Measure (SSM)

The SSM counts the absolute difference in the frequency of each possible state in
each of two sets of vectors (or time series), and sums these toobtain the SSM for the
pair of sets of vectors.8 In effect, SSM treats each time series set as a vectorp in ann-
dimensional, non-negative, real vector space with a fixed Cartesian coordinate system,
where there aren possible states in the sets of vectors. The SSM between two setsP and
Q of vectors (or time series) is calculated as the rectilinearor cityblock distance (Krause
1986)d1 between their two constructed vectorsp andq, given byd

PQ
1 = d1(p,q) =

6 The K-L measure is defined only ifpi = 0 wheneverπi = 0.
7 As Akaike (1973) first showed, the negative of K-L information is Boltzmann’s entropy. Hence mini-

mizing the K-L distance is equivalent to maximizing the entropy; hence the term “maximum entropy
principle.” But, as Burnham & Anderson point out, maximizing entropy is subject to a constraint—the
model of the information in the data. A good model contains the information in the historical data, leaving
only “noise.” It is the noise (or entropy or uncertainty) that is maximized under the concept of the entropy
maximizing principle. Minimizing K-L information loss then results in an approximating modelg that
loses a minimum amount of information in the dataf . The K-L information loss is averaged negative
entropy, hence the expectation with respect tof .

Fagiolo et al. (2007, p. 211) note further that “K-L distancecan be an arbitrarily bad choice from a
decision-theoretic perspective ... if the set of models does not contain the true underlying model ... then
we will not want to select a model based on K-L distance.” Thisis because “K-L distance looks for
where models make the most different predictions—even if these differences concern aspects of the data
behaviour that are unimportant to us.”

8 I am grateful to Daskalova, who pointed out to me that the SSM is a version of what has been called
cityblock distance, rectilinear distance, or taxicab geometry.
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Table 2
SSMs calculated between the six pairs of sets.

Pair 1-week 2-week 3-week
memory memory memory

a History (Chain 1), Model 11 70 88 92
b History (Chain 1), Model 26a 18 36 54
c History (Chain 1), Model 26b 28 48 68
d Model 11, Model 26a 62 76 88
e Model 11, Model 26b 42 60 80
f Model 26a, Model 26b 22 42 60

∑n
i=1 |pi−qi|, wherepi is the number of occurrences (or frequencies) of statei in vector

setP. That is, SSM is the sum of the absolute differences of the coordinates of the two
sets of vectors asn-dimensional constructed vectors. (See the Appendix 1 for details of
this procedure.)

We use three models from simulations undertaken in Marks et al. (1995). Each
model has three interacting brands, and each brand agent independently chooses its price
from its own set of four possible prices in order to maximise its weekly profit, in a
process of co-evolution using the Genetic Algorithm. With 1-week memory, each agent’s
action is determined by the state of the market in the previous week, which means43 =
64 possible market states for each agent to respond to. The GA chooses the mapping
from perceived state to action for each brand (with weekly profit as its “fitness”).

Each model of the three brands’ interactions corresponds toa separate run of the
GA search for model parameters, using weekly profits of the brands as the GA “fitness”.
Given the complexity of the search space and the stochastic nature of the GA, each run
“breeds” a distinct model, with distinct mappings from state to brand price, and hence
different patterns of brand actions associated with each model.9 Figure 3 (above) shows
a fifty-week period of simulated interactions among three brand agents (Brands, 1, 2,
and 5) in Model 26a, where each brand chooses from one of four possible prices per
week.

The six pairs of SSMs between the partitioned prices of the three models‘ and the
historical data (from Chain 1), using 50-week data series, are presented in Table 2 for 1-,
2-, and 3-week memory:10

Characteristics of the SSM measure (Marks, 2010): First, anSSM of zero means
that the two sets of vectors are identical; larger SSMs implyless similarity. Second, the

9 The three models differ in more than the frequencies of the eight states (Table 1): each model contains
three distinct mappings from state to action, and, as deterministic finite automata (Marks, 1992), they
are ergodic, with emergent periodicities. Model 26a has a period of 13 weeks, Model 26b of 6 weeks,
and Model 11 of 8 weeks. It is not clear that the historical data exhibit ergodicity, absence of which will
make simulation initial conditions significant (Fagiolo etal., 2007). Initial conditions might determine the
periodicity of the simulation model.

