

CHAPTER 10

Verification, Validation and Testing

OSMAN BALCI

Virginia Tech

10.1 INTRODUCTION

A simulation study is conducted for a variety of purposes including problem solving and training.

Starting with problem formulation and culminating with presentation of simulation study results,

it consists of complex processes of formulation, analysis, modeling, and experimentation (or exer-

cise). A typical simulation study requires multifaceted knowledge in diverse disciplines such as

Operations Research, Computer Science, Statistics, and Engineering. Due to the complex pro-

cesses and multifaceted knowledge requirements, simulation practitioners and managers face sig-

nificant technical challenges in conducting successful simulation studies. A successful simulation

study is defined to be the one which produces a sufficiently credible solution that is accepted and

used by the decision makers.

To significantly increase the probability of success in conducting a simulation study, an

organization must have a department or group called Simulation Quality Assurance (SQA). The

SQA group is responsible for total quality management and closely works with the simulation

project managers in planning, preparing and administering quality assurance activities throughout

the simulation study. The SQA is a managerial approach which is critically essential for the suc-

cess of a simulation study. Ören [1981, 1986, 1987] presents concepts, criteria and paradigms

which can be used in establishing an SQA program within an organization.

Assuring total quality involves the measurement and assessment of a variety of quality char-

acteristics such as accuracy, execution efficiency, maintainability, portability, reusability, and

usability (human-computer interface). Simulation study objectives dictate a priority ordering of

these quality characteristics since all of them cannot be achieved at the same level.

The purpose of this chapter is to present principles and techniques for the assessment of

accuracy throughout the life cycle of a simulation study. The accuracy quality characteristic is

assessed by conducting verification, validation and testing (VV&T).
1

Published In
Handbook of Simulation,ISBN 0-471-13403-1, Chapter 10, pp. 335-393John Wiley & Sons, 1998

Model Verification is substantiating that the model is transformed from one form into

another, as intended, with sufficient accuracy. Model verification deals with building the model

right. The accuracy of transforming a problem formulation into a model specification or the accu-

racy of converting a model representation in a micro flowchart into an executable computer pro-

gram is evaluated in model verification.

Model Validation is substantiating that the model, within its domain of applicability,

behaves with satisfactory accuracy consistent with the study objectives. Model validation deals

with building the right model.

An activity of accuracy assessment can be labeled as verification or validation based on an

answer to the following question: In assessing the accuracy, is the model behavior compared with

respect to the corresponding system behavior through mental or computer execution? If the

answer is “yes” then model validation is conducted; otherwise, it implies that the transformational

accuracy is judged implying model verification.

Model Testing is ascertaining whether inaccuracies or errors exist in the model. In model

testing, the model is subjected to test data or test cases to determine if it functions properly. “Test

failed” implies the failure of the model, not the test. A test is devised and testing is conducted to

perform either validation or verification or both. Some tests are devised to evaluate the behavioral

accuracy (i.e., validity) of the model, and some tests are intended to judge the accuracy of model

transformation from one form into another (verification). Therefore, the whole process is com-

monly called model VV&T.

Testing should not be interpreted just as functional testing which requires computer execu-

tion of the model. Administering reviews, inspections, and walkthroughs is similar to devising a

test under which model accuracy is judged. In this case, panel members become part of the

devised test and the testing is conducted by each member executing a set of tasks. Therefore,

informal techniques described in Section 10.4 are also considered testing techniques.

10.2 THE LIFE CYCLE AND A CASE STUDY

The processes and phases of the life cycle of a simulation study and a simulation and modeling

case study are presented in this section. The case study is used throughout the chapter to illustrate

the life cycle and the VV&T principles and techniques.

The life cycle of a simulation study is presented in Figure 10.1 [Balci 1990; Nance 1994].

The phases are shown by shaded oval symbols. The dashed arrows describe the processes which

relate the phases to each other. The solid arrows refer to the credibility assessment stages. Banks

et al. [1987] and Knepell and Arangno [1993] review other modeling processes for developing
2

PROPOSED SOLUTION
TECHNIQUE
(Simulation)

COMMUNICATED
PROBLEM

FORMULATED
PROBLEM

CONCEPTUAL
MODEL

COMMUNICATIVE
MODEL(S)

PROGRAMMED
MODEL

EXPERIMENTAL
MODEL

SIMULATION
RESULTS

INTEGRATED
DECISION
SUPPORT

SYSTEM AND
OBJECTIVES
DEFINITION

Experimental
Model VV&T

Data
VV&T

Pr
es

en
ta

tio
n

of
Si

m
ul

at
io

n
R

es
ul

ts

Pr
es

en
ta

tio
n

V
V

&
T

E
xperim

entation

R
ed

ef
in

iti
on

Acceptability of
Simulation Results

DECISION MAKERS

Model
Qualification

System
Investigation

Feasibility Assessment
of Simulation

Problem
Formulation

Formulated Problem
VV&T

Investigation of
Solution Techniques

System and Objectives
Definition VV&T

Model Formulation

Communicative
Model VV&T

Model
Representation

Programming

Design of Experiments

Experiment
Design VV&T

Programmed
Model VV&T

Figure 10.1. The life cycle of a simulation study.

3

simulations.

The life cycle should not be interpreted as strictly sequential. The sequential representation

of the dashed arrows is intended to show the direction of development throughout the life cycle.

The life cycle is iterative in nature and reverse transitions are expected. Every phase of the life

cycle has an associated VV&T activity. Deficiencies identified by a VV&T activity may necessi-

tate returning to an earlier process and starting all over again.

The ten processes of the life cycle are shown by the dashed arrows in Figure 10.1. Although

each process is executed in the order indicated by the dashed arrows, an error identified may

necessitate returning to an earlier process and starting all over again. Some guidelines are pro-

vided below for each of the ten processes.

Problem Formulation

When a problem is recognized, a decision maker (a client or sponsor group) initiates a study by

communicating the problem to an analyst (a problem-solver, contractor, or a consultant/research

group). The communicated problem is rarely clear, specific, or organized. Hence, an essential

study to formulate the actual problem must follow. Problem Formulation (problem structuring or

problem definition) is the process by which the initially communicated problem is translated into

a formulated problem sufficiently well defined to enable specific research action [Woolley and

Pidd 1981].

Balci and Nance [1985] present a high-level procedure that: (1) guides the analyst during

problem formulation, (2) structures the formulated problem VV&T, and (3) seeks to increase the

likelihood that the study results are utilized by decision makers.

Case Study

The Town of Blacksburg in Virginia (client) receives complaints from the drivers using the traffic

intersection at Prices Fork Road and Toms Creek Road, shown in Figure 10.2, about too much

waiting during the rush-hour periods. The town hires a consulting company (the contractor) to

conduct a study and propose a solution to the problem.

The contractor conducts the process of problem formulation and determines the study

objective as follows:

Identify which operating policy should be implemented at the traffic intersection so as
to reduce the average waiting time of vehicles in each travel path to an acceptable
level during the rush-hour periods. Possible operating policies include different light
timings, two-way stop signs, four-way stop signs, flashing red and yellow lights, and
constructional changes such as adding new lanes.
4

Investigation of Solution Techniques

All alternative techniques that can be used to solve the formulated problem should be identified. A

technique whose solution is estimated to be too costly or is judged to be not sufficiently beneficial

with respect to the study objectives should be disregarded. Among the qualified ones, the tech-

nique with the highest expected benefits/cost ratio should be selected.

The statement “when all else fails, use simulation” is misleading if not invalid. The question

is not to bring a solution to the problem, but to bring a sufficiently credible one which will be

Prices Fork Road

Tom
s C

reek R
oad

Blacksburg, Virginia, USA

11

10

9

876

5

4

3

2
1S

E

W

N

Figure 10.2. The Traffic Intersection at Prices Fork Road and Toms Creek Road.
5

accepted and used by the decision maker(s). A technique other than simulation may provide a less

costly solution, but it may not be as useful.

Sometimes, the communicated problem is formulated with the influence of a solution tech-

nique in mind. Occasionally, simulation is chosen without considering any other technique just

because it is the only one the analyst(s) can handle. Skipping the investigation process may result

in unnecessarily expensive solutions, sometimes to the wrong problems.

As a result of the investigation process, it is assumed here that simulation is chosen as the

most appropriate solution technique. At this point, the simulation project team should be activated

and be made responsible for the formulated problem VV&T and feasibility assessment of simula-

tion before proceeding in the life cycle.

Case Study

The contractor investigates all possible solution techniques and selects discrete event simulation

as the one with the highest benefits/cost ratio.

System Investigation

Characteristics of the system that contains the formulated problem should be investigated for con-

sideration in system definition and modeling. Shannon [1975] identifies six major system charac-

teristics: (1) change, (2) environment, (3) counterintuitive behavior, (4) drift to low performance,

(5) interdependency, and (6) organization. Each characteristic should be examined with respect to

the study objectives that are identified with the formulation of the problem.

In simulation, we mostly deal with stochastic and dynamic real systems that change over a

period of time. How often and how much the system will change during the course of a simulation

study should be estimated so that the model representation can be updated accordingly. Changes

in the system may also change the study objectives.

A system's environment consists of all input variables that can significantly affect its state.

The input variables are identified by assessing the significance of their influence on the system's

state with regard to the study objectives. Underestimating the influence of an input variable may

result in inaccurate environment definition.

Some complex systems may show counterintuitive behavior which should be identified for

consideration in defining the system. However, this is not an easy task, especially for those sys-

tems containing many subjective elements (e.g., social systems). Cause and effect are often not

closely related in time or space. Symptoms may appear long after the primary causes [Shannon

1975]. To be able to identify counterintuitive behavior, it is essential that the simulation project
6

employs people who have expert knowledge about the system under study.

A system may show a drift to low performance due to the deterioration of its components

(e.g., machines in a manufacturing system) over a period of time. If this characteristic exists, it

should be incorporated within the model representation especially if the model's intended use is

forecasting.

The interdependency and organization characteristics of the system should be examined

prior to the abstraction of the real system for the purpose of modeling. In a complex stochastic

system, many activities or events take place simultaneously and influence each other. The system

complexity can be overcome by way of decomposing the system into subsystems and subsystems

into other subsystems. This decomposition can be carried out by examining how system elements

or components are organized.

Once the system is decomposed into subsystems the complexity of which is manageable

and the system characteristics are documented, model formulation process can be started follow-

ing the system and objectives definition VV&T.

Case Study

The contractor conducts the process of system investigation. It is determined that the traffic inter-

section will not change during the course of the study. The interarrival time of vehicles in lane Lj

where j = 1,2,3,...,11 is identified as an input variable making up the environment, whereas pedes-

trians, emergency vehicles and bicycles are excluded from the system definition due to their negli-

gible effect on the system's state. No counterintuitive behavior can be identified. The system

performance does not deteriorate over time.

Model Formulation

Model formulation is the process by which a conceptual model is envisioned to represent the sys-

tem under study. The Conceptual Model is the model which is formulated in the mind of the mod-

eler [Nance 1994]. Model formulation and model representation constitute the process of model

design.

Input data analysis and modeling [Law and Kelton 1991; Banks et al. 1996] is a subprocess

of Model Formulation and is conducted with respect to the way the model is driven. Simulation

models are classified as self-driven or trace-driven. A self-driven (distribution-driven or probabi-

listic) simulation model is the one which is driven by input values obtained via sampling from

probability distributions using random numbers. A trace-driven (or retrospective) simulation

model, on the other hand, is driven by input sequences derived from trace data obtained through
7

measurement of the real system.

Under some study objectives (e.g., evaluation, comparison, determination of functional

relations) and for model validation, input data model(s) are built to represent the system's input

process. In a self-driven simulation (e.g., of a traffic intersection), we collect data on an input ran-

dom variable (e.g., interarrival time of vehicles), identify the distribution, estimate its parameters

and conclude upon a probability distribution as the input data model to sample from in driving the

simulation model [Vincent and Law 1995]. In a trace-driven simulation, we trace the system (e.g.,

using hardware and software monitors) and utilize the refined trace data as the input data model to

use in driving the simulation model.

Case Study

All assumptions made in abstracting the traffic intersection operation under the study objective

are explicitly stated and listed. Data is collected on the interarrival times of vehicles, current

traffic light timing, probabilities of turns, and travel times in each travel path. A single arrival

process is observed for lanes 1 and 2 and divided probabilistically. ExpertFit software [Vincent

and Law 1995] is used to identify probabilistic models of the input process. The results of input

data modeling are given in Table 10.1.

The estimated probabilities of right turns are presented in Table 10.2. The identified proba-

bility distributions characterize the rush-hour traffic conditions and are used to sample from in

Table 10.1. Probabilistic Models of Vehicle Interarrival Times for Each Lane.

Lane
Number

Probability
Distribution

Location
Parameter

Scale
Parameter

Shape
Parameter

1 & 2 Gamma 0.06494 4.05843 1.1031

3 Weibull 1.99415 31.1737 0.79453

4 Weibull 0 8.71858 0.8773

5 Lognormal 0 1.42075 1.40056

6 Weibull 0 32.9441 1.14441

7 Weibull 0.99627 27.6663 0.70053

8 Weibull 0 33.1788 1.46385

9 Lognormal 0 1.93024 1.11273

10 Weibull 0 6.91658 0.78088

11 Weibull 0 5.57763 0.71616
8

driving the self-driven simulation model built.

Model Representation

This is the process of translating the conceptual model into a communicative model. A Communi-

cative Model is “a model representation which can be communicated to other humans, can be

judged or compared against the system and the study objectives by more than one human” [Nance

1994]. A communicative model (i.e., a simulation model design specification) may be represented

in any of the following forms: (1) structured, computer-assisted graphs, (2) flowcharts, (3) struc-

tured English and pseudocode, (4) entity-cycle (or activity-cycle) diagrams, (5) condition specifi-

cation [Overstreet and Nance 1985], and (6) more than a dozen diagramming techniques

described in [Martin and McClure 1985].

Several communicative models may be developed; one in the form of Structured English

intended for nontechnical people, another in the form of a micro flowchart intended for a pro-

grammer. Different representation forms may also be integrated in a stratified manner.

The representation forms should be selected based upon: (1) their applicability for describ-

ing the system under study, (2) the technical background of the people to whom the model is to be

communicated, (3) how much they lend themselves to formal analysis and verification, (4) their

support for model documentation, (5) their maintainability, and (6) their automated translatability

into a programmed model.

Case Study

The Visual Simulation Environment™ (VSE) software product [Balci et al. 1995; Orca 1996a,b]

is selected for simulation model development and experimentation. An aerial photograph of the

traffic intersection, obtained from the Town of Blacksburg, is scanned as shown in Figure 10.2.

Vehicle images, tree branches, and light posts on the roads are removed from the scanned image

using Adobe Photoshop™ software. The cleaned image is brought into the VSE Editor by click-

ing, dragging, and dropping. The photographic image is decomposed into components repre-

Table 10.2. Estimated Probabilities of Right Turns

Location Probability

Turning to lane 2 from the combined arrival process for lanes 1&2 0.634

Right turn in lane 2 0.346

Right turn in lane 5 0.160

Right turn in lane 11 0.140
9

sented as circles as shown in Figure 10.3. The components are connected with each other using

the path tool. The traffic light for each lane is depicted by a line which changes color during ani-

mation. New classes are created by inheriting from the built-in VSE class hierarchy. Methods in

each class are specified by using VSE’s very high-level object-oriented scripting language. Vehi-

cles are modeled as dynamic objects and are instantiated at run-time with respect to the interar-

rival times sampled from the probability distributions shown in Table 10.1. Each graphical object

in the model representation is set to belong to a class to inherit the characteristics and behavior

specified in that class.

Figure 10.3. Model Specification in the Visual Simulation Environment.
10

Programming

Translation of the communicative model (model specification) into a programmed model (execut-

able model) constitutes the process of programming. A Programmed Model is an executable sim-

ulation model representation which does not incorporate an experiment design.

The process of programming can be performed by the modeler using a simulation software

product [Banks 1996], a simulation programming language [Banks 1996] or a high-level pro-

gramming language [Balci 1988].

Case Study

The traffic intersection model specification is created by using the VSE Editor tool. Then, by

selecting “Prepare for Simulation” menu option, the model specification is automatically trans-

lated into an executable form. The VSE Simulator tool is used to execute and animate the model

and conduct experiments.

Design of Experiments

This is the process of formulating a plan to gather the desired information at minimal cost and to

enable the analyst to draw valid inferences [Shannon 1975]. An Experimental Model is the pro-

grammed model incorporating an executable description of operations presented in such a plan.

A variety of techniques are available for the design of experiments. Response-surface meth-

odologies can be used to find the optimal combination of parameter values which maximize or

minimize the value of a response variable [Law and Kelton 1991]. Factorial designs can be

employed to determine the effect of various input variables on a response variable [Chapter 6 of

this handbook, Fishman 1978].Variance reduction techniques can be implemented to obtain

greater statistical accuracy for the same amount of simulation [Law and Kelton 1991]. Ranking

and selection techniques can be utilized for comparing alternative systems [Chapter 8 of this

handbook, Law and Kelton 1991; Banks et al. 1996]. Several methods (e.g., replication, batch

means, regenerative) can be used for statistical analysis of simulation output data [Chapter 7 of

this handbook].

Case Study

The VSE Simulator’s design of experiments panel is used to specify the method of replications for

statistical analysis of simulation output data. Fourteen performance measures are defined for all

travel paths:
11

WjL = Average waiting time of vehicles arriving and turning left in lane j, j = 1, 3, 6, 9

WjS = Average waiting time of vehicles arriving and travelling straight in lane j, j = 2, 4, 5, 7, 10, 11

WjR = Average waiting time of vehicles arriving and turning right in lane j, j = 2, 5, 8, 11

The waiting time is the time spent by a vehicle in the whole traffic intersection, from arrival to the

intersection to departure. The experimentation objective is to select the best traffic light timing out

of three alternatives: the current light timing and two other alternatives suggested based on obser-

vation. The best light timing produces the lowest WjL, WjS, and WjR for each lane j.