10 In Marks (2010) there was a bug in the code used to calculate the states of the three simulation models
(11, 26a, and 26b), now corrected.



8 Marks / Three Similarity Measures

maximumD of an SSM measure occurs when the intersection between the states of the
two sets of vectors is null, withD = 2 × S, whereS is the number of window states,
which depends on the memory length, inter alia. Here, maximum D would be 100 for
1-week memory,2×49 = 98 for 2-week memory, and2×48 = 96 for 3-week memory,
(given that there are 50 observations per set of time series). Third, we can, using Monte
Carlo stochastic sampling (Marks, 2014), derive some statistics to argue that any pair of
sets is not likely to include random series (see below).

As the partitioning becomes finer (with deeper memory of pastactions), the SSMs
increase as the two sets of vectors (or time series) become less similar. This should
not surprise us. We also note that with these four sets of timeseries, the rankings do
not change with the depth of memory: (from closer to more distant) (Chain 1, Model
26a), (Model 26a, Model 26b), (Chain 1, Model 26b), (Model 11, Model 26b), (Model
11, Model 26a), and (Chain 1, Model 11). Which of the three models is closest to the
historical data of Chain 1? The SSM tells us that Model 26a is best, followed by Model
26b, with Model 11 bringing up the rear.

As defined here, the SSM is an absolute measure, where its maximum distanceD
is a function of the equal length of the pair of sets of vectors. The lower the SSM, the
closer the two sets of vectors. It is possible to define a normalised measure, call it SSMN,
where SSMN is between 0% and 100%:

SSMN ≡ 100 ×

(

1 −
SSM

D

)

,

whereD is the maximum SSM distance apart of the two sets of vectors, equal to the
length of each vector.11 Hence SSMN = 100 implies identity between the two sets, and
SSMN = 0 means maximum distance between the two, with null overlap.12

5.1. Monte Carlo simulations of the SSM

Table 3 presents the distances between historical Chain 1, and the three simulations,
Model 11, Model 26a, and Model 26b from Marks et al. (1995), with 3-week memory.
Model 11 is far from any of the other sets, and Model 26b is closest to Model 26a, but
Model 26a is closer to the Chain 1 historical data (at 54/96) than it is to the closest other
simulation, Model 26b (at 60/96). (Note: * in the Table indicates we cannot reject the
null at the 5% level.)

Null Hypothesis: each of two sets of time series is random.
With this null hypothesis, we can set 1% and 5% one-sided confidence intervals

to the SSM numbers. With three brands andS = 48, the maximumD is 96. 95% of
pairs of sets of three random time series are at least 80 apart, and 99% of pairs of sets

11 In our analysis, this length is a function of the number of observations (equal for historical and simulated
data) and the depth of memory.

12 I am grateful to a reviewer for suggesting this.
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Table 3
SSMs between Historical Chain 1 and Three Models

Chain 1 Model 11 Model 26a Model 26b
Chain 1 0 92* 54 68
Model 11 92* 0 88* 80*
Model 26a 54 88* 0 60
Model 26b 68 80* 60 0

of three random time series are at least 76 apart.13 This means that, in Table 3, we reject
the null hypothesis of random data for the pairs (Chain 1, Model 26a), (Chain 1, Model
26b), and (Model 26a, Model 26b), since all SSMs here are lessthan 76, so the data are
significantly non-random, and the null hypothesis is rejected. The other three pairs (all
comparisons with Model 11), with SSMs above 80, are not significantly (5%) different
from random, and the null hypothesis cannot be rejected. By construction, none of the
simulated data sets is random, although they are not particularly similar (see Table 1).

We show these results in Figure 4, which plots the CumulativeMass Function of
the MC parameter bootstrap simulation against the six SSMs of the pairs.14 The red lines
are the CMF of pairs of sets of random series (3 series, 48 observations) from 100,000
Monte Carlo parameter bootstraps.

FIGURE 4 HERE.
The one-sided confidence interval at 1% corresponds to a SSM of 76, and at 5%

80. That means that any SSM above 80 could have resulted (witha 5% probability) from
two sets of random vectors; or above 76 with a 1% probability.The higher the SSM,
the greater the likelihood that the two sets are random, as isseen with the rising CMF.
For SSMs to the left (below 76) we reject the random hypothesis. Thus we cannot reject
the null hypothesis (random sets) for any pairs comparing Model 11; but reject the null
(random) hypothesis for the other three pairs.

6. Classical Possibility Theory

Possibility theory offers a non-additive method of assigning a numerical value to
the likelihood of a system assuming a specific state, one of a given set of states. The
likelihood expressed is that ofpossibility; for this reason, the possibility assigned to a
collection of possible events is the maximum (rather than the sum) of the individual
possibilities (Ramer, 1989).

Hartley (1928) solved the problem of how to measure the amount of uncertainty

13 This number was determined by a Monte Carlo bootstrap simulation of 100,000 pairs of sets of four
quasi-random time series, calculating the SSM between eachpair, and examining the distribution. The
lowest observed SSM of 64 appeared twice, that is, with a frequency of 2/100,000, or 0.002 percent.

14 The CMF of a discrete random variableX is defined asFX = Pr(X ≤ x), where the right-hand side
represents the probability that the random variableX takes on a value less than or equal tox. Here,X is
the SSM between two sets of random numbers.
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associated with a finite setE of possible alternatives: he proved that the only meaningful
way to measure this dichotomous amount (when any alternative is either in or out: no
gradations of certainty) is to use a functional of the form:

c logb

∑

x∈X

|E|,

where setE contains all possible alternatives from the larger (finite)setX, and where
|E| denotes the cardinality of setE: b andc are positive constants, and it is required that
b 6= 1. If b = 2 andc = 1 (or more generally, ifc log2 = 1), then we obtain a unique
functional,H, defined for any basic possibility function,rE , by the formula:

H(rE) = log2 |E|,

where the measurement unit ofH is bits. This can also be expressed in terms of the basic
possibility functionrE as

H(rE) = log2

∑

x∈X

rE(x).

H is called aHartley measureof uncertainty, resulting from lack of specificity: the
larger the set of possible alternatives, the less specific the identification of any desired
alternative of the setE. Clear identification is obtained when only one of the considered
alternatives is possible. Hence this type of uncertainty can be callednon-specific.

This measure was first derived by Hartley (1928) for classical possibility theory,
where any alternative element of setX is either possible (i.e. in setE) or not. The basic
possibility function,rE , is then

rE(x) =

{

0 whenx ∈ E,

1 whenx 6∈ E.

and is derived explicitly in Klir (2006, pp. 28). To be meaningful, this functional must
satisfy some essential axiomatic requirements.15

6.1. The Generalized Hartley Measure (GHM) for Graded Possibilities

Following Klir (2006), we relax the “either/or” characteristic of the earlier treat-
ment and allow the basic possibility function16 on the finite setX to take any value
between zero and one:r : X → [0, 1] Note that

max
x∈X

{r(x)} = 1,

15 See further discussion in Appendix 2.
16 It is not correct to call functionr a possibilitydistributionfunction, since it does not distribute any fixed

value among element of the setX: 1 ≤
∑

x∈X
r(x) ≤ |X|.
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a property known as possibilistic normalization.
The Generalized Hartley Measure (GHM) for graded possibilities is usually de-

noted in the literature byU , and is calledU -uncertainty. U -uncertainty can be ex-
pressed in various forms. A simple form is based on notation for graded possibilities:
X = {x1, x2, . . . , xn} andri denotes for eachi ∈ Nn the possibilityof the singleton
eventxi. Possibilities can (although need not) be estimated by frequencies. Elements of
X are appropriately rearranged so that the possibility profile:

r = < r1, r2, . . . , rn >

is ordered in such a way that

1 = r1 ≥ r2 ≥ . . . ≥ rn > 0,

wherern+1 = 0 by convention. Moreover, setAi = {x1, x2, . . . , xi} is defined for each
i ∈ Nn.