Experimentation

This is the process of experimenting with the simulation model for a specific purpose. Some pur-

poses of experimentation are [Shannon 1975]: (1) training, (2) comparison of different operating

policies, (3) evaluation of system behavior, (4) sensitivity analysis, (5) forecasting, (6) optimiza-

tion, and (7) determination of functional relations. The process of experimentation produces the

Simulation Results.

Case Study

Using the VSE Editor, the model is instrumented to collect data on each performance measure.

The model is warmed up for 1,000 total number of vehicles passing through the intersection. Data

is collected during the steady-state period of 10,000 vehicles. Identical experimental conditions

are created by way of using the same random number generator seeds for each traffic light timing

alternative. The model is replicated 30 times and each performance measure replication value is

written to output file f, where f = 1, 2, 3, ..., 14. Then, the VSE Output Analyzer tool is used to

open the output files and construct confidence intervals and provide general statistics for each per-

formance measure.

Redefinition

This is the process of: (1) updating the experimental model so that it represents the current form

of the system, (2) altering it for obtaining another set of results, (3) changing it for the purpose of

maintenance, (4) modifying it for other use(s), or (5) redefining a new system to model for study-

ing an alternative solution to the problem.
12

Case Study

Using the VSE Editor, the traffic light timing is modified and a new executable model is produced.

The VSE Simulator is used to conduct experiments with the model under the new traffic light tim-

ing. The VSE Output Analyzer is used to construct confidence intervals and provide general statis-

tics for each performance measure.

Presentation of Simulation Results

In this process, simulation results are interpreted and presented to the decision makers for their

acceptance and implementation. Since all simulation models are descriptive, concluding upon a

solution to the problem requires rigorous analysis and interpretation of the results.

The presentation should be made with respect to the intended use of the model. If the model

is used in a “what if” environment, the results should be integrated to support the decision maker

in the decision-making process. Complex simulation results may also necessitate such an integra-

tion. The report documenting the study and its results together with its presentation also consti-

tutes a form of supporting the decision maker.

Case Study

The experimentation results under three traffic light timing alternatives are presented to the deci-

sion makers. There was not a single alternative that reduced the average waiting time in every

travel path. However, alternative 1 was found to reduce the waiting times to acceptable levels in

all travel paths and hence, it is accepted and implemented by the decision makers.

10.3 VERIFICATION, VALIDATION AND TESTING PRINCIPLES

According to the Webster’s dictionary, a principle is defined as “1. an accepted or professed rule

of action or conduct. 2. a fundamental, primary, or general law or truth from which others are

derived. 3. a fundamental doctrine or tenet; a distinctive ruling opinion.” All three definitions

above apply to the way the term “principle” is used herein.

Principles are important to understand the foundations of VV&T. The principles help the

researchers, practitioners and managers better comprehend what VV&T is all about. They serve to

provide the underpinnings for over 75 VV&T techniques, described in Section 10.4, that can be

used throughout the life cycle. Understanding and applying these principles is crucially important

for the success of a simulation study.

The fifteen principles presented herein are established based on the experience described in
13

the published literature and the author’s experience during his VV&T research since 1978. The

principles are listed below in no particular order.

Principle 1: VV&T must be conducted throughout the entire life cycle of a simulation study

VV&T is not a phase or step in the life cycle, but a continuous activity throughout the entire life

cycle presented in Figure 10.1. Conducting VV&T for the first time in the life cycle when the

experimental model is complete is analogous to the teacher who gives only a final examination

[Hetzel 1984]. No opportunity is provided throughout the semester to notify the student that he or

she has serious deficiencies. Severe problems may go undetected until it is too late to do anything

but fail the student. Frequent tests and homeworks throughout the semester are intended to inform

the students about their deficiencies so that they can study more to improve their knowledge as the

course progresses.

The situation in VV&T is exactly analogous. The VV&T activities throughout the entire life

cycle are intended to reveal any quality deficiencies that might be present as the simulation study

progresses from problem definition to the presentation of simulation results. This allows us to

identify and rectify quality deficiencies during the life cycle phase in which they occur.

A simulation model goes through five levels of testing during its life cycle:

• Level 1: Private Testing. Performed by the modeler in private with no documentation.
Although informal, private testing is strongly encouraged prior to formal submodel/
module testing [Beizer 1990].

• Level 2: Submodel (Module) Testing. Planned, performed and documented indepen-
dently by the SQA group. Submodel testing treats each submodel as a stand-alone unit,
with its own input and output variables, that can be tested without other submodels.

• Level 3: Integration Testing. Planned, performed and documented independently by the
SQA group. Its objective is to substantiate that no inconsistencies in interfaces and com-
munications between the submodels exist when the submodels are combined to form the
model. It is assumed that each submodel has passed the submodel testing prior to inte-
gration testing.

• Level 4: Model (Product) Testing. Planned, performed and documented independently by
the SQA group. Its objective is to assess the validity of the overall model behavior.

• Level 5: Acceptance Testing. Planned, performed and documented independently by the
sponsor of the simulation study or the independent third party hired by the sponsor. Its
objective is to establish the sufficient credibility of the simulation model so that its
results can be accepted and used by the sponsor.
14

Principle 2: The outcome of simulation model VV&T should not be considered as a binary
variable where the model is absolutely correct or absolutely incorrect

Since a model is an abstraction of a system, perfect representation is never expected. Shannon

[1975] indicates that “it is not at all certain that it is ever theoretically possible to establish if we

have an absolutely valid model; even if we could, few managers would be willing to pay the

price.”

The outcome of model VV&T should be considered as a degree of credibility on a scale

from 0 to 100, where 0 represents absolutely incorrect and 100 represents absolutely correct. As

depicted in Figure 10.4 [Shannon 1975; Sargent 1996], as the degree of model credibility

increases, so will the model development cost. At the same time, the model utility will also

increase, but most likely at a decreasing rate. The point of intersection of two curves changes from

one model to another.

Model Development Cost

0 100Degree of Model Credibility

Cost Utility

Model Utility

Figure 10.4. Model Credibility versus Cost and Utility.
15

Principle 3: A simulation model is built with respect to the study objectives and its
credibility is judged with respect to those objectives

The objectives of a simulation study are identified in the Formulated Problem phase and explicitly

and clearly specified in the System and Objectives Definition phase of the life cycle shown in Fig-

ure 10.1. Accurate specification of the study objectives is crucial for the success of a simulation

study. The model is either developed from scratch or an existing model is modified for use or an

available one is selected for use as-is all with respect to the study objectives.

The study objectives dictate how representative the model should be. Sometimes, 60% rep-

resentation accuracy may be sufficient; sometimes, 95% accuracy may be required depending on

the importance of the decisions that will be made based on the simulation results. Therefore,

model credibility must be judged with respect to the study objectives. The adjective “sufficient”

must be used in front of the terms such as model credibility, model validity or model accuracy to

indicate that the judgment is made with respect to the study objectives. It is more appropriate to

say “the model is sufficiently valid” than saying “the model is valid.” Here “sufficiently valid”

implies that the validity is judged with respect to the study objectives and found to be sufficient.

Principle 4: Simulation model VV&T requires independence to prevent developer’s bias

Model testing is meaningful when conducted in an independent manner by an unbiased person.

The model developer with the most knowledge of the model may be the least independent when it

comes to testing. The developers are often biased because they fear that negative testing results

may be used for their performance appraisal. Similarly, the organization which is contracted to

conduct the simulation study is also often biased because negative testing results can damage the

credibility of the organization and may lead to the loss of future contracts.

The independence in model testing can be achieved in two ways: (1) establishing an SQA

group within the organization conducting the simulation study, and (2) using an independent third

party hired by the sponsor of the simulation study. The first one is required to achieve indepen-

dence in level 3 and 4 testing within the organization as described under Principle 1. The SQA

group must be independent from the department in charge of conducting the simulation study and

should report to the top management. The SQA group is responsible for planning, performing and

documenting all level 2, 3 and 4 tests in an unbiased manner. It should be made clear to the simu-

lation project team that the main thrust of testing is to detect and document faults; it is not perfor-

mance appraisal of the project team. This point must be persuasively communicated to everyone

involved so that full cooperation is achieved in discovering and documenting errors.

The second one is required to achieve independence in level 5 (acceptance) testing as
16

described under Principle 1. The requirements for acceptance testing must be specified in the legal

contract by the sponsor. The test cases to be used must be well documented. Although the sponsor

can perform the acceptance testing, it is recommended that an independent third party contracted

by the sponsor be responsible for the testing. In that way, the organization conducting the simula-

tion study cannot claim that the sponsor is biased.

Principle 5: Simulation model VV&T is difficult and requires creativity and insight

One must thoroughly understand the whole simulation model so as to design and implement

effective tests and identify adequate test cases. Knowledge of the problem domain, expertise in

the modeling methodology and prior modeling and VV&T experience are required for successful

testing.

However, it is not possible for one person to fully understand all aspects of a large and com-

plex model especially if the model is a stochastic one containing hundreds of concurrent activi-

ties. The fundamental human limitation, called Hrair Limit, indicates that a human being cannot

process more than 7 ± 2 entities simultaneously. Hence, testing a complex simulation model is a

very difficult task and it requires creativity and insight.

The model developers are usually the most qualified to show the creativity and insight

required for successful testing since they are intimately knowledgeable about the internals of a

model. However, they are usually biased when it comes to model testing and they cannot be fully

utilized. Therefore, the inability to use model developers effectively for testing increases the diffi-

culty of testing.

False beliefs exist about testing as indicated by Hetzel [1984]: “testing is easy; anyone can

do testing; no training or prior experience is required.” The difficulty of model VV&T must not be

underestimated. The model testing must be well planned and administered by the SQA group.

Principle 6: Simulation model credibility can be claimed only for the prescribed conditions
for which the model is tested

The accuracy of the input-output transformation of a simulation model is affected by the charac-

teristics of the input conditions. The transformation that works for one set of input conditions may

produce absurd output when conducted under another set of input conditions.

In the case study, for example, a stationary simulation model is built assuming constant

arrival rate of vehicles during the evening rush hour and its credibility may be judged sufficient

with respect to the evening rush hour input conditions. However, the simulation model will show

invalid behavior when run under the input conditions of the same traffic intersection between 7:00
17

a.m. and 6:00 p.m. During this time period, the arrival rate of vehicles is not constant and a non-

stationary simulation model is required. Hence, establishing sufficient model credibility for the

evening rush hour conditions does not imply sufficient model credibility for input conditions dur-

ing other times.

The prescribed conditions for which the model credibility has been established is called the

domain of applicability of the simulation model [Schlesinger et al. 1979]. Model credibility can

be claimed only for the domain of applicability of the model.

Principle 7: Complete simulation model testing is not possible

Exhaustive (complete) testing requires that the model is tested under all possible input conditions.

Combinations of feasible values of model input variables can generate millions of logical paths in

the model execution. Due to time and budgetary constraints, it is impossible to test the accuracy of

millions of logical paths. Therefore, in model testing, the purpose is to increase our confidence in

model credibility as much as dictated by the study objectives rather than trying to test the model

completely.

How much to test or when to stop testing is dependent on the desired domain of applicabil-

ity of the simulation model. The larger the domain the more testing is required. The domain of

applicability is determined with respect to the study objectives.

Hundreds of logical paths may need to be tested so as to substantiate model credibility

under a set of prescribed conditions. Due to budgetary and time constraints, all logical paths may

not be tested. Test data or test cases are prepared to test the logical paths in a random manner. Test

data can be generated by using: (1) random values, (2) deterministic values, (3) minimum values

for all input variables, (4) maximum values for all input variables, (5) a mixture of minimum and

maximum values for all input variables, (6) invalid values, and (7) simulated values.

When using test data, it must be noted that the law of large numbers simply does not apply.

The question is not how much test data is used, but what percentage of the valid input domain is

covered by the test data. The higher the percentage of coverage the higher the confidence we can

gain in model credibility.

Principle 8: Simulation model VV&T must be planned and documented

Testing is not a phase or step in the model development life cycle; it is a continuous activity

throughout the entire life cycle. The tests should be identified, test data or cases should be pre-

pared, tests should be scheduled and the whole testing process should be documented.

Ad hoc or haphazard testing does not provide reasonable measurement of model accuracy.
18

Hetzel [1984] points out that “such testing may even be harmful in leading us to a false sense of

security.” Careful planning is required for successful testing.

Planning and documenting model testing involves at least three groups of people: (1) spon-

sor of the simulation study, (2) SQA group of the organization conducting the simulation study,

and (3) simulation project management. The sponsor is responsible for documenting the tests and

specifying the test cases or data with which the acceptance testing will be performed. It is recom-

mended that a plan for acceptance testing be made part of the legal contract between sponsor and

contractor of the simulation study. If the study is conducted internally within an organization,

acceptance testing plan should be part of the requirements specification document. The SQA

group is responsible for planning, performing and documenting level 2 (module), level 3 (integra-

tion) and level 4 (model) testing.

A test plan is a document describing what is selected for testing, test data base and code,

test specifications, standards and conventions, test control, test configuration, test tools and the

results expected. An acceptance test plan is presented by Beizer [1990].

Principle 9: Type I, II and III errors must be prevented

Three types of errors may be committed in conducting a simulation study as depicted in Figure

10.5 [Balci and Nance 1985]. A Type I Error is committed when the simulation results are

rejected when in fact they are sufficiently credible. A Type II Error occurs when invalid simulation

results are accepted as if they are sufficiently valid. A Type III Error occurs if the wrong problem

is solved and committed when the formulated problem does not completely contain the actual

problem.

Committing a Type I Error unnecessarily increases the cost of model development. The con-

sequences of Type II and Type III Errors can be catastrophic especially when critical decisions are

made on the basis of simulation results. A Type III Error implies that the problem solution and the

simulation study results will be irrelevant when it is committed.

The probability of committing a Type I Error is called Model Builder’s Risk and the proba-

bility of committing a Type II Error is called Model User’s Risk [Balci and Sargent 1981]. VV&T

activities must focus on minimizing these risks as much as possible. Balci and Sargent [1981]

show how to quantify these risks when using hypothesis testing for the validation of a simulation

model with two or more output variables.

Figure 10.5 illustrates the occurrence of three types of errors assuming that the simulation

study results are certified by an independent organization. Whenever feasible, simulation results

should be independently certified so as to remove the developer’s bias and promote independent
19

VV&T (See Principle 4).

Does the formulated
problem contain the complete

actual problem?

Is the
formulated problem

represented by a sufficiently
credible simulation

model?

Is the
credibility of simulation

results certified?

Is the
credibility of simulation

results certified?

Are the
simulation results

accepted?

Are the
simulation results

accepted?

Successful
Ending

Unsuccessful
Ending

The actual problem has
a solution which is

sufficiently credible.

The actual problem does not have a
solution which is sufficiently credible.

Type I Error
is committed

Type II Error
is committed

Ending with
Type I Error

Ending with
Type II Error

Formulated
Problem

Type III Error
is committed

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 10.5. Type I, II and III Errors in a Simulation Study.
20

Principle 10: Errors should be detected as early as possible in the life cycle of a simulation
study

A rush to model implementation is a common problem in simulation studies. Sometimes simula-

tion models are built by direct implementation in a simulation system or (simulation) program-

ming language with no or very little formal model specification. As a result of this harmful build-

and-fix approach, experimental model VV&T becomes the only main credibility assessment

stage.

Detection and correction of errors as early as possible in the life cycle of a simulation study

must be the primary objective. Sufficient time and energy must be expended for each VV&T

activity shown in Figure 10.1. Nance [1994] points out that, detecting and correcting major mod-

eling errors during the process of model implementation and in later phases is very time consum-

ing, complex and expensive. Some vital errors may not be detectable in later phases resulting in

the occurrence of a Type II or III error.

Nance and Overstreet [1987] advocate this principle and provide diagnostic testing tech-

niques for models represented in the form of condition specification. A model analyzer software

tool is included in the definition of a simulation model development environment so as to provide

effective early detection of model specification errors [Balci and Nance 1992; Derrick and Balci

1995; Balci et al. 1995].

Principle 11: Multiple response problem must be recognized and resolved properly

Figure 10.6 shows a simulation model with k output variables (responses or performance mea-

sures) and q input variables representing a system with corresponding k output variables and q

input variables. Superscript m indicates model and s indicates system. SM stands for submodel

and SS stands for subsystem.

Due to the multiple response problem described by Shannon [1975], the validity of a simu-

lation model with two or more output variables (responses) cannot be tested by comparing the

corresponding model and system output variables one at a time (i.e., versus , versus

 versus as shown in Figure 10.6) using a univariate statistical procedure. A multi-

variate statistical procedure must be used to incorporate the correlations among the output vari-

ables in the comparison. Two such multivariate statistical techniques are presented by Balci and

Sargent [1984] using the Hotelling’s T2 statistic for constructing ellipsoidal joint confidence

regions to assess model validity. The techniques are described below.

The first technique requires independence between the model and system output data and is

O1
m

O1
s

O2
m

O2
s … Ok

m, , Ok
s

21

intended for self-driven simulation models of observable systems. Assume that the model and sys-

tem each has k output variables as depicted in Figure 10.6 with n observations on each model out-

put variable and N observations on each system output variable. Let

and be the k dimensional vectors of population means of model and sys-

tem output variables, respectively. Let and be

the k dimensional vectors of sample means of observations on model and system output variables,

respectively. Then, the 100(1 – γ)% joint confidence region is specified by those vectors

 satisfying the inequality

(1)

where S is the pooled variance-covariance matrix and is the upper γ percentage

point of Hotelling’s T2 distribution with degrees of freedom k and n+N–k–1.

The second technique requires paired observations between the model and system output

variables and is intended for trace-driven simulation models. Let be the k

dimensional vector of sample means of differences between the paired observations on the model

SIMULATION
MODEL

SYSTEM

Model Output Variables System Output Variables

Correspondence

Correspondence

Inference

Ok-1
m Ok

mO2
mO1

m

Iq-1
m Iq

mI2
mI1

m

Ok-1
s Ok

sO2
sO1

s

Iq-1
s Iq

sI2
sI1

s
Model Input Variables System Input Variables

SMa SMb SMc

SMhSMgSM f

SMd

SM i SM j

SMe

SSa SSb SSc

SShSSgSS f

SSd

SS i SS j

SSe

Figure 10.6. Model and System Characteristics.