Using this simple notation, theU -uncertainty is expressed for each given possibil-
ity profile r by the formula

U(r) =
n

∑

i=1

(ri − ri+1) log2 |Ai|. (1)

Since, clearly
n

∑

i=1

(ri − ri+1) = 1,

the U -uncertainty is a weighted average of the Hartley measure for setsAi, i ∈ Nn,
where the weights are the associated differencesri−ri+1 in the given possibility profile.
These differences are values of the basic possibility assignment function for setsAi.

Since|Ai| = i andlog2 |A1| = log2 1 = 0, the above equation can be rewritten in
the simpler form

U(r) =
n

∑

i=2

(ri − ri+1) log2 i (2)

or, alternatively, in the form

U(r) =
n

∑

i=2

ri log2

(

i

i − 1

)

. (3)

U -uncertainty preserves the ordering of possibility profiles defined on the same set:
U(1r) ≤ U(2r) for any pair of probability profiles defined on the same set andsuch
that1r ≤2 r. Moreover,

0 ≤ U(r) ≤ log2 |X|



12 Marks / Three Similarity Measures

for any possibility profiler onX. The lower and upper bounds are obtained, respectively
for the smallest (expressing no uncertainty) and the largest (expressing total ignorance)
possibility profiles,< 1, 0, . . . 0 > and< 1, 1, . . . , 1 >:

U(< 1, 0, . . . 0 >) = 0

U(< 1, 1, . . . , 1 >) = log2 |X|.

6.2. Ordering of Possibility Profiles

Possibility profiles of the same length can be partially ordered in the following
way: given any two possibility profiles of lengthn (wherern+1 = 0 by construction):

jr =<j r1,
j r2, . . . ,

j rn >,

kr =<k r1,
k r2, . . . ,

k rn > .

Following Klir (2006), we define

jr ≤k r ⇐⇒ jri ≤
k ri

for all i ∈ Nn. For anyjr,k r ∈ Rn, if jr ≤ kr, thenkr represents greater uncertainty
than doesjr; that is,jr contains more information than doeskr.

Klir (2006, p. 160) notes something relevant to our purposeshere: “Another impor-
tant interpretation of possibility theory is based on the concept ofsimilarity, in which
the possibilityr(x) reflects the degree of similarity betweenx and an ideal prototype,
xP , for which the possibility degree is 1. That is,r(x) is expressed by a suitable distance
betweenx andxP defined in terms of the relevant attributes of the elements involved.
The closerx is toxP according tothe chosen distance, the more possible we considerx

to be in this interpretation [our emphasis].”

6.3. Applying U-uncertainty to our data

From the frequencies of Table 1 (one-week memory), we can reorder17 the possi-
bilities (observed frequencies) of the three runs and the historical data, to get the four
reordered, non-normalised18 possibility profiles:

Using equation (2), the four Hartley measures are calculated:19

17 It might be objected that this reordering loses information. But this overlooks the fact that the order of
the states is arbitrary. It should not be forgotten that the definition of the states with more than one week’s
memory captures dynamic elements of interaction.

18 Normalisation here meansr1 = 1, not
∑

ri = 1.
19 For clarity, we have included the(i = 1)th element,(r1 − r2) log

2
1, which is always zero, by construc-

tion, consistent with equation (2).
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Table 4
The four possibility profiles, one-week memory.