µm()' µ1
m µ2

m … µk
m, , ,[]=

µs()' µ1
s µ2

s … µk
s, , ,[]=

o
m()' o1

m
o2

m … ok
m, , ,[]= o

s()' o1
s

o2
s … ok

s, , ,[]=

δ µm µs
–()=

o
m

o
s

– δ–()′S 1–
o

m
o

s
– δ–() n N+

nN
-------------Tγ k; n N k– 1–+,

2≤

Tγ k; n N k– 1–+,
2

d ′ d1 d2 … dk,,,[]=
22

and system output variables with a sample size of N. The 100(1 – γ)% joint confidence region

consists of the vectors satisfying the inequality

(2)

where Sd is the variance-covariance matrix of the differences.

When k = 3, the joint confidence region can be presented visually as illustrated in Figure

10.7 and can be used to assess the model accuracy with an exact level of 100(1 – γ)% confidence.

We can conclude that we are 100(1 – γ)% confident that the differences between the population

means of corresponding model and system output variables are contained within the joint confi-

dence region shown in Figure 10.7. Ideally, the joint confidence region contains zero at its center

and the smaller the size it has, the better it is. Any deviation from the idealistic case is an indica-

tion of the degree of invalidity. As k increases, interpretation of the joint confidence region

becomes difficult, but not impossible. With the use of computer-aided assistance, the model valid-

ity can be examined.

µd

N d µd
–()′Sd

1–
d µd

–() Tγ k; N k–,
2≤

µ − µm
3

s
3

µ − µm
1

s
1

µ − µm
2

s
2

Figure 10.7. Joint Confidence Region Representing the Validity of a Simulation Model
with Three Output Variables.
23

Principle 12: Successfully testing each submodel (module) does not imply overall model
credibility

Suppose that a simulation model is composed of submodels (SMx) representing subsystems (SSx)

respectively as depicted in Figure 10.6. Submodel x can be tested individually by comparison to

subsystem x, where x = a, b, ..., j, using many of the VV&T techniques described in Section 10.4.

The credibility of each submodel is judged to be sufficient with some error that is accept-

able with respect to the study objectives. We may find each submodel to be sufficiently credible,

but this does not imply that the whole model is sufficiently credible. The allowable errors for the

submodels may accumulate to be unacceptable for the whole model. Therefore, the whole model

must be tested even if each submodel is found to be sufficiently credible.

Principle 13: Double validation problem must be recognized and resolved properly

If data can be collected on both system input and output, model validation can be conducted by

comparing model and system outputs obtained by running the model with the “same” input data

that drives the system. Determination of the “same” is yet another validation problem within

model validation. Therefore, this is called the double validation problem.

This is an important problem that is often overlooked. It greatly affects the accuracy of

model validation. If invalid input data models are used, we may still find the model and system

outputs sufficiently matching each other and conclude incorrectly on the sufficient validity of the

model.

The “same” is determined by validating the input data models. In the case study, the input

data models are the probability distributions given in Table 10.1. We must substantiate that the

input data models have sufficient accuracy in representing the system input process. Input data

modeling deals with characterization of the system input data [Johnson and Mollaghasemi 1994;

Vincent and Law 1995]. Simulation models are categorized into two classes with respect to the

way they are driven: trace-driven and self-driven. In trace-driven simulation, the system input is

characterized by the trace data collected from the instrumented system. The trace data becomes

the input data model which should be validated against the actual system input process.

In self-driven simulations, the simulation model is driven by randomly sampling from the

probabilistic models developed to represent the data collected on the system input process. Usu-

ally, input data modeling is achieved by fitting standard probability distributions to observed data.

The input data models should be constructed using a multivariate statistical approach if the input

variables are correlated. Individually building a probabilistic model for each input variable does

not incorporate the correlations among the input variables; therefore, a multivariate probabilistic
24

approach should be used.

Principle 14: Simulation model validity does not guarantee the credibility and acceptability
of simulation results

Model validity is a necessary but not a sufficient condition for the credibility and acceptability of

simulation results. We assess model validity with respect to the study objectives by comparing the

model with the system as it is defined. If the study objectives are incorrectly identified and/or the

system is improperly defined, the simulation results will be invalid; however, we may still find the

model to be sufficiently valid by comparing it with the improperly defined system and with

respect to the incorrectly identified objectives.

A distinct difference exists between the model credibility and the credibility of simulation

results. Model credibility is judged with respect to the system (requirements) definition and the

study objectives, whereas the credibility of simulation results is judged with respect to the actual

problem definition and involves the assessment of system definition and identification of study

objectives. Therefore, model credibility assessment is a subset of credibility assessment of simu-

lation results.

Principle 15: Formulated problem accuracy greatly affects the acceptability and credibility
of simulation results

It has been said that a problem correctly formulated is half solved [Watson 1976]. Albert Einstein

once indicated that the correct formulation of a problem was even more crucial than its solution.

The ultimate goal of a simulation study should not be just to produce a solution to a problem but

to provide one that is sufficiently credible and accepted and implemented by the decision makers.

We cannot claim that we conducted an excellent simulation study but the decision makers did not

accept our results and we cannot do anything about it. Ultimately we are responsible for the

acceptability and usability of our simulation solutions although in some cases we cannot affect or

control the acceptability.

Formulated problem accuracy assessed by conducting Formulated Problem VV&T greatly

affects the credibility and acceptability of simulation results. Insufficient problem definition and

inadequate sponsor involvement in defining the problem are identified as two important problems

in the management of computer-based models. It must be recognized that if problem formulation

is poorly conducted resulting in an incorrect problem definition, no matter how fantastically we

solve the problem, the simulation study results will be irrelevant.

Balci and Nance [1985] present an approach to problem formulation and 38 indicators for

assessing the formulated problem accuracy.
25

10.4 VERIFICATION, VALIDATION AND TESTING TECHNIQUES

More than 75 VV&T techniques are presented in this section. Most of these techniques come

from the software engineering discipline and the remaining are specific to the modeling and simu-

lation field. The selected software VV&T techniques which are applicable for simulation model

VV&T are presented in a terminology understandable by a simulationist. Descriptions of some

software VV&T techniques are changed so as to make them directly applicable and understand-

able for simulation model VV&T.

Figure 10.8 shows a taxonomy which classifies the VV&T techniques into four primary cat-

egories: informal, static, dynamic, and formal. A primary category is further divided into second-

ary categories as shown in italics. The use of mathematical and logic formalism by the techniques

in each primary category increases from informal to formal from left to right. Likewise, the com-

plexity also increases as the primary category becomes more formal.

It should be noted that some of the categories presented in Figure 10.8 possess similar char-

acteristics and in fact have techniques which overlap from one category to another. However, a

distinct difference between each classification exists, as it is evident in the discussion of each in

this section. The categories and techniques in each category are described below.

Informal VV&T Techniques

Informal techniques are among the most commonly used. They are called informal because the

tools and approaches used rely heavily on human reasoning and subjectivity without stringent

mathematical formalism. The “informal” label does not imply any lack of structure or formal

guidelines for the use of the techniques. In fact, these techniques are applied using well structured

approaches under formal guidelines and they can be very effective if employed properly.

Audit

An audit is undertaken to assess how adequately the simulation study is conducted with respect to

established plans, policies, procedures, standards and guidelines. The audit also seeks to establish

traceability within the simulation study. When an error is identified, it should be traceable to its

source via its audit trail. The process of documenting and retaining sufficient evidence about how

the accuracy is substantiated is called an audit trail [Perry 1995]. Auditing is carried out on a peri-

odic basis through a mixture of meetings, observations and examinations [Hollocker 1987]. Audit

is a staff function and serves as the “eyes and ears of management.” [Perry 1995]
26

Verification, Validation and Testing Techniques

Audit
Desk Checking
Documentation Checking
Face Validation
Inspections
Reviews
Turing Test
Walkthroughs

Informal

Cause-Effect Graphing
Control Analysis
	 Calling Structure Analysis
	 Concurrent Process Analysis
	 Control Flow Analysis
	 State Transition Analysis
Data Analysis
	 Data Dependency Analysis
	 Data Flow Analysis
Fault/Failure Analysis
Interface Analysis
	 Model Interface Analysis
	 User Interface Analysis
Semantic Analysis
Structural Analysis
Symbolic Evaluation
Syntax Analysis
Traceability Assessment

Static

Induction
Inductive Assertions
Inference
Lambda Calculus
Logical Deduction
Predicate Calculus
Predicate Transformation
Proof of Correctness

Formal

Acceptance Testing
Alpha Testing
Assertion Checking
Beta Testing
Bottom-Up Testing
Comparison Testing
Compliance Testing
	 Authorization Testing
	 Performance Testing
	 Security Testing
	 Standards Testing
Debugging
Execution Testing
	 Execution Monitoring
	 Execution Profiling
	 Execution Tracing
Fault/Failure Insertion Testing
Field Testing
Functional (Black-Box)Testing
Graphical Comparisons
Interface Testing
	 Data Interface Testing
	 Model Interface Testing
	 User Interface Testing
Object-Flow Testing
Partition Testing
Predictive Validation
Product Testing
Regression Testing
Sensitivity Analysis
Special Input Testing
	 Boundary Value Testing
	 Equivalence Partitioning Testing
	 Extreme Input Testing
	 Invalid Input Testing
	 Real-Time Input Testing
	 Self-Driven Input Testing
	 Stress Testing
	 Trace-Driven Input Testing
Statistical Techniques
Structural (White-Box)Testing
	 Branch Testing
	 Condition Testing
	 Data Flow Testing
	 Loop Testing
	 Path Testing
	 Statement Testing
Submodel/Module Testing
Symbolic Debugging
Top-Down Testing
Visualization/Animation

Dynamic

Figure 10.8. A Taxonomy of Verification, Validation and Testing Techniques.
27

Desk Checking

Desk Checking (also known as Self-Inspection) is the process of thoroughly examining one’s

work to ensure correctness, completeness, consistency and unambiguity. It is considered to be the

very first step in VV&T and is particularly useful for the early stages of development. To be effec-

tive, Desk Checking should be conducted carefully and thoroughly preferably by another person

since it is usually difficult to see one’s own errors [Adrion et al. 1982]. Syntax checking, cross-

reference checking, convention violation checking, detailed comparison to specification, reading

the code, the control flowgraph analysis and path sensitizing should all be conducted as part of

desk checking [Beizer 1990].

Documentation Checking

Documentation Checking is conducted to ensure correctness, completeness, consistency, and

unambiguity of all model documentation and to justify that all documentation is up-to-date with

respect to model logic specification. Often a model component logic is modified but the compo-

nent’s documentation is not updated. Sometimes model logic is documented erroneously.

In the case study, the documentation delivered to the decision makers must be an accurate

and up-to-date description of model logic and its results.

Face Validation

The project team members, potential users of the model, people knowledgeable about the system

under study, based on their estimates and intuition, subjectively compare model and system

behaviors under identical input conditions and judge whether the model and its results are reason-

able. Face Validation is useful as a preliminary approach to validation [Hermann 1967].

In the case study, the confidence intervals for the 14 performance measures obtained under

the currently used traffic light timing can be presented to experts. The experts can judge if average

waiting times of vehicles are reasonable under the observed rush-hour traffic conditions.

Inspections

Inspections are conducted by a team of four to six members for any model development phase

such as system and objectives definition, conceptual model design, or communicative model

design. For example, in the case of communicative model design inspection, the team consists of:

(1) Moderator: manages the inspection team and provides leadership; (2) Reader: narrates the

model design (communicative model) and leads the team through it; (3) Recorder: produces a
28

written report of detected faults; (4) Designer: is the representative of the team which created the

model design; (5) Implementer: translates the model design into code (programmed model); and

(6) Tester: SQA group representative.

An inspection goes through five distinct phases: overview, preparation, inspection, rework

and follow-up [Schach 1996]. In phase I, the designer gives an overview of the (sub)model design

to be inspected. The (sub)model characteristics such as purpose, logic and interfaces are intro-

duced and related documentation is distributed to all participants to study. In phase II, the team

members prepare individually for the inspection by examining the documents in detail. The mod-

erator arranges the inspection meeting with an established agenda and chairs it in phase III. The

reader narrates the (sub)model design documentation and leads the team through it. The inspec-

tion team is aided by a checklist of queries during the fault finding process. The objective is to find

and document the faults, not to correct them. The recorder prepares a report of detected faults

immediately after the meeting. Phase IV is for rework in which the designer resolves all faults and

problems specified in the written report. In the final phase, the moderator ensures that all faults

and problems have been resolved satisfactorily. All changes must be examined carefully to ensure

that no new errors have been introduced as a result of a fix.

Major differences exist between inspections and walkthroughs. An inspection is a five-step

process, but walkthroughs consist of only two steps. The inspection team uses the checklist

approach for uncovering errors. The procedure used in each phase of the inspection technique is

formalized. The inspection process takes much longer than a walkthrough; however, the extra

time is justified because an inspection is a powerful and cost-effective way of detecting faults

early in the model development life cycle. [Ackerman et al. 1983; Beizer 1990; Dobbins 1987;

Knight and Myers 1993; Perry 1995; Schach 1996]

Reviews

The review is conducted in a similar manner as the inspection and walkthrough except in the way

the team members are selected. The review team also involves managers. The review is intended

to give management and study sponsors evidence that the model development process is being

conducted according to stated study objectives and evaluate the model in light of development

standards, guidelines and specifications. As such, the review is a higher level technique than the

inspection and walkthrough.

Each review team member examines the model documentation prior to the review. The team

then meets to evaluate the model relative to specifications and standards, recording defects and

deficiencies. The review team may be given a set of indicators to measure such as: (1) appropriate-
29

ness of the definition of system and study objectives, (2) adequacy of all underlying assumptions,

(3) adherence to standards, (4) modeling methodology used, (5) model representation quality, (6)

model structuredness, (7) model consistency, (8) model completeness, and (9) documentation.

The result of the review is a document portraying the events of the meeting, deficiencies identified

and review team recommendations. Appropriate action may then be taken to correct any deficien-

cies.

In contrast with inspections and walkthroughs, which concentrate on correctness assess-

ment, reviews seek to ascertain that tolerable levels of quality are being attained. The review team

is more concerned with model design deficiencies and deviations from stated model development

policy than it is with the intricate line-by-line details of the implementation. This does not imply

that the review team is not concerned with discovering technical flaws in the model, only that the

review process is oriented towards the early stages of the model development life cycle. [Hol-

locker 1987; Perry 1995; Sommerville 1996; Whitner and Balci 1989]

Turing Test

The Turing Test is based upon the expert knowledge of people about the system under study. The

experts are presented with two sets of output data obtained, one from the model and one from the

system, under the same input conditions. Without identifying which one is which, the experts are

asked to differentiate between the two. If they succeed, they are asked how they were able to do it.

Their response provides valuable feedback for correcting model representation. If they cannot dif-

ferentiate, our confidence in model validity is increased. [Schruben 1980; Turing 1963; Van Horn

1971]

In the case study, two confidence intervals are first constructed for the average waiting time

of vehicles arriving and turning left in lane 1: (1) confidence interval estimated via simulation, and

(2) confidence interval constructed based on data collected at the traffic intersection. The two sets

of confidence intervals are presented to an expert who has intimate knowledge of the traffic inter-

section operation. Without identifying which one is which, the expert is asked to differentiate

between the two. If the expert cannot identify which one belongs to the real traffic intersection,

then the model is considered sufficiently valid with respect to that performance measure. This pro-

cess is repeated for each of the 14 performance measures.
30

Walkthroughs

Walkthroughs are conducted by a team composed of a coordinator, model developer and three to

six other members. Except the model developer, all other members should not be directly involved

in the development effort. A typical structured walkthrough team consists of: (1) Coordinator:

most often is the SQA group representative who organizes, moderates and follows up the walk-

through activities; (2) Presenter: most often is the model developer; (3) Scribe: documents the

events of the walkthrough meetings; (4) Maintenance Oracle: considers long-term implications;

(5) Standards Bearer: concerned with adherence to standards; (6) Client Representative: reflects

the needs and concerns of the client; and (7) Other reviewers such as simulation project manager

and auditors.

The main thrust of the walkthrough technique is to detect and document faults; it is not per-

formance appraisal of the development team. This point must be made clear to everyone involved

so that full cooperation is achieved in discovering errors.

The coordinator schedules the walkthrough meeting, distributes the walkthrough material to

all participants well in advance of the meeting in order to allow for careful preparation and chairs

the meeting. During the meeting, the presenter walks the other members through the walkthrough

documents. The coordinator encourages questions and discussion so as to uncover any faults.

[Adrion et al. 1982; Deutsch 1982; Myers 1978, 1979; Yourdon 1985]

Static VV&T Techniques

Static VV&T techniques are concerned with accuracy assessment on the basis of characteristics of

the static model design and source code. Static techniques do not require machine execution of the

model, but mental execution can be used. The techniques are very popular and widely used, with

many automated tools available to assist in the VV&T process. The simulation language compiler

is itself a static VV&T tool.

Static VV&T techniques can obtain a variety of information about the structure of the

model, modeling techniques and practices employed, data and control flow within the model, and

syntactical accuracy. [Whitner and Balci 1989]

Cause-Effect Graphing

Cause-effect graphing assists model correctness assessment by addressing the question of “what

causes what in the model representation?” It is performed by first identifying causes and effects in

the system being modeled and by examining if they are accurately reflected in the model specifi-

cation. In the case study, the following causes and effects may be identified: (1) the change of lane
31

1 light to red immediately causes the vehicles in lane 1 to stop, (2) an increase in the duration of

lane 1 green light causes a decrease in the average waiting time of vehicles in lane 1, and (3) an

increase in the arrival rate of lane 1 vehicles causes an increase in the average number of vehicles

at the intersection.

As many causes and effects as possible are listed and the semantics are expressed in a

cause-effect graph. The graph is annotated to describe special conditions or impossible situations.

Once the cause-effect graph has been constructed, a decision table is created by tracing back

through the graph to determine combinations of causes which result in each effect. The decision

table is then converted into test cases with which the model is tested. [Pressman 1996; Myers

1979; Whitner and Balci 1989]

Control Analysis

The control analysis category consists of Calling Structure Analysis, Concurrent Process Analy-

sis, Control Flow Analysis and State Transition Analysis. These techniques are used for the analy-

sis of the control characteristics of the model.

Calling Structure Analysis is used to assess model accuracy by identifying who calls

whom and who is called by whom. The “who” could be a module, procedure, subroutine, func-

tion, or a method in an object-oriented model. [Miller et al. 1995]

In the case study, inaccuracies caused by message passing (e.g., sending a message to a non-

existent object) in the object-oriented traffic intersection VSE model can be revealed by analyzing

which methods invoke a method and by which methods a method is invoked.

Concurrent Process Analysis is especially useful for parallel and distributed simulations

presented in Chapter 13 of this handbook. Model accuracy is assessed by analyzing the overlap or

concurrency of model components executed in parallel or as distributed. Such analysis can reveal

synchronization problems such as deadlocks. [Rattray 1990]

Control Flow Analysis requires the development of a graph of the model where conditional

branches and model junctions are represented by nodes and the model segments between such

nodes are represented by links [Beizer 1990]. A node of the model graph usually represents a log-

ical junction where the flow of control changes, while an edge represents towards which junction

it changes. This technique examines sequences of control transfers and is useful for identifying

incorrect or inefficient constructs within model representation.

Nance and Overstreet [1987] propose several diagnostics which are based on analysis of

graphs constructed from a particular form of model specification called Condition Specification

[Overstreet and Nance 1985; Moose and Nance 1989]. The diagnostic assistance is categorized
32

into three: (1) analytical—determination of the existence of a property, (2) comparative—mea-

sures of differences among multiple model representations, and (3) informative—characteristics

extracted or derived from model representations. Action cluster attribute graph, action cluster inci-

dence graph and run-time graph constitute the basis for the diagnosis.

The analytical diagnosis is conducted by measuring the following indicators: attribute utili-

zation, attribute initialization, action cluster completeness, attribute consistency, connectedness,

accessibility, out-complete and revision consistency. The comparative diagnosis is done by mea-

suring attribute cohesion, action cluster cohesion and complexity. The following indicators are

measured for the informative diagnosis: attribute classification, precedence structure, decomposi-

tion and run-time graph [Nance and Overstreet 1987].

State Transition Analysis requires the identification of a finite number of states the model

execution goes through. A state transition diagram is created showing how the model transitions

from one state to another. Model accuracy is assessed by analyzing the conditions under which a

state change occurs. This technique is especially effective for those simulation models created

under the activity scanning, three-phase, and process interaction conceptual frameworks [Balci

1988].

Data Analysis

The data analysis category consists of Data Dependency Analysis and Data Flow Analysis. These

techniques are used to ensure that (1) proper operations are applied to data objects (e.g., data

structures, event lists, linked lists), (2) the data used by the model are properly defined, and (3) the

defined data are properly used [Perry 1995].

Data Dependency Analysis involves the determination of what variables depend on what

other variables [Dunn 1984]. For parallel and distributed simulations, the data dependency knowl-

edge is critical for assessing the accuracy of process synchronization.

Data Flow Analysis is used to assess model accuracy with respect to the use of model vari-

ables. This assessment is classified according to the definition, referencing and unreferencing of

variables [Adrion et al. 1982], i.e., when variable space is allocated, accessed and deallocated. A

data flow graph is constructed to aid in the data flow analysis. The nodes of the graph represent

statements and corresponding variables. The edges represent control flow.

Data flow analysis can be used to detect undefined or unreferenced variables (much as in

static analysis) and, when aided by model instrumentation, can track minimum and maximum

variable values, data dependencies and data transformations during model execution. It is also

useful in detecting inconsistencies in data structure declaration and improper linkages among sub-
33

models. [Allen and Cocke 1976; Whitner and Balci 1989]

Fault/Failure Analysis

Fault (incorrect model component) / Failure (incorrect behavior of a model component) Analysis

uses model input-output transformation descriptions to identify how the model might logically

fail. The model design specification is examined to determine if any failure-mode possibilities

could logically occur and in what context and under what conditions. Such model examinations

often lead to identification of model defects. [Miller et al. 1995]

Interface Analysis

The interface analysis category consists of model interface analysis and user interface analysis.

These techniques are especially useful for verification and validation of interactive and distributed

simulations.

Model Interface Analysis is conducted to examine the (sub)model-to-(sub)model interface

and determine if the interface structure and behavior are sufficiently accurate.

User Interface Analysis is conducted to examine the user-model interface and determine if

it is human engineered so as to prevent occurrences of errors during the user’s interactions with

the model. It is also used to assess how accurately the interface is integrated with the simulation

model. This technique is particularly useful for accuracy assessment of interactive simulation

models used for training purposes.

Semantic Analysis

Semantic analysis is conducted by the simulation system translator or a simulation programming

language compiler and attempts to determine the modeler's intent in writing the code. The com-

piler informs the modeler about what is specified in the source code so that the modeler can verify

that the true intent is accurately reflected.

The compiler generates a wealth of information to help the modeler determine if the true

intent is accurately translated into the executable code: (1) Symbol Tables which describe: the ele-

ments or symbols that are manipulated in the model, function declarations, type and variable dec-

larations, scoping relationships, interfaces, dependencies, etc.; (2) Cross-reference Tables which

describe: called versus calling submodels (where each data element is declared, referenced and

altered), duplicate data declarations (how often and where occurring) and unreferenced source

code; (3) Subroutine Interface Tables which describe the actual interfaces of the caller and the

called; (4) Maps which relate the generated runtime code to the original source code; and (5)
34

“Pretty Printers” or Source Code Formatters which provide: reformatted source listing on the

basis of its syntax and semantics, clean pagination, highlighting of data elements and marking of

nested control structures. [Whitner and Balci 1989]

Structural Analysis

Structural analysis is used to examine the model structure and to determine if it adheres to struc-

tured principles. It is conducted by constructing a control flow graph of the model structure and

examining the graph for anomalies, such as multiple entry and exit points, excessive levels of

nesting within a structure and questionable practices such as the use of unconditional branches

(i.e., GOTOs).

Yücesan and Jacobson [1992, 1996] apply the theory of computational complexity and

show that the problem of verifying structural properties of simulation models is intractable. They

illustrate that modeling issues such as accessibility of states, ordering of events, ambiguity of

model specifications and execution stalling are NP-complete decision problems.

Symbolic Evaluation

Symbolic Evaluation is used to assess model accuracy by exercising the model using symbolic

values rather than actual data values for input. It is performed by feeding symbolic inputs into the

(sub)model and producing expressions for the output which are derived from the transformation

of the symbolic data along model execution paths. Consider, for example, the following function:

function jobArrivalTime(arrivalRate,currentClock,randomNumber)
lag = -10
Y = lag * currentClock
Z = 3 * Y
if Z < 0 then

arrivalTime = currentClock – log(randomNumber) / arrivalRate
else

arrivalTime = Z – log(randomNumber) / arrivalRate
end if
return arrivalTime

end jobArrivalTime

In symbolic execution, lag is substituted in Y resulting in Y = –10*currentClock. Substi-

tuting again, we find Z = –30*currentClock. Since currentClock is always zero or pos-

itive, an error is detected that Z will never be greater than zero.

When unresolved conditional branches are encountered, a decision must be made which

path to traverse. Once a path is selected, execution continues down the new path. At some point in

time, the execution evaluation will return to the branch point and the previously unselected branch
35

will be traversed. All paths eventually are taken.

The result of the execution can be represented graphically as a symbolic execution tree

[King 1976; Adrion et al. 1982]. The branches of the tree correspond to the paths of the model.

Each node of the tree represents a decision point in the model and is labeled with the symbolic

values of data at that juncture. The leaves of the tree are complete paths through the model and

depict the symbolic output produced.

Symbolic evaluation assists in showing path correctness for all computations regardless of

test data and is also a great source of documentation. However, it has the following disadvantages:

(1) the execution tree can explode in size and become too complex as the model grows, (2) loops

cause difficulties although inductive reasoning and constraint analysis may help, (3) loops make

thorough execution impossible since all paths must be traversed, and (4) complex data structures

may have to be excluded because of difficulties in symbolically representing particular data ele-

ments within the structure. [Dillon 1990; King 1976; Ramamoorthy et al. 1976]

Syntax Analysis

Syntax analysis is carried on by the simulation software compiler or simulation programming lan-

guage compiler to assure that the mechanics of the language are applied correctly [Beizer 1990].

In the case study, during model preparation, the VSE Editor lists all syntax errors in the

preparation window as shown in Figure 10.9. Double-clicking a syntax error name displays the

method where the error occurs, draws a rectangle around the statement, and highlights the token

as a potential source of error.

Traceability Assessment

The Traceability Assessment is used to match, one to one, the elements of one form of the model

to another. For example, the elements of the system and objectives definition (requirements speci-

fication) are matched one to one to the elements of the communicative model (design specifica-

tion). Unmatched elements may reveal either unfulfilled requirements or unintended design

functions. [Miller et al. 1995]

Dynamic VV&T Techniques

Dynamic VV&T techniques require model execution and are intended for evaluating the model

based on its execution behavior. Most dynamic VV&T techniques require model instrumentation.

The insertion of additional code (probes or stubs) into the executable model for the purpose

of collecting information about model behavior during execution is called model instrumentation.
36

Probe locations are determined manually or automatically based on static analysis of model struc-

ture. Automated instrumentation is accomplished by a preprocessor which analyzes the model

static structure (usually via graph-based analysis) and inserts probes at appropriate places.

Dynamic VV&T techniques are usually applied using the following three steps. In Step 1,

the executable model is instrumented. In Step 2, the instrumented model is executed and in Step 3,

the model output is analyzed and dynamic model behavior is evaluated.

For example, consider the world-wide air traffic control and satellite communication object-

oriented visual simulation model created by using the VSE [Orca 1996a,b; Balci et al. 1995] in

Figure 10.10. The model can be instrumented in Step 1 to record the following information every

time an aircraft enters into the coverage area of a satellite: (a) aircraft tail number, (b) current

simulation time, (c) aircraft’s longitude, latitude, and altitude, and (d) satellite’s position and

Figure 10.9. Identification of Syntax Errors during Model Preparation.
37

identification number. In Step 2, the model is executed and the information collected is written to

an output file. In Step 3, the output file is examined to reveal discrepancies and inaccuracies in

model representation.

Acceptance Testing

Acceptance Testing is conducted either by the client organization, by the developer’s SQA group

in the presence of client representatives, or by an independent contractor hired by the client after

the model is officially delivered and before the client officially accepts the delivery. The model is

operationally tested by using the actual hardware and actual data to determine whether all require-

ments specified in the legal contract are satisfied. [Perry 1995; Schach 1996]

Alpha Testing

Alpha Testing refers to the operational testing of the alpha version of the complete model at an in-

house site which is not involved with the model development. [Beizer 1990]

Figure 10.10. Visual Simulation of Global Air Traffic Control and Satellite Communication [Balci et al. 1995].
38

Assertion Checking

An assertion is a statement that should hold true as the simulation model executes. Assertion

checking is a verification technique used to check what is happening against what the modeler

assumes is happening so as to guard model execution against potential errors. The assertions are

placed in various parts of the model to monitor model execution. They can be inserted to hold true

globally—for the whole model; regionally—for some submodels; locally—within a submodel; or

at entry and exit of a submodel. The assertions are similar in structure and the general format for a

local assertion is [Stucki 1977]:

ASSERT LOCAL (extended-logical-expression) [optional-qualifiers]
[control-options]

The “optional-qualifiers” may be chosen such as all, some, after jth aircraft,

before time t. The “control-options” may have the following example syntax [Stucki 1977]:

Consider, for example, the following pseudo-code [Whitner and Balci 1989]:

Base := Hours * PayRate;
Gross := Base * (1 + BonusRate);

In just these two simple statements, several assumptions are being made. It is assumed that

Hours, PayRate, Base, BonusRate and Gross are all non-negative. The following asserted

code can be used to prevent execution errors due to incorrect values inputted by the user:

Assert Local (Hours ≥ 0 and PayRate ≥ 0 and BonusRate ≥ 0);
Base := Hours * PayRate;
Gross := Base * (1 + BonusRate);

Assertion checking is also used to prevent structural model inaccuracies. For example, the

model in Figure 10.10 can contain assertions such as: (a) a satellite communicates with the correct

ground station, (b) an aircraft’s tail number matches its type, and (c) an aircraft’s flight path is

consistent with the official airline guide.

Clearly, the assertion checking serves two important needs: (1) it verifies that the model is

functioning within its acceptable domain, and (2) the assertion statement documents the intentions

of the modeler. However, the assertion checking degrades the model execution performance forc-

ing the modeler to make a trade-off between execution efficiency and accuracy. If the execution

performance is critical, the assertions should be turned off, but kept permanently to provide both

documentation and means for maintenance testing [Adrion et al. 1982].

… LIMIT n [VIOLATIONS]
HALT

EXIT [VIA] procedure-name

 …
39

Beta Testing

Beta Testing refers to the operational testing of the beta version of the complete model at a “beta”

user site under realistic field conditions. [Miller et al. 1995]

Bottom-Up Testing

Bottom-up testing is used in conjunction with bottom-up model development strategy. In bottom-

up development, model construction starts with the submodels at the base level (i.e., the ones that

are not decomposed further) and culminates with the submodels at the highest level. As each sub-

model is completed, it is thoroughly tested. When submodels belonging to the same parent have

been developed and tested, the submodels are integrated and integration testing is performed. This

process is repeated in a bottom-up manner until the whole model has been integrated and tested.

The integration of completed submodels need not wait for all “same level” submodels to be com-

pleted. Submodel integration and testing can be and often is, performed incrementally. [Sommer-

ville 1996]

Some of the advantages of bottom-up testing are: (1) it encourages extensive testing at the

submodel level; (2) since most well-structured models consist of a hierarchy of submodels, there

is much to be gained by bottom-up testing; (3) the smaller the submodel and more cohesion it has,

the easier and more complete its testing will be; and (4) it is particularly attractive for testing dis-

tributed simulation models.

Major disadvantages of bottom-up testing include: (1) individual submodel testing requires

drivers, more commonly called test harnesses, which simulate the calling of the submodel and

passing test data necessary to execute the submodel; (2) developing harnesses for every submodel

can be quite complex and difficult; (3) the harnesses may themselves contain errors; and (4) faces

the same cost and complexity problems as does top-down testing.

Comparison Testing

Comparison Testing (also known as back-to-back testing) may be used when more than one

version of a simulation model representing the same system is available for testing [Pressman

1996; Sommerville 1996]. For example, different simulation models may have been developed to

simulate the same military combat aircraft by different organizations or different simulation mod-

els may have been developed to represent the U.S. economy by different economists. All versions

of the simulation model built to represent exactly the same system are run with the same input

data and the model outputs are compared. Differences in the outputs reveal problems with model

accuracy.
40

Compliance Testing

The compliance type of testing is intended to test how accurately different levels of access

authorization are provided, how closely and accurately dictated performance requirements are sat-

isfied, how well the security requirements are met, and how properly the standards are followed.

These techniques are particularly useful for testing the federation of distributed and interactive

simulation models under the Defense department’s high level architecture (HLA) and distributed

interactive simulation (DIS) architecture. [Department of Defense 1995]

Authorization Testing is used to test how accurately and properly different levels of access

authorization are implemented in the simulation model and how properly they comply with the

established rules and regulations. The test can be conducted by attempting to execute a classified

model within a federation of distributed models or try to use classified input data for running a

simulation model without proper authorization. [Perry 1995]

Performance Testing is used to test whether (a) all performance characteristics are mea-

sured and evaluated with sufficient accuracy, and (b) all established performance requirements are

satisfied. [Perry 1995]

Security Testing is used to test whether all security procedures are correctly and properly

implemented in conducting a simulation exercise. For example, the test can be conducted by

attempting to penetrate into the simulation exercise while it is ongoing and break into classified

components such as secured databases. Security testing is applied to substantiate the accuracy and

evaluate the adequacy of the protective procedures and countermeasures. [Perry 1995]

Standards Testing is used to substantiate that the simulation model is developed with

respect to the required standards, procedures, and guidelines.

Debugging

Debugging is an iterative process the purpose of which is to uncover errors or misconcep-

tions that cause the model’s failure and to define and carry out the model changes that correct the

errors. This iterative process consists of four steps. In Step 1, the model is tested revealing the

existence of errors (bugs). Given the detected errors, the cause of each error is determined in Step

2. In Step 3, the model changes believed to be required for correcting the detected errors are iden-

tified. The identified model changes are carried out in Step 4. Step 1 is re-executed right after Step

4 to ensure successful modification because a change correcting an error may create another one.

This iterative process continues until no errors are identified in Step 1 after sufficient testing.

[Dunn 1987]
41

Execution Testing

The execution testing category consists of execution monitoring, execution profiling, and execu-

tion tracing techniques. These techniques are used to collect and analyze execution behavior data

for the purpose of revealing model representation errors.

Execution Monitoring is used to reveal errors by examining low-level information about

activities and events which take place during model execution. It requires the instrumentation of a

simulation model for the purpose of gathering data to provide activity- or event-oriented informa-

tion about the model’s dynamic behavior. For example, the model in Figure 10.10 can be instru-

mented to monitor the arrivals and departures of aircrafts within a particular city and the results

can be compared with respect to the official airline guide to judge model validity. The model can

also be instrumented to provide other low-level information such as number of late arrivals, aver-

age passenger waiting time at the airport, and average flight time between two locations.