History (Chain 1): 32 7 6 2 2 1 0 0
Model 11: 18 16 15 1 0 0 0 0
Model 26a: 30 11 5 3 1 0 0 0
Model 26b: 20 12 10 7 1 0 0 0

Table 5
GHMs calculated for three memory partitions.

Process 1-week 2-week 3-week
memory memory memory

History (Chain 1) 0.383 0.495 0.782
Model 11 1.399 2.179 2.787
Model 26a 0.516 0.679 1.085
Model 26b 1.054 1.657 2.542

1. History (Chain 1:)

U(r) =
1

32
(25 log2 1 + 1 log2 2 + 4 log2 3 + 0 log2 4 + 1 log2 5 + 1 log2 6)

= 0.383

2. Model 11:

U(r) =
1

18
(2 log2 1 + 1 log2 2 + 14 log2 3 + 1 log2 4)

= 1.399

3. Model 26a:

U(r) =
1

30
(19 log2 1 + 6 log2 2 + 2 log2 3 + 2 log2 4 + 1 log2 5)

= 0.516

4. Model 26b:

U(r) =
1

20
(8 log2 1 + 2 log2 2 + 3 log2 3 + 6 log2 4 + 1 log2 5)

= 1.054

The GHMs for the three models and Chain 1 have been calculatedfor the three
cases of 1-week, 2-week, and 3-week memory, as seen in Table 5.

These GHMs are true metrics (they satisfy the triangle inequality, unlike the K-L
information loss), and so we can compare the differences of Table 6 between the four
measures. We can readily see that Model 26a (0.516) is closest to the historical data of
Chain 1 (0.374); next is Model 26b (0.516), with Model 11 (1.399) furthest from the
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Table 6
GHM differences calculated for the six pairs of sets.

Pair 1-week 2-week 3-week
memory memory memory

a History (Chain 1), Model 11 1.016 1.684 2.005
b History (Chain 1), Model 26a 0.133 0.184 0.303
c History (Chain 1), Model 26b 0.671 1.162 1.760
d Model 11, Model 26a 0.883 1.500 1.702
e Model 11, Model 26b 0.345 0.522 0.245
f Model 26a, Model 26b 0.538 0.978 1.457

historical data. Moreover, we can see that Model 26a is closer to the historical Chain 1
data than it is to Model 26b.

Table 6 shows the six pairwise differences in GHM, derived from Table 5. It can
be compared with the six pairwise SSMs of Table 2. For 1-week memory the maximum
GHM, corresponding to 50 equi-likely states, islog2 50 = 5.644; for 2-week memory
log2 49 = 5.615, and for 3-week memorylog2 48 = 5.585. These numbers are the
maximum pairwise difference between GHMs; the minimum difference is zero in all
three depths of memory.20

7. Comparing the distances measured by SSM and GHM

From Table 2, for 1-week memory, the SSMs are ranked (closestto farthest):{b,
f, c, e, d, a}; but, from Table 6, the GHM differences are ranked (smallestto largest):
{b, e, f, c, d, a}. Model 26a is closest to History using either measure, and Model 11
is farthest, Note, however, from Table 2, that although the SSM rankings are the same
for 1-, 2-, or 3-week memory, the GHM rankings are sensitive to the depth of memory.
That is, the two methods do not always produce identical rankings, although the degree
to which these two measures result in similar rankings of distances is noteworthy, given
their quite different foundations.21

8. Conclusion

The two measures, SSM and GHM, are true metrics that allow us to measure the
degree of similarity between two sets of vectors, here time series. The SSM between
two sets of vectors is the absolute distance between two constructed vectors in non-
negative,n-dimensional vector space, wheren is the number of possible states that each
set of vectors can exhibit. GHM is a measure of the possibility of any setP of vectors
occurring as a vectorp in n-dimensional space.