Execution Profiling is used to reveal errors by examining high-level information (profiles)

about activities and events which take place during model execution. It requires the instrumenta-

tion of an executable model for the purpose of gathering data to present profiles about the model’s

dynamic behavior. For example, the model in Figure 10.10 can be instrumented to produce the

following profiles to assist in model VV&T: (a) a histogram of aircraft interdeparture times, (b) a

histogram of arrival times, and (c) a histogram of passenger check-out times at an airport.

Execution Tracing is used to reveal errors by “watching” the line-by-line execution of a

simulation model. It requires the instrumentation of an executable model for the purpose of trac-

ing the model’s line-by-line dynamic behavior. For example, the model in Figure 10.10 can be

instrumented to record all aircraft arrival times at a particular airport. Then, the trace data can be

compared against the official airline guide to assess model validity.

The major disadvantage of the tracing technique is that execution of the instrumented model

may produce a large volume of trace data that may be too complex to analyze. To overcome this

problem, the trace data can be stored in a database and the modeler can analyze it using a query

language [Fairley 1975, 1976].

Fault/Failure Insertion Testing

This technique is used to insert a kind of fault (incorrect model component) or a kind of failure

(incorrect behavior of a model component) into the model and observe whether the model pro-

duces the invalid behavior as expected. Unexplained behavior may reveal errors in model repre-

sentation.
42

Field Testing

Field Testing places the model in an operational situation for the purpose of collecting as much

information as possible for model validation. It is especially useful for validating models of mili-

tary combat systems. Although it is usually difficult, expensive and sometimes impossible to

devise meaningful field tests for complex systems, their use wherever possible helps both the

project team and decision makers to develop confidence in the model. [Shannon 1975; Van Horn

1971]

Functional Testing

Functional Testing (also known as Black-Box Testing) is used to assess the accuracy of model

input-output transformation. It is applied by feeding inputs (test data) to the model and evaluating

the corresponding outputs. The concern is how accurately the model transforms a given set of

input data into a set of output data.

It is virtually impossible to test all input-output transformation paths for a reasonably large

and complex simulation model since the number of those paths could be in the millions. There-

fore, the objective of functional testing is to increase our confidence in model input-output trans-

formation accuracy as much as possible rather than trying to claim absolute correctness.

Generation of test data is a crucially important but a very difficult task. The law of large

numbers does not apply here. Successfully testing the model under 1,000 input values (test data)

does not imply high confidence in model input-output transformation accuracy just because 1,000

is a large number. Instead, the number 1,000 should be compared with the number of allowable

input values to determine what percentage of the model input domain is covered in testing. The

more the model input domain is covered in testing, the more confidence we gain in the accuracy

of the model input-output transformation. [Howden 1980; Myers 1979]

In the case study, confidence intervals are constructed for each of the 14 performance mea-

sures by using actual observations collected on the vehicle waiting times. Confidence intervals are

also constructed by using the simulation output data under the currently used traffic light timing.

The actual and simulated confidence intervals with a confidence level of 95% are plotted corre-

sponding to each performance measure. Lack of or little overlap between the actual and simulated

confidence intervals revealed invalidity.
43

Graphical Comparisons

Graphical Comparisons is a subjective, inelegant and heuristic, yet quite practical approach espe-

cially useful as a preliminary approach to model VV&T. The graphs of values of model variables

over time are compared with the graphs of values of system variables to investigate characteristics

such as similarities in periodicities, skewness, number and location of inflection points, logarith-

mic rise and linearity, phase shift, trend lines and exponential growth constants. [Cohen and Cyert

1961; Forrester 1961; Miller 1975; Wright 1972]

Interface Testing

The interface testing (also known as integration testing) category consists of data interface test-

ing, model interface testing and user interface testing. These techniques are used to assess the

accuracy of data usage, (sub)model-to-(sub)model interface and user-model interface.

Data Interface Testing is conducted to assess the accuracy of data inputted into the model

or outputted from the model during execution. All data interfaces are examined to substantiate that

all aspects of data input/output are correct. This form of testing is particularly important for those

simulation models the inputs of which are read from a database and/or the results of which are

stored into a database for later analysis. The model’s interface to the database is examined to

ensure correct importing and exporting of data. [Miller et al. 1995]

Model Interface Testing is conducted to detect model representation errors created as a

result of (sub)model-to-(sub)model interface errors or invalid assumptions about the interfaces. It

is assumed that each model component (submodel) or a model in distributed simulation is individ-

ually tested and found to be sufficiently accurate before model interface testing begins.

This form of testing deals with how well the (sub)models are integrated with each other and

is particularly useful for object-oriented and distributed simulation models. Under the object-ori-

ented paradigm [See Chapter 12 of this handbook], objects: (a) are created with public and private

interfaces, (b) interface with other objects through message passing, (c) are reused with their

interfaces, and (d) inherit the interfaces and services of other objects.

Model interface testing deals with the accuracy assessment of each type of four interfaces

identified by Sommerville [1996]:

1. Parameter interfaces: pass data or function references from one submodel to another.

2. Shared memory interfaces: enable submodels to share a block of memory where data is placed
by one submodel and retrieved from there by other submodels.

3. Procedural interfaces: are used to implement the concept of encapsulation under the object-
oriented paradigm. An object provides a set of services (procedures) which can be used by
other objects and hides (encapsulates) how a service is provided to the outside world.
44

4. Message passing interfaces: enable an object to request the service of another by way of mes-
sage passing.

Sommerville [1996] classifies interface errors into three categories:

1. Interface misuse: occurs when a submodel calls another and incorrectly uses its interface. For
submodels with parameter interfaces, a parameter being passed may be of the wrong type,
may be passed in the wrong order or the wrong number of parameters may be passed.

2. Interface misunderstanding: occurs when submodel A calls submodel B without satisfying the
underlying assumptions of submodel B’s interface. For example, submodel A calls a binary
search routine by passing an unordered list to be searched when in fact the binary algorithm
assumes that the list is already sorted.

3. Timing errors: occur in real-time, parallel and distributed simulations which use a shared
memory or a message passing interface.

User Interface Testing is conducted to detect model representation errors created as a

result of user-model interface errors or invalid assumptions about the interfaces. This form of test-

ing is particularly important for testing human-in-the-loop, interactive and training simulations.

User interface testing deals with the assessment of the interactions between the user and the

model. The user interface is examined from low level ergonomic aspects to instrumentation and

controls and from human factors to global considerations of usability and appropriateness for the

purpose of identifying potential errors. [Schach 1996; Miller et al. 1995; Pressman 1996]

Object-Flow Testing

Object-flow testing is similar to transaction-flow testing [Beizer 1990] and thread testing [Som-

merville 1996]. It is used to assess model accuracy by way of exploring the life cycle of an object

during model execution. For example, a dynamic object (aircraft) can be marked for testing in the

VSE model shown in Figure 10.10. Every time the dynamic object enters into a model compo-

nent, the visualization of that component is displayed. Every time the dynamic object interacts

with another object within the component, the interaction is highlighted. Examination of how a

dynamic object flows through the activities and processes, and interacts with its environment dur-

ing its lifetime in model execution is extremely useful for identifying errors in model behavior.

Partition Testing

Partition testing is used for testing the model with the test data generated by analyzing the

model’s functional representatives (partitions). It is accomplished by: (1) decomposing both

model specification and implementation into functional representatives (partitions), (2) comparing

the elements and prescribed functionality of each partition specification with the elements and
45

actual functionality of corresponding partition implementation, (3) deriving test data to exten-

sively test the functional behavior of each partition, and (4) testing the model by using the gener-

ated test data.

The model decomposition into functional representatives (partitions) is derived through the

use of symbolic evaluation techniques which maintain algebraic expressions of model elements

and show model execution paths. These functional representations are the model computations.

Two computations are equivalent if they are defined for the same subset of the input domain

which causes a set of model paths to be executed and if the result of the computations is the same

for each element within the subset of the input domain [Howden 1976]. Standard proof techniques

are used to show equivalence over a domain. When equivalence cannot be shown, partition testing

is performed to locate errors, or as Richardson and Clarke [1985] state, to increase confidence in

the equality of the computations due to the lack of error manifestation. By involving both model

specification and implementation, partition testing is capable of providing more comprehensive

test data coverage than other test data generation techniques.

Predictive Validation

Predictive Validation requires past input and output data of the system being modeled. The model

is driven by past system input data and its forecasts are compared with the corresponding past sys-

tem output data to test the predictive ability of the model. [Emshoff and Sisson 1970]

Product Testing

Product testing is conducted by the development organization after all submodels are successfully

integrated (as demonstrated by the interface testing) and before the acceptance testing is per-

formed by the client. No contractor wants to be in a situation where the product (model) fails the

acceptance test. Product testing serves as a means of getting prepared for the acceptance testing.

As such, the SQA group must perform product testing and make sure that all requirements speci-

fied in the legal contract are satisfied before delivering the model to the client organization.

[Schach 1996]

As dictated by Principle 12, successfully testing each submodel does not imply overall

model credibility. Interface testing and product testing must be performed to substantiate overall

model credibility.
46

47

Regression Testing

Regression testing is used to substantiate that correcting errors and/or making changes in the

model do not create other errors and adverse side-effects. It is usually accomplished by retesting

the modified model with the previous test data sets used. Successful regression testing requires

planning throughout the model development life cycle. Retaining and managing old test data sets

are essential for the success of regression testing.

Sensitivity Analysis

Sensitivity Analysis is performed by systematically changing the values of model input variables

and parameters over some range of interest and observing the effect upon model behavior [Shan-

non 1975]. Unexpected effects may reveal invalidity. The input values can also be changed to

induce errors to determine the sensitivity of model behavior to such errors. Sensitivity analysis

can identify those input variables and parameters to the values of which model behavior is very

sensitive. Then, model validity can be enhanced by assuring that those values are specified with

sufficient accuracy. [Hermann 1967; Miller 1974a,b; Van Horn 1971]

Special Input Testing

The special input testing category consists of boundary value testing, equivalence partitioning

testing, extreme input testing, invalid input testing, real-time input testing, self-driven input test-

ing, stress testing and trace-driven input testing techniques. These techniques are used to assess

model accuracy by way of subjecting the model to a variety of inputs.

Boundary Value Testing is employed to test model accuracy by using test cases on the

boundaries of input equivalence classes. A model's input domain can usually be divided into

classes of input data (known as equivalence classes) which cause the model to function the same

way. For example, a traffic intersection model might specify the probability of left turn in a three-

way turning lane as 0.2, the probability of right turn as 0.35 and the probability of travelling

straight as 0.45. This probabilistic branching can be implemented by using a uniform random

number generator that produces numbers in the range 0 ≤ rn ≤ 1. Thus, three equivalence classes

are identified: 0 ≤ rn ≤ 0.2, 0.2 < rn ≤ 0.55 and 0.55 < rn ≤ 1. Each test case from within a given

equivalence class has the same effect on the model behavior, i.e., produces the same direction of

turn.

In boundary analysis, test cases are generated just within, on top of and just outside of the

equivalence classes [Myers 1979]. In the example above, the following test cases are selected for

the left turn: 0.0, ± 0.000001, 0.199999, 0.2 and 0.200001. In addition to generating test data on

the basis of input equivalence classes, it is also useful to generate test data which will cause the

model to produce values on the boundaries of output equivalence classes [Myers 1979]. The

underlying rationale for this technique as a whole is that the most error-prone test cases lie along

the boundaries [Ould and Unwin 1986]. Notice that invalid test cases used in the example above

will cause the model execution to fail; however, this failure should be as expected and meaning-

fully documented.

Equivalence Partitioning Testing partitions the model input domain into equivalence

classes in such a manner that a test of a representative value from a class is assumed to be a test of

all values in that class. [Miller et al. 1995; Perry 1995; Pressman 1996; Sommerville 1996]

Extreme Input Testing is conducted by running / exercising the simulation model by using

only minimum values, only maximum values, or arbitrary mixture of minimum and maximum

values for the model input variables.

Invalid Input Testing is performed by running / exercising the simulation model under

incorrect input data and cases to determine whether the model behaves as expected. Unexplained

behavior may reveal model representation errors.

Real-Time Input Testing is particularly important for assessing the accuracy of simulation

models built to represent embedded real-time systems. For example, different design strategies of

a real-time software system to be developed to control the operations of the components of a man-

ufacturing system can be studied by simulation modeling. The simulation model representing the

software design can be tested by way of running it under real-time input data that can be collected

from the existing manufacturing system. Using real-time input data collected from a real system is

particularly important to represent the timing relationships and correlations between input data

points.

Self-Driven Input Testing is conducted by running / exercising the simulation model under

input data randomly sampled from probabilistic models representing random phenomena in a real

or futuristic system. A probability distribution (e.g., exponential, gamma, weibull) can be fit to

collected data or triangular and beta probability distributions can be used in the absence of data to

model random input conditions [Chapter 3 of this handbook, Banks et al. 1996; Law and Kelton

1991]. Then, using random variate generation techniques, random values can be sampled from the

probabilistic models to test the model validity under a set of observed or speculated random input

conditions.

Stress Testing is intended to test the model validity under extreme workload conditions.

This is usually accomplished by increasing the congestion in the model. For example, the model

in Figure 10.10 can be stress tested by increasing the number of flights between two locations to
48

an extremely high value. Such increase in workload may create unexpected high congestion in the

model. Under stress testing, the model may exhibit invalid behavior; however, such behavior

should be as expected and meaningfully documented. [Dunn 1987; Myers 1979]

Trace-Driven Input Testing is conducted by running / exercising the simulation model

under input trace data collected from a real system. For example, a computer system can be instru-

mented by using software and hardware monitors to collect data by tracing all system events. The

raw trace data is then refined to produce the real input data for use in testing the simulation model

of the computer system.

Statistical Techniques

Much research has been conducted in applying statistical techniques for model validation.

Table 10.3 presents the statistical techniques proposed for model validation and lists related refer-

ences.

The statistical techniques listed in Table 10.3 require that the system being modeled is com-

pletely observable, i.e., all data required for model validation can be collected from the system.

Model validation is conducted by using the statistical techniques to compare the model output

data with the corresponding system output data when the model is run with the “same” input data

that derive the real system. As dictated by Principle 11 on page 21, the comparison of model and

system multiple outputs must be carried out by using a multivariate statistical technique to incor-

porate the correlations among the output variables.

A recommended validation procedure based on the use of simultaneous confidence intervals

is presented below.

A Validation Procedure Using Simultaneous Confidence Intervals. The behavioral accu-

racy (validity) of a simulation model with multiple outputs can be expressed in terms of the differ-

ences between the corresponding model and system output variables when the model is run with

the “same” input data and operational conditions that drive the real system. The range of accuracy

of the jth model output variable can be represented by the jth confidence interval (c.i.) for the dif-

ferences between the means of the jth model and system output variables. The simultaneous con-

fidence intervals (s.c.i.) formed by these c.i.'s are called the model range of accuracy (m.r.a.)

[Balci and Sargent 1984].

Assume that there are k output variables from the model and k output variables from the

system as shown in Figure 10.6 Let and be

the k dimensional vectors of the population means of the model and system output variables,

µm()' µ1
m µ2

m … µk
m, , ,[]= µs()' µ1

s µ2
s … µk

s, , ,[]=
49

respectively. Basically, there are three approaches for constructing the s.c.i. to express the m.r.a.

for the mean behavior.

In approach I, the m.r.a. is determined by the 100(1 – γ)% s.c.i. for as

(3)

where representing lower bounds and representing upper

bounds of the s.c.i. We can be 100(1 – γ)% confident that the true differences between the popula-

tion means of the model and system output variables are simultaneously contained within (3).

In approach II, the % s.c.i. are first constructed for as

Table 10.3. Statistical Techniques Proposed for Validation.

Analysis of Variance . [Naylor and Finger 1967]

Confidence Intervals/Regions. [Balci and Sargent 1984; Law and Kelton 1991; Shannon 1975]

Factor Analysis . [Cohen and Cyert 1961]

Hotelling's T2 Tests. [Balci and Sargent 1981, 1982a, 1982b, 1983; Shannon 1975]

Multivariate Analysis of Variance. [Garratt 1974]

 — Standard MANOVA
 — Permutation Methods
 — Nonparametric Ranking Methods

Nonparametric Goodness-of-fit Tests . [Gafarian and Walsh 1969; Naylor and Finger 1967]

 — Kolmogorov-Smirnov Test
 — Cramer-Von Mises Test
 — Chi-square Test

Nonparametric Tests of Means . [Shannon 1975]

 — Mann-Whitney-Wilcoxon Test
 — Analysis of Paired Observations

Regression Analysis . [Aigner 1972; Cohen and Cyert 1961; Howrey and Kelejian 1969]

Theil's Inequality Coefficient [Kheir and Holmes 1978; Rowland and Holmes 1978; Theil 1961]

Time Series Analysis

 — Spectral Analysis [Fishman and Kiviat 1967; Gallant et al. 1974; Howrey and Kelejian 1969;
Hunt 1970; Van Horn 1971; Watts 1969]

 — Correlation Analysis . [Watts 1969]
 — Error Analysis . [Damborg and Fuller 1976; Tytula 1978]

t-Test . [Shannon 1975; Teorey 1975]

µm µs
–

δ τ–[]

δ' δ1 δ2 … δk, , ,[]= τ' τ1 τ2 … τk, , ,[]=

100 1 γm
–() µm
50

(4)

where and . Then, the % s.c.i.

are constructed for as

(5)

where and . Finally, using the Bonferroni ine-

quality, the m.r.a. is determined by the following s.c.i. for with a confidence level of at

least when the model and system outputs are dependent and with a level of at least

 when the outputs are independent [Kleijnen 1975]:

. (6)

In approach III, the model and system output variables are observed in pairs and the m.r.a. is

determined by the 100(1 – γ)% s.c.i. for , the population means of the differences of paired

observations, as

(7)

where and .

The approach for constructing the m.r.a. should be chosen with respect to the way the model

is driven. The m.r.a. is constructed by using the observations collected from the model and system

output variables by running the model with the “same” input data and operational conditions that

drive the real system. If the simulation model is self-driven, then the “same” indicates that the

model input data are coming independently from the same populations or stochastic process of the

system input data. Since the model and system input data are independent of each other, but com-

ing from the same populations, the model and system output data are expected to be independent

and identically distributed. Hence, approach I or II can be used. The use of approach III in this

case would be less efficient. If the simulation model is trace-driven, the “same” indicates that the

model input data are exactly the same as the system input data. In this case, the model and system

output data are expected to be dependent and identical. Therefore, approach II or III should be

used.

Sometimes, the model sponsor, model user, or a third party may specify an acceptable range

of accuracy for a specific simulation study. This specification can be made for the mean behavior

of a stochastic simulation model as

δm τm,[]

δm()' δ1
m δ2

m … δk
m, , ,[]= τm()' τ1

m τ2
m … τk

m, , ,[]= 100 1 γs
–()

µs

δs τs,[]

δs()' δ1
s δ2

s … δk
s, , ,[]= τs()' τ1

s τ2
s … τk

s, , ,[]=

µm µs
–

1 γm
– γs

–()

1 γm
– γs

– γmγs
+()

δm τs τm δs
–,–[]

µd

δd τd,[]

δd()' δ1
d δ2

d … δk
d, , ,[]= τd()' τ1

d τ2
d … τk

d, , ,[]=
51

52

. (8)

where and are the lower and upper bounds of the

acceptable differences between the population means of the model and system output variables. In

this case, the m.r.a. should be compared against (6) to evaluate model validity.

The shorter the lengths of the m.r.a., the more meaningful is the information they provide.

The lengths can be decreased by increasing the sample sizes or by decreasing the confidence

level. However, such increases in sample sizes may increase the cost of data collection. Thus, a

trade-off analysis may be necessary among the sample sizes, confidence levels, half-length esti-

mates of the m.r.a, data collection method and cost of data collection. For details of performing

the trade-off analysis see [Balci and Sargent 1984].

The confidence interval validation procedure is presented in Figure 10.11.

Structural Testing

The structural testing (also known as white-box testing) category consists of branch testing, condi-

tion testing, data flow testing, loop testing, path testing and statement testing techniques. Struc-

tural (white-box) testing is used to evaluate the model based on its internal structure (how it is

built) whereas functional (black-box) testing is intended for assessing the input-output transfor-

mation accuracy of the model. Structural testing employs data flow and control flow diagrams to

assess the accuracy of internal model structure by examining model elements such as statements,

branches, conditions, loops, internal logic, internal data representations, submodel interfaces and

model execution paths.

Branch Testing is conducted to run / exercise the simulation model under test data so as to

execute as many branch alternatives as possible, as many times as possible and to substantiate

their accurate operations. The more branches are successfully tested, the more confidence we gain

in model’s accurate execution with respect to its logical branches. [Beizer 1990]

Condition Testing is conducted to run / exercise the simulation model under test data so as

to execute as many (compound) logical conditions as possible, as many times as possible and to

substantiate their accurate operations. The more logical conditions are successfully tested, the

more confidence we gain in model’s accurate execution with respect to its logical conditions.

Data Flow Testing uses the control flow graph to explore sequences of events related to the

status of data structures and to examine data-flow anomalies. For example, sufficient paths can be

forced to execute under test data to assure that every data element and structure is initialized prior

to use or every declared data structure is used at least once in an executed path. [Beizer 1990]

Loop Testing is conducted to run / exercise the simulation model under test data so as to

L µm µs
– U≤ ≤

L ′ L1 L2 … Lk,,,[]= U ′ U1 U2 … Uk,,,[]=

START

Determine the set of experimental conditions under which the validity of the simulation model is to be tested.

Choose approach I or II. Model? Choose approach II or III.
self-driven trace-driven

Determine an appropriate statistical procedure for constructing
the model range of accuracy with respect to the approach chosen.

Tradeoff
analysis?

NoSelect the sample sizes
and confidence levels.

Yes

Examine the tradeoffs and make judgment decisions to select the sample sizes with appropriate
data collection method and budget, and an overall confidence level to produce

satisfactory estimated lenghts for the model range of accuracy.

Collect data for validation from the system and from the model.

Approach?

Determine the model range of
accuracy by constructing the

100(1–γ)% s.c.i.
[δ, τ]

Determine the model range of accuracy by construct-
ing the at least 100(1–γ)% s.c.i. [δm – τ s, τ m – δs]

Set δ = δm – τ s and τ = τ m – δs.

Determine the model range
of accuracy by constructing

the 100(1–γ)% s.c.i.
[δd, τ d]

Set δ = δd and τ = τ d

Are model and
system outputs
independent?

Set γ = γm + γs Set γ = γm + γs – γmγs
No Yes

[δ, τ] or
confidence

region?
L ≤ µm – µ s ≤ U

[δ, τ] ε [L, U]
?

We are (at least) 100(1–γ)% confident that the model
is valid under the set of experimental conditions.

Is the invalidity due
to the values chosen in the

tradeoff analysis
?

Revise the model by considering the response variables
whose ranges of accuracy are not satisfactory.TERMINATE

Not given Not satisfactory

No

No

Given

Yes

Yes

Satisfactory

II

IIII

Figure 10.11. A Validation Procedure Using Simultaneous Confidence Intervals.
53

execute as many loop structures as possible, as many times as possible and to substantiate their

accurate operations. The more loop structures are successfully tested, the more confidence we

gain in the model’s accurate execution with respect to its loop structures. [Pressman 1996]

Path Testing is conducted to run / exercise the simulation model under test data so as to

execute as many control flow paths as possible, as many times as possible and to substantiate their

accurate operations. The more control flow paths are successfully tested, the more confidence we

gain in model’s accurate execution with respect to its control flow paths. However, 100% path

coverage is impossible to achieve for a reasonably large simulation model. [Beizer 1990]

Path testing is performed in three steps [Howden 1976]. In Step 1, the model control struc-

ture is determined and represented in a control flow diagram. In Step 2, test data is generated to

cause selected model logical paths to be executed. Symbolic execution can be used to identify and

group together classes of input data based on the symbolic representation of the model. The test

data is generated in such a way as to: (1) cover all statements in the path, (2) encounter all nodes

in the path, (3) cover all branches from a node in the path, (4) achieve all decision combinations at

each branch point in the path, and (5) traverse all paths [Prather and Myers 1987]. In Step 3, by

using the generated test data, the model is forced to proceed through each path in its execution

structure, thereby providing comprehensive testing.

In practice, only a subset of all possible model paths are selected for testing due to the bud-

getary constraints. Recent work has sought to increase the amount of coverage per test case or to

improve the effectiveness of the testing by selecting the most critical areas to test. The path prefix

strategy is an “adaptive” strategy that uses previous paths tested as a guide in the selection of sub-

sequent test paths. Prather and Myers [1987] prove that the path prefix strategy achieves total

branch coverage.

The identification of essential paths is a strategy which reduces the path coverage required

by nearly 40 percent [Chusho 1987]. The basis for the reduction is the elimination of non-essen-

tial paths. Paths which are overlapped by other paths are non-essential. The model control flow

graph is transformed into a directed graph whose arcs (called primitive arcs) correspond to the

essential paths of the model. Non-essential arcs are called inheritor arcs because they inherit

information from the primitive arcs. The graph produced during the transformation is called an

inheritor-reduced graph. Chusho [1987] presents algorithms for efficiently identifying non-essen-

tial paths and reducing the control graph into an inheritor-reduced graph and for applying the con-

cept of essential paths to the selection of effective test data.

Statement Testing is conducted to run / exercise the simulation model under test data so as

to execute as many statements as possible, as many times as possible and to substantiate their
54

accurate operations. The more statements are successfully tested, the more confidence we gain in

the model’s accurate execution with respect to its statements. [Beizer 1990]

Submodel/Module Testing

Submodel/Module Testing requires a top-down model decomposition in terms of submodels/mod-

ules. The executable model is instrumented to collect data on all input and output variables of a

submodel. The system is similarly instrumented (if possible) to collect similar data. Then, each

submodel behavior is compared with corresponding subsystem behavior to judge submodel valid-

ity. If a subsystem can be modeled analytically (e.g., as an M/M/1 model), its exact solution can

be compared against the simulation solution to assess validity quantitatively.

Validating each submodel individually does not imply sufficient validity for the whole

model as dictated by Principle 12; each submodel is found sufficiently valid with some allowable

error and the allowable errors can accumulate to make the whole model invalid. Therefore, after

individually validating each submodel, the whole model itself must be subjected to overall testing.

Symbolic Debugging

Symbolic debugging assists in model VV&T by employing a debugging tool that allows the mod-

eler to manipulate model execution while viewing the model at the source code level. By setting

“breakpoints”, the modeler can interact with the entire model one step at a time, at predetermined

locations, or under specified conditions. While using a symbolic debugger, the modeler may alter

model data values or cause a portion of the model to be “replayed”, i.e., executed again under the

same conditions (if possible). Typically, the modeler utilizes the information from execution his-

tory generation techniques, such as tracing, monitoring and profiling, to isolate a problem or its

proximity. Then the debugger is employed to understand how and why the error occurs.

Current state-of-the-art debuggers (or interactive runtime controllers) allow viewing the

runtime code as it appears in the source listing, setting “watch” variables to monitor data flow,

viewing complex data structures and even communicating with asynchronous I/O channels. The

use of symbolic debugging can greatly reduce the debugging effort while increasing its effective-

ness. Symbolic debugging allows the modeler to locate errors and check numerous circumstances

which lead up to the errors. [Whitner and Balci 1989]

Top-Down Testing

Top-down testing is used in conjunction with top-down model development strategy. In top-down

development, model construction starts with the submodels at the highest level and culminates
55

with the submodels at the base level (i.e., the ones that are not decomposed further). As each sub-

model is completed, it is thoroughly tested. When submodels belonging to the same parent have

been developed and tested, the submodels are integrated and integration testing is performed. This

process is repeated in a top-down manner until the whole model has been integrated and tested.

The integration of completed submodels need not wait for all “same level” submodels to be com-

pleted. Submodel integration and testing can be and often is, performed incrementally. [Sommer-

ville 1996]

Top-down testing begins with testing the global model at the highest level. When testing a

given level, calls to submodels at lower levels are simulated using submodel “stubs.” A stub is a

dummy submodel which has no other function than to let its caller complete the call. Fairley

[1976] lists the following advantages of top-down testing: (1) model integration testing is mini-

mized, (2) early existence of a working model results, (3) higher level interfaces are tested first,

(4) a natural environment for testing lower levels is provided, and (5) errors are localized to new

submodels and interfaces.

Some of the disadvantages of top-down testing are: (1) thorough submodel testing is dis-

couraged (the entire model must be executed to perform testing), (2) testing can be expensive

(since the whole model must be executed for each test), (3) adequate input data is difficult to

obtain (because of the complexity of the data paths and control predicates), and (4) integration

testing is hampered (again, because of the size and complexity induced by testing the whole

model) [Fairley 1976].

Visualization/Animation

Visualization/Animation of a simulation model greatly assists in model VV&T [Bell and O’Keefe

1994; Sargent 1996]. Displaying graphical images of internal (e.g., how customers are served by a

cashier) and external (e.g., utilization of the cashier) dynamic behavior of a model during execu-

tion enables us to discover errors by seeing. For example, in the case study, we can observe the

arrivals of vehicles in different lanes and their movements through the intersection as the traffic

light changes as shown in Figure 10.12. Seeing the animation of the model as it executes and com-

paring it with the operations of the real traffic intersection can help us identify discrepancies

between the model and the system. In the case study, the animation was extremely useful for iden-

tifying bugs in the model logic. Many errors were reflected in the animation and were easily

noticed.

Seeing the model in action is very useful for uncovering errors; however, seeing is not

believing in visual simulation [Paul 1989]. Observing that the animation of model behavior is free
56

of errors does not guarantee the correctness of the model results.

Formal VV&T Techniques

Formal VV&T techniques are based on mathematical proof of correctness. If attainable, proof of

correctness is the most effective means of model VV&T. Unfortunately, “if attainable” is the over-

riding point with regard to formal VV&T techniques. Current state-of-the-art proof of correctness

techniques are simply not capable of being applied to even a reasonably complex simulation

model. However, formal techniques serve as the foundation for other VV&T techniques and the

most commonly known eight techniques are briefly described below: (1) induction, (2) inductive

assertions, (3) inference, (4) λ-calculus, (5) logical deduction, (6) predicate calculus, (7) predicate

transformation, and (8) proof of correctness. [Khanna 1991; Whitner and Balci 1989]

Induction, inference and logical deduction are simply acts of justifying conclusions on the

Figure 10.12. Traffic Intersection Simulation Model Animation.
57

basis of premises given. An argument is valid if the steps used to progress from the premises to the

conclusion conform to established rules of inference. Inductive reasoning is based on invariant

properties of a set of observations (assertions are invariants since their value is defined to be true).

Given that the initial model assertion is correct, it stands to reason that if each path progressing

from that assertion can be shown to be correct and subsequently each path progressing from the

previous assertion is correct, etc., then the model must be correct if it terminates. Formal induc-

tion proof techniques exist for the intuitive explanation just given.

Birta and Özmizrak [1996] present a knowledge-based approach for simulation model vali-

dation based on the use of a validation knowledge base containing rules of inference.

Inductive assertions are used to assess model correctness based on an approach that is very

close to formal proof of model correctness. It is conducted in three steps. In Step 1, input-to-out-

put relations for all model variables are identified. In Step 2, these relations are converted into

assertion statements and are placed along the model execution paths in such a way as to divide the

model into a finite number of “assertion-bound” paths, i.e., an assertion statement lies at the

beginning and end of each model execution path. In Step 3, verification is achieved by proving

that for each path: if the assertion at the beginning of the path is true and all statements along the

path are executed, then the assertion at the end of the path is true. If all paths plus model termina-

tion can be proved, by induction, the model is proved to be correct. [Manna et al. 1973; Reynolds

and Yeh 1976]

The λ-calculus [Barendregt 1981] is a system for transforming the model into formal

expressions. It is a string-rewriting system and the model itself can be considered as a large string.

The λ-calculus specifies rules for rewriting strings, i.e., transforming the model into λ-calculus

expressions. Using the λ-calculus, the modeler can formally express the model so that mathemat-

ical proof of correctness techniques can be applied.

The predicate calculus provides rules for manipulating predicates. A predicate is a combi-

nation of simple relations, such as completed_jobs >steady_state_length. A predicate will either

be true or false. The model can be defined in terms of predicates and manipulated using the rules

of the predicate calculus. The predicate calculus forms the basis of all formal specification lan-

guages [Backhouse 1986].

Predicate transformation [Dijkstra 1975; Yeh 1977] provides a basis for verifying model

correctness by formally defining the semantics of the model with a mapping which transforms

model output states to all possible model input states. This representation provides the basis for

proving model correctness.

Formal proof of correctness corresponds to expressing the model in a precise notation and
58

then mathematically proving that the executed model terminates and it satisfies the requirements

specification with sufficient accuracy [Backhouse 1986; Schach 1996]. Attaining proof of correct-

ness in a realistic sense is not possible under the current state of the art. However, the advantage of

realizing proof of correctness is so great that when the capability is realized, it will revolutionize

the model VV&T.

10.5 CREDIBILITY ASSESSMENT STAGES

It is very important to understand the 15 principles of VV&T presented in Section 10.3 when

applying more than 75 VV&T techniques described in Section 10.4 throughout the entire life

cycle of a simulation study given in Figure 10.1. The principles help the researchers, practitioners

and managers better understand what VV&T is all about. These principles serve to provide the

underpinnings for the VV&T techniques. Understanding and applying the principles is crucially

important for the success of a simulation study.

Table 10.4 marks the VV&T techniques that are applicable for each major credibility

assessment stage of the life cycle of a simulation study. The rows of Table 10.4 list the VV&T

techniques in alphabetical order. The column labels correspond to the major credibility assess-

ment stages in the life cycle:

• Formulated Problem VV&T

• Feasibility Assessment of Simulation

• System and Objectives Definition VV&T

• Model Qualification

• Communicative Model VV&T

• Programmed Model VV&T

• Experiment Design VV&T

• Data VV&T

• Experimental Model VV&T

• Presentation VV&T

It should be noted that the above list shows only the major credibility assessment stages and

many other VV&T activities exist throughout the life cycle.

Formulated Problem VV&T

Formulated problem VV&T deals with substantiating that the formulated problem contains the

actual problem in its entirety and is sufficiently well structured to permit the derivation of a suffi-

ciently credible solution [Balci and Nance 1985]. Failure to formulate the actual problem results
59

s.
&T

Acce

Alph

Asse

Audi

Auth

Beta

Botto

Boun

Bran

Calli

Caus

Com

Conc

Cond

Cont

Data

Data

Data

Data

Debu

Desk

Docu

Equi

Exec

Exec

Exec

Extre

Face

Fault

Fault

Field

Func

Grap

Indu

Indu

Infer

Inspe

Inval
Table 10.4. Applicability of the VV&T Techniques for the Credibility Assessment Stages.

FP
VV&T

FA of
Simul.

S&OD
VV&T

Model
Qual.