20 We could also define a normalised GHM, as above.
21 We postpone exploration of these differences to a later paper.
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Since GHM is a metric, differences of sets of vectors’ GHMs are meaningful. SSM
is also a metric (symmetric and satisfying the triangle inequality). As such, both mea-
sures can be used to score the distance between any two sets ofvectors, such as sets of
time series, which previously was unavailable. The Kullback-Leibler measure, although
based in information theory and Shannon’s entropy measure,is not a true metric, despite
its relationship to maximum likelihood methods.

The two measures, SSM and GHM, allow us to measure the extent to which a
simulation model that has been chosen on some other criterion (e.g. weekly profitability)
is similar to historical sets of time series. The measures also allow us to measure the
distance between any two sets of time series and so to estimate the parameters, or to help
validate a model against history. The measures can thus be used to identify the model
which is “closest” to history, as measured by comparing its output set of time series to
the historical set of time series, that is, by identifying the model that has captured most
information of the historical set of time series, given our definition of model states.

The SSM and the GHM have demonstrated closeness in measuringsimilarity of
sets of time series, although the two measures’ rankings of distances are not identical, as
seen above. The SSM is intuitive: it uses the cityblock metric to count up the differences
in the states between two constructed vectors. It can be described in six simple steps, as
outlined in Appendix 1. The GHM is anything but intuitive, based on arcane possibility
theory. It is developed and applied in four pages of mathematics above. Using Occam’s
Razor, the SSM, as a simpler, more transparent measure, is preferred.

The two measures, SSM and GHM, are not restricted to measuring the similarity of
(or distance between) two sets of time series: they are more general, as we have reminded
the reader, in that they can be applied to pairs of sets of (equal length) vectors. The data
used here are illustrative only: the two measures can be applied to any simulated data
and historical data, so long as the number of observations ofthe model output and the
historical data are equal, with equal numbers of vectors, orobservations. Even more
generally, the two measures can be thought of alternative methods of measuring the
row-wise distance between any two matrices of equal dimension.
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Table 7
An example: three brands, 1-, 2-, and 3-week windows.

Week B r a n d (P ′

b,w) 1-Week 2-Week 3-Week
Red Purple Green Sw M2w M3w

18 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0 0
21 1 0 0 4 32 256
22 0 1 0 2 20 160
23 1 0 0 4 34 276
24 1 1 0 6 52 418
25 0 0 1 1 14 116
26 0 0 0 0 1 14
27 0 0 0 0 0 1
28 0 1 0 2 16 128
29 1 0 0 4 34 272
30 1 1 0 6 52 418

Appendix 1: Calculating the SSM

1. First, construct the weekly states of the market: For eachset, partition the time
seriesPb,w of pricePb,w of brandb in weekw into {0,1}, where 0 corresponds to
“high” price (above brandb’s mid-point) and 1 corresponds to “low” price to obtain
P ′

b,w.
2. For the set of 3- or 4-brand time series of brands’ partitioned pricesP ′

b,w, calculate
the time series of the state of the market each week{Sw}, whereSw = P ′

1,w ×
P ′

2,w . . . .
For a 3-brand time series,Sw = 4 × P ′

1,w + 2 × P ′

2,w + P ′

3,w. Then construct the
windowed states of the market (as in Table 7).

3. For each set, calculate the time series of states of the 3- or 4-week moving window
of partitioned pricesMw, from the per-week states{Sw}, whereMw = Sw ×
Sw−1 × Sw−2 · · ·
For a 3-week window,M3w = 64 × Sw + 8 × Sw−1 + Sw−2. (The powers of 8
are because, with three brands, there are 8 possible states of the marketSw each
week.) This means that for a 2-week memory there are82 possible states, and for a
3-week memory,83 = 512 possibilities. Table 7 provides an example.
Then construct the SSM:

4. Count the numbers of each stateMw observed for the set of time series over the
given time period. Convey this by ann × 1 vectorp, whereps ≥ 0 is the number
of observations of window states over the period.
With T longitudinal observations, the maximum SSM distance apartof two sets of
time series is2 × (T − w + 1), wherew is number of weeks remembered. (This
would happen when the two sets of states are disjoint.)