CM
VV&T

PM
VV&T

ED
VV&T

Data
VV&T

EM
VV&T

Pre
VV

ptance Testing ✔

a Testing ✔

rtion Checking ✔ ✔ ✔ ✔

t ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

orization Testing ✔ ✔

 Testing ✔

m-Up Testing ✔ ✔

dary Value Testing ✔ ✔

ch Testing ✔ ✔ ✔

ng Structure Analysis ✔ ✔ ✔

e-Effect Graphing ✔ ✔ ✔ ✔

parison Testing ✔

urrent Process Analysis ✔ ✔ ✔

ition Testing ✔ ✔ ✔

rol Flow Analysis ✔ ✔ ✔ ✔

 Dependency Analysis ✔ ✔ ✔ ✔ ✔

 Flow Analysis ✔ ✔ ✔ ✔ ✔

 Flow Testing ✔ ✔ ✔ ✔

 Interface Testing ✔ ✔

gging ✔ ✔ ✔

 Checking ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

mentation Checking ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

valence Partitioning Testing ✔ ✔

ution Monitoring ✔ ✔ ✔

ution Profiling ✔ ✔ ✔

ution Tracing ✔ ✔ ✔

me Input Testing ✔ ✔

 Validation ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

/Failure Analysis ✔ ✔ ✔ ✔ ✔

/Failure Insertion Testing ✔ ✔ ✔ ✔

 Testing ✔

tional Testing ✔ ✔ ✔

hical Comparisons ✔ ✔ ✔

ction ✔ ✔

ctive Assertions ✔ ✔

ence ✔ ✔

ctions ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

id Input Testing ✔ ✔
60

Lam

Logi

Loop

Mod

Mod

Obje

Parti

Path

Perfo

Pred

Pred

Pred

Prod

Proo

Real

Regr

Revi

Secu

Self-

Sema

Sens

Stand

State

State

Stati

Stres

Struc

Subm

Sym

Sym

Synt

Top-

Trace

Trace

Turin

User

User

Visu

s.
&T
bda Calculus ✔ ✔

cal Deduction ✔ ✔

 Testing ✔ ✔ ✔

el Interface Analysis ✔ ✔ ✔

el Interface Testing ✔ ✔

ct-Flow Testing ✔ ✔

tion Testing ✔ ✔ ✔

Testing ✔ ✔ ✔

rmance Testing ✔

icate Calculus ✔ ✔

icate Transformation ✔ ✔

ictive Validation ✔

uct Testing ✔

f of Correctness ✔ ✔

-Time Input Testing ✔ ✔

ession Testing ✔ ✔

ews ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

rity Testing ✔

Driven Input Testing ✔ ✔

ntic Analysis ✔ ✔ ✔

itivity Analysis ✔ ✔ ✔

ards Testing ✔ ✔

 Transition Analysis ✔ ✔ ✔ ✔

ment Testing ✔ ✔ ✔

stical Techniques (Table 10.3) ✔ ✔

s Testing ✔ ✔

tural Analysis ✔ ✔ ✔ ✔

odel/Module Testing ✔ ✔ ✔

bolic Debugging ✔ ✔ ✔

bolic Evaluation ✔ ✔ ✔ ✔

ax Analysis ✔ ✔ ✔

Down Testing ✔ ✔ ✔

-Driven Input Testing ✔ ✔

ability Assessment ✔ ✔ ✔

g Test ✔

 Interface Analysis ✔ ✔ ✔

 Interface Testing ✔ ✔

alization/Animation ✔ ✔ ✔ ✔ ✔

Table 10.4. Applicability of the VV&T Techniques for the Credibility Assessment Stages.

FP
VV&T

FA of
Simul.

S&OD
VV&T

Model
Qual.

CM
VV&T

PM
VV&T

ED
VV&T

Data
VV&T

EM
VV&T

Pre
VV
61

Walk

s.
&T
in a Type III error. Once a Type III error is committed, regardless of how well the problem is

solved, the simulation study will either end unsuccessfully or with a Type II error. Therefore, the

accuracy of the formulated problem greatly affects the credibility and acceptability of simulation

results.

In the case study, type III error may be committed if the problem domain boundary excludes

the adjacent traffic intersections. It is possible that the traffic light timings of the adjacent intersec-

tions are set in such a way that they all turn green at the same time for the traffic travelling towards

the intersection under study. Such light timings may be the root cause of congestion. Correcting

the light timings at the adjacent traffic intersections may very well solve the congestion problem

at the traffic intersection under study. Failure to identify such a cause may result in type III error.

Audit, cause-effect graphing, desk checking, face validation, inspections, reviews, and

walkthroughs can be applied for conducting formulated problem VV&T. In applying cause-effect

graphing, a causality network is created to analyze the potential root causes of the communicated

problem [Balci and Nance 1985]. The questionnaire developed by Balci and Nance [1985] with

38 indicators can be used in applying audit, inspections, reviews and walkthroughs.

Feasibility Assessment of Simulation

Audit, desk checking, face validation, inspections, reviews and walkthroughs can be applied for

assessing the feasibility of simulation with the use of indicators such as: (1) Are the benefits and

cost of simulation solution estimated correctly? (2) Do the potential benefits of simulation solu-

tion justify the estimated cost of obtaining it? (3) Is it possible to solve the problem using simula-

tion within the time limit specified? (4) Can all of the resources required by the simulation project

be secured? and (5) Can all of the specific requirements (e.g., access to pertinent classified infor-

mation) of the simulation project be satisfied?

throughs ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 10.4. Applicability of the VV&T Techniques for the Credibility Assessment Stages.

FP
VV&T

FA of
Simul.

S&OD
VV&T

Model
Qual.

CM
VV&T

PM
VV&T

ED
VV&T

Data
VV&T

EM
VV&T

Pre
VV
62

System and Objectives Definition VV&T

For the purpose of generality, the term “system” is used to refer to the entity that contains the for-

mulated problem. System and objectives definition VV&T deals with assessing the credibility of

the system investigation process in which system characteristics are explored for consideration in

system definition and modeling.

Audit, desk checking, face validation, inspections, reviews, and walkthroughs can be

applied for conducting system and objectives definition VV&T by using indicators such as: (1)

Since systems and objectives may change over a period of time, will we have the same system and

objectives definition at the conclusion of the simulation study (which may last from six months to

several years)? (2) Is the system's environment (boundary) identified correctly? (3) What counter-

intuitive behavior may be caused within the system and its environment? (4) Will the system sig-

nificantly drift to low performance requiring a periodic update of the system definition? and (5)

Are the interdependency and organization of the system characterized accurately? The objective

here is to substantiate that the system characteristics are identified and the study objectives are

explicitly defined with sufficient accuracy. An error made here may not be caught until very late in

the life cycle resulting in a high cost of correction or an error of Type II or III.

Model Qualification

Model qualification is intended for assessing the credibility of the model formulation process. A

model should be conceptualized under the guidance of a structured approach such as the Conical

Methodology [Nance 1994]. One key idea behind the use of a structured approach is to control the

model complexity so that we can successfully verify and validate the model. The use of a struc-

tured approach is an important factor determining the success of a simulation project, especially

for large-scale and complex models.

During the conceptualization of the model, one makes many assumptions in abstracting

reality. Each assumption should be explicitly specified. Model Qualification deals with the justifi-

cation that all assumptions made are appropriate and the conceptual model provides an adequate

representation of the system with respect to the study objectives. Audit, desk checking, face vali-

dation, inspections, reviews and walkthroughs can be applied for conducting model qualification.

In the case study, many assumptions including the following are made in abstracting the

traffic intersection operation: (1) pedestrians are excluded, (2) bicycles and emergency vehicles

are excluded, (3) the light timing cycle length is assumed constant and the sensor in lane 9 is

ignored, (4) yellow light is included in green since most drivers pass on yellow, (5) all drivers

obey the traffic laws, and (6) all vehicles have the same size. These assumptions were justified to
63

be appropriate under the study objectives in the model qualification credibility assessment stage.

Communicative Model VV&T

Communicative model VV&T deals with confirming the adequacy of the communicative model to

provide an acceptable level of agreement for the domain of intended application. Domain of

Intended Application [Schlesinger et al. 1979] is the prescribed conditions for which the model is

intended to match the system under study. Level of Agreement [Schlesinger et al. 1979] is the

required correspondence between the model and the system, consistent with the domain of

intended application and the study objectives.

In the case study, the graphical model design specification, shown in Figure 10.3, is justified

to be sufficiently accurate. Inspections are conducted to substantiate that all vehicle movements in

the model design specification represent the real-life movements with sufficient accuracy. Specifi-

cations of all classes is found to be appropriate.

Programmed Model VV&T

Programmed model VV&T deals with the assessment of programmed (executable) model accu-

racy. Most of the techniques in Table 10.4 are applicable for conducting programmed model

VV&T.

In the case study, many of the applicable techniques in Table 10.4 were used to assess the

executable model accuracy. Specifically, the animation was very helpful. In addition, tracing of

message passing was instrumental in revealing some of the bugs.

Experiment Design VV&T

Experiment design VV&T deals with substantiating the sufficient accuracy of the design of exper-

iments. The techniques marked in Table 10.4 can be applied for conducting experiment design

VV&T with the use of indicators such as: (1) Are the algorithms used for random variate genera-

tion theoretically accurate? (2) Are the random variate generation algorithms translated into exe-

cutable code accurately? (Error may be induced by computer arithmetic or by truncation due to

machine accuracy, especially with order statistics (e.g., X = – loge(1–U)) [Schmeiser 1981].); (3)

How well is the random number generator tested? (Using a generator which is not rigorously

shown to produce uniformly distributed independent numbers with sufficiently large period may

invalidate the whole experiment design.); (4) Are appropriate statistical techniques implemented

to design and analyze the simulation experiments? How well are the underlying assumptions sat-

isfied? (See [Law 1983] for several reasons why output data analyses have not been conducted in
64

an appropriate manner.); (5) Is the problem of the initial transient (or the start-up problem) [Wil-

son and Pritsker 1978] appropriately addressed? and (6) For comparison studies, are identical

experimental conditions replicated correctly for each of the alternative operating policies com-

pared?

Data VV&T

Data VV&T involves input data model VV&T and deals with substantiating that all data used

throughout the model development phases of the life cycle in Figure 10.1 are accurate, complete,

unbiased and appropriate in their original and transformed forms. An input data model is the char-

acterization of an input process (e.g., characterization of an arrival process by Poisson probability

distribution). U.S. GAO [1987] emphasizes the importance of input data model validation in cred-

ibility assessment of simulations.

In those cases where data cannot be collected, data values may be determined through cali-

bration. Calibration is an iterative process in which a probabilistic characterization for an input

variable or a fixed value for a parameter is tried until the model is found to be sufficiently valid.

The techniques marked in Table 10.4 can be applied for conducting data VV&T with the

use of indicators such as: (1) Does each input data model possess a sufficiently accurate represen-

tation? (2) Are the parameter values identified, measured, or estimated with sufficient accuracy?

(3) How reliable are the instruments used for data collection and measurement? (4) Are all data

transformations done accurately? (e.g., are all data transformed correctly into the same time unit

of the model?) (5) Is the dependence between the input variables, if any, represented by the input

data model(s) with sufficient accuracy? (Blindly modeling bivariate relationships using only cor-

relation to measure dependency is cited as a common error by Schmeiser [1981].); and (6) Are all

data up-to-date?

Experimental Model VV&T

Experimental model VV&T deals with substantiating that the experimental model has sufficient

accuracy in representing the system under study consistent with the study objectives. All of the

techniques listed in Table 10.4 can be applied for conducting experimental model VV&T. The

applicability of the VV&T techniques depends upon the following cases where the system being

modeled is: (1) completely observable—all data required for model VV&T can be collected from

the system, (2) partially observable—some required data can be collected, or (3) nonexistent or

completely unobservable. The statistical techniques in Table 10.3 are applicable only for case 1.

In the case study, many of the applicable techniques in Table 10.4 were used to assess the
65

experimental model accuracy. Some of the statistical techniques in Table 10.3 were also used.

Presentation VV&T

Presentation VV&T deals with justifying that the simulation results are interpreted, documented

and communicated with sufficient accuracy.

Since all simulation models are descriptive, simulation results must be interpreted. A

descriptive model describes the behavior of a system without any value judgment on the “good-

ness” or “badness” of such behavior. In the simulation of an interactive computer system, for

example, the model may produce a value of 20 seconds for the average response time. But, it does

not indicate whether the value 20 is a “good” result or a “bad” one. Such a judgment is made by

the simulation analyst depending upon the study objectives. Under one set of study objectives the

value 20 may be too high; under another, it may be reasonable. The project team should review

the way the results are interpreted in every detail to evaluate interpretation accuracy. Errors may

be induced due to the complexity of simulation results, especially for large scale and complex

models.

Gass [1983] points out that “we do not know of any model assessment or modeling project

review that indicated satisfaction with the available documentation.” Nance [1994] advocates the

use of standards in simulation documentation. The documentation problem should be attributed to

the lack of automated support for documentation generation integrated with model development

continuously throughout the entire life cycle. The model development environment [Balci 1986;

Balci and Nance 1987; Derrick and Balci 1995; Balci et al. 1995] provides such computer-aided

assistance for documenting a simulation study with respect to the phases, processes and credibil-

ity assessment stages of the life cycle in Figure 10.1.

The simulation project team must devote sufficient effort in communicating technical simu-

lation results to decision makers in a language they will understand. They must pay more attention

to translating from the specialized jargon of the discipline into a form that is meaningful to the

nonsimulationist and nonmodeler. Simulation results may be presented to the decision makers as

integrated within a Decision Support System (DSS). With the help of a DSS, a decision maker can

understand and utilize the results much better. The integration accuracy of simulation results

within the DSS must be verified. If results are directly presented to the decision makers, the pre-

sentation technique (e.g., overheads, slides, films, etc.) must be ensured to be effective enough.

The project management must make sure that the team members are trained and possess sufficient

presentation skills.

Audit, desk checking, face validation, inspections, reviews, visualization/animation and
66

walkthroughs can be applied for conducting presentation VV&T.

10.6 CONCLUDING REMARKS

The life cycle application of VV&T is extremely important for successful completion of complex

and large-scale simulation studies. This point must be clearly understood by the sponsor of the

simulation study and the organization conducting the simulation study. The sponsor must furnish

funds under the contractual agreement and require the contractor to apply VV&T throughout the

entire life cycle of a simulation study.

Assessing credibility throughout the life cycle is an onerous task. Applying the VV&T tech-

niques throughout the life cycle is time consuming and costly. In practice, under time pressure to

complete a simulation study, the VV&T and documentation are sacrificed first. Computer-aided

assistance for credibility assessment is required to alleviate these problems. More research is

needed to bring automation to the application of VV&T techniques.

Integration of VV&T with model development is crucial. This integration is best achieved

within a computer-aided simulation model development environment [Balci 1986; Balci and

Nance 1987; Derrick and Balci 1995; Balci et al. 1995]. More research is needed for this integra-

tion.

The question of which of the applicable VV&T techniques should be selected for a particu-

lar VV&T activity in the life cycle should be answered by taking the following into consideration:

(a) model type, (b) simulation type, (c) problem domain, and (d) study objectives.

How much to test or when to stop testing depends on the study objectives. The testing

should continue until we achieve sufficient confidence in credibility and acceptability of simula-

tion results. The sufficiency of the confidence is dictated by the study objectives.

Establishing a simulation quality assurance (SQA) program within the organization con-

ducting the simulation study is extremely important for successful credibility assessment. The

SQA management structure goes beyond VV&T and is also responsible for assessing other model

quality characteristics such as maintainability, reusability, and usability (human-computer inter-

face). The management of the SQA program and the management of the simulation project must

be independent of each other and neither should be able to overrule the other [Schach 1996].

Subjectivity is, and will always be, part of the credibility assessment for a reasonably com-

plex simulation study. The reason for subjectivity is two-fold: modeling is an art and credibility

assessment is situation dependent. A unifying approach based on the use of indicators measuring

qualitative as well as quantitative aspects of a simulation study should be developed.
67

REFERENCES

Ackerman, A.F., P.J. Fowler, and R.G. Ebenau (1983), “Software Inspections and the Industrial
Production of Software,” In Software Validation: Inspection, Testing, Verification, Alterna-
tives, Proceedings of the Symposium on Software Validation (Darmstadt, FRG, Sept. 25-30),
Hans-Ludwig Hausen, Ed., pp. 13-40.

Adrion, W.R., M.A. Branstad, and J.C. Cherniavsky (1982), “Validation, Verification, and Testing
of Computer Software,” Computing Surveys 14, 2 (June), 159-192.

Aigner, D.J. (1972), “A Note on Verification of Computer Simulation Models,” Management Sci-
ence 18, 11 (Nov.), 615-619.

Allen, F.E. and J. Cocke (1976), “A Program Data Flow Analysis Procedure,” Communications of
the ACM 19, 3 (Mar.), 137-147.

Backhouse, R.C. (1986), Program Construction and Verification, Prentice-Hall International (UK)
Ltd., London, Great Britain.

Balci, O. (1986), “Requirements for Model Development Environments,” Computers & Opera-
tions Research 13, 1, 53-67.

Balci, O. (1988), “The Implementation of Four Conceptual Frameworks for Simulation Modeling
in High-level Languages,” In Proceedings of the 1988 Winter Simulation Conference, M.A.
Abrams, P.L. Haigh, and J.C. Comfort, Eds. IEEE, Piscataway, NJ, 287-295.

Balci, O. (1990), “Guidelines for Successful Simulation Studies,” In Proceedings of the 1990 Win-
ter Simulation Conference, O. Balci, R.P. Sadowski, and R.E. Nance, Eds. IEEE, Piscat-
away, NJ, 25-32.

Balci, O., A.I. Bertelrud, C.M. Esterbrook, and R.E. Nance (1995), “A Picture-Based Object-Ori-
ented Visual Simulation Environment,” In Proceedings of the 1995 Winter Simulation Con-
ference, C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman, Eds., IEEE,
Piscataway, NJ, pp. 1333-1340.

Balci, O. and R.E. Nance (1985), “Formulated Problem Verification as an Explicit Requirement of
Model Credibility,” Simulation 45, 2, 76-86.

Balci, O. and R.E. Nance (1987), “Simulation Model Development Environments: A Research
Prototype,” Journal of Operational Research Society 38, 8, 753-763.

Balci, O. and R.E. Nance (1992), “The Simulation Model Development Environment: An Over-
view,” In Proceedings of the 1992 Winter Simulation Conference (Arlington, VA, Dec. 13-
16). IEEE, Piscataway, NJ, pp. 726-736.

Balci, O. and R.G. Sargent (1981), “A Methodology for Cost-Risk Analysis in the Statistical Val-
idation of Simulation Models,” Communications of the ACM 24, 4, 190-197.