5. Subtract the number of observations in set P of time seriesfrom the number ob-
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served in set Q, across alln possible states;DPQ = p− q.
6. Sum the absolute values of the differences across all possible states:

d
PQ
1 =

∑

|pi − qi|

This numberdPQ
1 = d

QP
1 is the distance between two time series sets P and Q.

This is the State Similarity Measure.

Appendix 2: Properties of the Hartley and Generalized Hartley Measures

8.1. Properties of the Hartley Measure.

Its uniqueness was proved on axiomatic grounds by Rény (1970), who showed that
the only functional that satisfies the axioms of Branching, Monotonicity, and Normali-
sation isH(n) = log2(n) (see Klir, 2006, pp. 29).

As Klir explains, the Additivity axiom (H(n × m) = H(n) + H(m)) involves a
set withm×n elements, which can be partitioned inton subsets, each withm elements.
A characterization of an element from the full set requires the amountH(m × n) of
information. But we can also proceed in two steps by taking advantage of the partition
of the set. First, we characterize the subset to which the element belongs: the required
information isH(n). Then we characterize the elements within the subset: the required
information isH(m). Since these two amounts of information completely characterize
an element of the full set, their sum should equalH(m × n), as required by the axiom.

The Monotonicity axiom (H(n) ≤ H(n + 1)) is obvious and necessary: when the
number of possible alternatives increases, the amount of information needed to charac-
terize any one of them cannot decrease.

8.2. Further Properties of the Hartley Measure

First, it is readily seen that the Hartley measure satisfies the inequalities:

0 ≤ H(E) ≤ log2 |X|

for any E ∈ the power setP (X): the lower bound is obtained when only one of the
alternatives is possible; the upper bound is obtained when all alternatives are equally
possible — complete ignorance.

If a given set of possible alternatives,E, is reduced by the outcome of an action to
a smaller setE′ ⊂ E, then the amount of informationI(A:E→E′) generated by the action
A : E → E′ is measure by the differenceH(E) − H(E′):

IA:E→E′ = log2

(

|E|

|E′|

)

= log2 |E| − log2 E′| = H(E) − H(E′).
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When there is only a single possibility (i.e.|E′| = 1), then we getIA:E→E′ = log2 |E| =
H(E), so thatH(E) can also be viewed as the amount of information needed to charac-
terize a single element of setE.

Hartley information (I) is based on set theory: given a finite set,X, of cardinality
n, where each element represents a possible alternative to select, a sequence is defined
as a sets selected alternatives, and therefore there can bens possible sequences. Hartley
information is defined as:

I(ns) = I(N) = log2(N).

8.3. Properties of the GHM

U-uncertaintyis a special case of a family of functions that (as does Shannon’s
entropy) satisfy the five properties of Additivity, Subadditivity, Expansibility, Symmetry,
and Continuity, together with a Branching property (Ramer 1989).

Klir (2006, p. 200) describes a definition ofU -uncertainty without requiring an
ordered possibility profile: Letr =< r(x)|x ∈ X > denote a possibility profile onX
that may not be ordered and let

αr = {x ∈ X|r(x) ≥ α}

for eachα ∈ [0, 1]. Then

U(r) =

∫ 1

0
log2 |

αr|dα (4)

Klir (2006) provides proofs and elaborations of generalized possibility theory and
Hartley functions. His Table 5.1 (p. 159) compares the mathematical properties of prob-
ability theory versus possibility theory for finite sets: Basis of each measure, Body of
Evidence, Unique Representation, Normalisation, Additivity or Max/Min Rules, To-
tal Ignorance, Conditionalities, Non-interactions, and Independence. Moreover, Ramer
(1987) shows that the generalized Hartley function satisfies all the usual axioms (see
Klir, 2006, pp. 197) of an information measure: Subadditivity, Additivity, Monotonic-
ity, Continuity, Expansibility, Symmetry, Range, Branching/Consistency, Normalisation,
and Coordinate Invariance.
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