Balci, O. and R.G. Sargent (1982a), “Some Examples of Simulation Model Validation Using Hy-
pothesis Testing,” In Proceedings of the 1982 Winter Simulation Conference, H.J. Highland,
Y.W. Chao, and O.S. Madrigal, Eds. IEEE, Piscataway, 620-629.

Balci, O. and R.G. Sargent (1982b), “Validation of Multivariate Response Models Using Hotell-
ing's Two-Sample T2 Test,” Simulation 39, 6 (Dec.), 185-192.

Balci, O. and R.G. Sargent (1983), “Validation of Multivariate Response Trace-Driven Simulation
Models,” In Performance '83, A K. Agrawala and S.K. Tripathi, Eds. North-Holland, Am-
sterdam, 309-323.
68

Balci, O. and R.G. Sargent (1984), “Validation of Simulation Models via Simultaneous Confi-
dence Intervals,” American Journal of Mathematical and Management Sciences 4, 3&4,
375-406.

Banks, J. (1996), “Software for Simulation,” In Proceedings of the 1996 Winter Simulation Con-
ference, J.M. Charnes, D.J. Morrice, D.T. Brunner and J.J. Swain, Eds. IEEE, Piscataway,
NJ, 31-38.

Banks, J., J.S. Carson, and B.L. Nelson (1996), Discrete-Event System Simulation, Second Edition,
Prentice-Hall, Upper Saddle River, NJ.

Banks, J., D. Gerstein, and S.P. Searles (1987), “Modeling Processes, Validation, and Verification
of Complex Simulations: A Survey,” In Methodology and Validation, O. Balci, Ed. SCS, San
Diego, CA, 13-18.

Barendregt, H.P. (1981), The Lambda Calculus: Its Syntax and Semantics, North-Holland, New
York, N.Y.

Beizer, B. (1990), Software Testing Techniques, Second Edition, Van Nostrand Reinhold, New
York, NY.

Bell, P.C. and R.M. O’Keefe (1994), “Visual Interactive Simulation: A Methodological Perspec-
tive,” Annals of Operations Research 53, 321-342.

Birta, L.G. and F.N. Özmizrak (1996), “A Knowledge-Based Approach for the Validation of Sim-
ulation Models: The Foundation,” ACM Transactions on Modeling and Computer Simula-
tion 6, 1 (Jan.), 76-98.

Chusho, T. (1987), “Test Data Selection and Quality Estimation Based on the Concept of Essential
Branches for Path Testing,” IEEE Transactions on Software Engineering SE-13, 5 (May),
509-517.

Cohen, K.J. and R.M. Cyert (1961), “Computer Models in Dynamic Economics,” Quarterly Jour-
nal of Economics 75, 1 (Feb.), 112-127.

Damborg, M.J. and L.F. Fuller (1976), “Model Validation Using Time and Frequency Domain Er-
ror Measures,” ERDA Report 76-152, NTIS, Springfield, VA.

Derrick, E.J. and O. Balci (1995), “A Visual Simulation Support Environment Based on the
DOMINO Conceptual Framework,” Journal of Systems and Software 31, 3 (Dec.), 215-237.

Department of Defense (1995), “Modeling and Simulation (M&S) Master Plan,” DoD 5000.59-P,
Oct.

Deutsch, M.S. (1982), Software Verification and Validation: Realistic Project Approaches, Pren-
tice-Hall, Englewood Cliffs, NJ.

Dijkstra, E.W. (1975), “Guarded Commands, Non-determinacy and a Calculus for the Derivation
of Programs,” Communications of the ACM 18, 8 (Aug.), 453-457.

Dillon, L.K. (1990), “Using Symbolic Execution for Verification of Ada Tasking Programs,” ACM
Transactions on Programming Languages and Systems 12, 4, 643-669.

Dobbins, J.H. (1987), “Inspections as an Up-Front Quality Technique,” In Handbook of Software
Quality Assurance, G.G. Schulmeyer and J.I. McManus, Eds. Van Nostrand-Reinhold Com-
pany, New York, NY, pp. 137-177.

Dunn, R.H. (1984), Software Defect Removal, McGraw-Hill, New York, NY.
69

Dunn, R.H. (1987), “The Quest for Software Reliability,” In Handbook of Software Quality Assur-
ance, G.G. Schulmeyer and J.I. McManus, Eds. Van Nostrand-Reinhold Company, New
York, NY, pp. 342-384.

Emshoff, J.R. and R.L. Sisson (1970), Design and Use of Computer Simulation Models, MacMill-
an, New York, NY.

Fairley, R.E. (1975), “An Experimental Program-Testing Facility,” IEEE Transactions on Soft-
ware Engineering SE-1, 4, 350-357.

Fairley, R.E. (1976), “Dynamic Testing of Simulation Software,” In Proceedings of the 1976 Sum-
mer Computer Simulation Conference (Washington, D.C., July 12-14), “Simulation Coun-
cils, La Jolla, CA, 708-710.

Fishman, G.S. (1978), Principles of Discrete Event Simulation, Wiley-Interscience, New York,
NY.

Fishman, G.S. and P.J. Kiviat (1967), “The Analysis of Simulation Generated Time Series,” Man-
agement Science 13, 7 (July), 525-557.

Forrester, J.W. (1961), Industrial Dynamics, MIT Press, Cambridge, MA.

Gafarian, A.V. and J.E. Walsh (1969), “Statistical Approach for Validating Simulation Models by
Comparison with Operational Systems,” In Proceedings of the 4th International Conference
on Operations Research, John Wiley & Sons, New York, NY, 702-705.

Gallant, A.R., T.M. Gerig, and J.W. Evans (1974), “Time Series Realizations Obtained According
to an Experimental Design,” J. American Statistical Association 69, 347 (Sept.), 639-645.

Garratt, M. (1974), “Statistical Validation of Simulation Models,” In Proceedings of the 1974 Sum-
mer Computer Simulation Conference (Houston, Tex., July 9-11). Simulation Councils, La
Jolla, CA, 915-926.

Gass, S.I. (1983), “Decision-Aiding Models: Validation, Assessment, and Related Issues for Poli-
cy Analysis,” Operations Research 31, 4, 603-631.

Hermann, C.F. (1967), “Validation Problems in Games and Simulations with Special Reference to
Models of International Politics,” Behavioral Science 12, 3 (May), 216-231.

Hetzel, W. (1984), The Complete Guide to Software Testing, QED Information Sciences, Welles-
ley, MA.

Hollocker, C.P. (1987), “The Standardization of Software Reviews and Audits,” In Handbook of
Software Quality Assurance, G.G. Schulmeyer and J.I. McManus, Eds. Van Nostrand-Rein-
hold Company, New York, NY, pp. 211-266.

Howden, W.E. (1976), “Reliability of the Path Analysis Testing Strategy,” IEEE Transactions on
Software Engineering SE-2, 3 (Sept.), 208-214.

Howden, W.E. (1980), “Functional Program Testing,” IEEE Transactions on Software Engineer-
ing SE-6, 2, 162-169.

Howrey, P. and H.H. Kelejian (1969), “Simulation Versus Analytical Solutions,” In The Design of
Computer Simulation Experiments, T.H. Naylor, Ed. Duke University Press, Durham, NC,
207-231.

Hunt, A.W. (1970), “Statistical Evaluation and Verification of Digital Simulation Models Through
Spectral Analysis,” Ph.D. Dissertation, University of Texas at Austin, Austin, TX.
70

Johnson, M.E. and M. Mollaghasemi (1994), “Simulation Input Data Modeling,” Annals of Oper-
ations Research 53, 47-75.

Khanna, S. (1991), “Logic Programming for Software Verification and Testing,” The Computer
Journal 34, 4, 350-357.

Kheir, N.A. and W.M. Holmes (1978), “On Validating Simulation Models of Missile Systems,”
Simulation 30, 4 (Apr.), 117-128.

King, J.C. (1976), “Symbolic Execution and Program Testing,” Communications of the ACM 19,
7 (July), 385-394.

Kleijnen, J.P.C. (1975), Statistical Techniques in Simulation, Volume 2, Marcel Dekker, New
York, NY.

Knepell, P.L. and D.C. Arangno (1993), Simulation Validation: A Confidence Assessment Meth-
odology, Monograph 3512-04, IEEE Computer Society Press, Los Alamitos, CA.

Knight, J.C. and E.A. Myers (1993), “An Improved Inspection Technique,” Communications of the
ACM 36, 11, 51-61.

Law, A.M. (1983), “Statistical Analysis of Simulation Output Data,” Operations Research 31, 6,
983-1029.

Law, A.M. and W.D. Kelton (1991), Simulation Modeling and Analysis, Second Edition, McGraw-
Hill, New York, NY.

Manna, Z., S. Ness, and J. Vuillemin (1973), “Inductive Methods for Proving Properties of Pro-
grams,” Communications of the ACM 16, 8 (Aug.), 491-502.

Martin, J. and C. McClure (1985), Diagramming Techniques for Analysts and Programmers, Pren-
tice-Hall, Englewood Cliffs, NJ.

Miller, D.K. (1975), “Validation of Computer Simulations in the Social Sciences,” In Proceedings
of the Sixth Annual Conference on Modeling and Simulation (Pittsburg, PA), pp. 743-746.

Miller, D.R. (1974a), “Model Validation Through Sensitivity Analysis,” In Proceedings of the
1974 Summer Computer Simulation Conference (Houston, TX, July 9-11). Simulation
Councils, La Jolla, CA, 911-914.

Miller, D.R. (1974b), “Sensitivity Analysis and Validation of Simulation Models,” J. Theoretical
Biology 48, 2 (Dec.), 345-360.

Miller, L.A., E.H. Groundwater, J.E. Hayes, and S.M. Mirsky (1995), “Survey and Assessment of
Conventional Software Verification and Validation Methods,” Special Publication NUREG/
CR-6316 Vol. 2, U.S. Nuclear Regulatory Commission, Washington, DC.

Moose, R.L. and R.E. Nance (1989), “The Design and Development of an Analyzer for Discrete
Event Model Specifications,” In Impacts of Recent Computer Advances on Operations Re-
search, R. Sharda, B.L. Golden, E. Wasil, O. Balci, and W. Stewart, Eds. Elsevier, New
York, NY, 407-421.

Myers, G.J. (1978), “A Controlled Experiment in Program Testing and Code Walkthroughs/In-
spections,” Communications of the ACM 21, 9 (Sept.), 760-768.

Myers, G.J. (1979), The Art of Software Testing, John Wiley & Sons, New York, N.Y.

Nance, R.E. (1993), “A History of Discrete Event Simulation Programming Languages,” In: Pro-
ceedings of the ACM SIGPLAN History of Programming Languages Conference (Cam-
bridge, MA, Apr. 20-23) Reprinted in ACM SIGPLAN Notices 28, 3, 149-175.
71

Nance, R.E. (1994), “The Conical Methodology and the Evolution of Simulation Model Develop-
ment” Annals of Operations Research 53, 1-46.

Nance, R.E. and C.M. Overstreet (1987), “Diagnostic Assistance Using Digraph Representations
of Discrete Event Simulation Model Specifications,” Transactions of the SCS 4, 1 (Jan.), 33-
57.

Naylor, T.H. and J.M. Finger (1967), “Verification of Computer Simulation Models,” Manage-
ment Science 14, 2 (Feb.), B92-B101.

Orca Computer (1996a), Visual Simulation Environment User’s Guide, Orca Computer, Inc.,
Blacksburg, VA.

Orca Computer (1996b), Visual Simulation Environment Reference Manual, Orca Computer, Inc.,
Blacksburg, VA.

Ould, M.A. and C. Unwin (1986), Testing in Software Development, Cambridge University Press,
Great Britain.

Overstreet, C.M. and R.E. Nance (1985), “A Specification Language to Assist in Analysis of Dis-
crete Event Simulation Models,” Communications of the ACM 28, 2, 190-201.

Ören, T.I. (1981), “Concepts and Criteria to Assess Acceptability of Simulation Studies: A Frame
of Reference,” Communications of the ACM 24, 4, 180-189.

Ören, T.I. (1986), “Artificial Intelligence in Quality Assurance of Simulation Studies,” In Model-
ling and Simulation Methodology in the Artificial Intelligence Era, M.S. Elzas, T.I. Ören,
and B.P. Zeigler, Eds. North Holland, Amsterdam, pp. 267-278.

Ören, T.I. (1987), “Quality Assurance Paradigms for Artificial Intelligence in Modelling and Sim-
ulation,” Simulation 48, 4 (Apr.), 149-151.

Paul, R.J. (1989), “Visual Simulation: Seeing is Believing?” In Impacts of Recent Computer Ad-
vances on Operations Research, R. Sharda, B.L. Golden, E. Wasil, O. Balci, and W. Stewart,
Eds. Elsevier, New York, NY, 422-432.

Perry, W. (1995), Effective Methods for Software Testing, John Wiley & Sons, New York, NY.

Prather, R.E. and J.P. Myers, Jr. (1987), “The Path Prefix Software Testing Strategy,” IEEE Trans-
actions on Software Engineering SE-13, 7 (July), 761-766.

Pressman, R.S. (1996), Software Engineering: A Practitioner’s Approach, Fourth Edition,
McGraw-Hill, New York, NY.

Ramamoorthy, C.V., S.F. Ho, and W.T. Chen (1976), “On the Automated Generation of Program
Test Data,” IEEE Transactions on Software Engineering SE-2, 4 (Dec.), 293-300.

Rattray, C., Ed. (1990), Specification and Verification of Concurrent Systems, Springer-Verlag,
New York, NY.

Reynolds, C. and R.T. Yeh (1976), “Induction as the Basis for Program Verification,” IEEE Trans-
actions on Software Engineering SE-2, 4, 244-252.

Richardson, D.J. and L.A. Clarke (1985), “Partition Analysis: A Method Combining Testing and
Verification,” IEEE Transactions on Software Engineering SE-11, 12 (Dec.), 1477-1490.

Rowland, J.R. and W.M. Holmes (1978), “Simulation Validation with Sparse Random Data,”
Computers and Electrical Engineering 5, 3 (Mar.), 37-49.
72

Sargent, R.G. (1996), “Verifying and Validating Simulation Models,” In Proceedings of the 1996
Winter Simulation Conference, J.M. Charnes, D.J. Morrice, D.T. Brunner and J.J. Swain,
Eds. IEEE, Piscataway, NJ, 55-64.

Schach, S.R. (1996), Software Engineering, Third Edition, Irwin, Homewood, IL.

Schlesinger, S., et al. (1979), “Terminology for Model Credibility,” Simulation 32, 3, 103-104.

Schmeiser, B. (1981), “Random Variate Generation,” In Proceedings of the 1981 Winter Simula-
tion Conference, T.I. Ören, C.M. Delfosse, and C.M. Shub, Eds. IEEE, Piscataway, NJ, pp.
227-242.

Schruben, L.W. (1980), “Establishing the Credibility of Simulations,” Simulation 34, 3 (Mar.),
101-105.

Shannon, R.E. (1975), Systems Simulation: The Art and Science, Prentice-Hall, Englewood Cliffs,
NJ.

Sommerville, I. (1996), Software Engineering, Fifth Edition, Addison-Wesley, Reading, MA.

Stucki, L.G. (1977), “New Directions in Automated Tools for Improving Software Quality,” In
Current Trends in Programming Methodology, Vol. 2, R. Yeh, Ed. Prentice-Hall, Engle-
wood Cliffs, NJ, pp. 80-111.

Teorey, T.J. (1975), “Validation Criteria for Computer System Simulations,” Simuletter 6, 4 (July),
9-20.

Theil, H. (1961), “Economic Forecasts and Policy, North-Holland, Amsterdam, The Netherlands.

Turing, A.M. (1963), “Computing Machinery and Intelligence,” In Computers and Thought, E.A.
Feigenbaum and J. Feldman, Eds. McGraw-Hill, New York, NY, 11-15.

Tytula, T.P. (1978), “A Method for Validating Missile System Simulation Models,” Technical Re-
port E-78-11, U.S. Army Missile R&D Command, Redstone Arsenal, AL, June.

U.S. GAO (1987), DOD Simulations: Improved Assessment Procedures Would Increase the Cred-
ibility of Results, U.S. General Accounting Office GAO/PEMD-88-3, Washington, DC, Dec.

Van Horn, R.L. (1971), “Validation of Simulation Results,” Management Science 17, 5 (May),
247-258.

Vincent, S. and A.M. Law (1995), “ExpertFit: Total Support for Simulation Input Modeling,” In
Proceedings of the 1995 Winter Simulation Conference, C. Alexopoulos, K. Kang, W.R. Li-
legdon, and D. Goldsman, Eds., IEEE, Piscataway, NJ, pp. 395-400.

Watson, C.E. (1976), “The Problems of Problem Solving,” Business Horizons 19, 4, 88-94.

Watts, D. (1969), “Time Series Analysis,” In The Design of Computer Simulation Experiments,
T.H. Naylor, Ed. Duke University Press, Durham, NC, 165-179.

Whitner, R.B. and O. Balci (1989), “Guidelines for Selecting and Using Simulation Model Verifi-
cation Techniques,” In Proceedings of the 1989 Winter Simulation Conference, E.A. Mac-
Nair, K.J. Musselman, and P. Heidelberger, Eds. IEEE, Piscataway, NJ, 559-568.

Wilson, J.R. and A.A.B. Pritsker (1978), “A Survey of Research on the Simulation Startup Prob-
lem,” Simulation 31, 2, 55-58.

Woolley, R.N. and M. Pidd (1981), “Problem Structuring – A Literature Review,” Journal of Op-
erational Research Society 32, 3, 197-206.
73

Wright, R.D. (1972), “Validating Dynamic Models: An Evaluation of Tests of Predictive Power,”
In Proceedings of the 1972 Summer Computer Simulation Conference (San Diego, CA, July
14-16). Simulation Councils, La Jolla, CA, 1286-1296.

Yeh, R.T. (1977), “Verification of Programs by Predicate Transformation,” In Current Trends in
Programming Methodology, Vol. 2, R. Yeh, Ed. Prentice-Hall, Englewood Cliffs, NJ, pp.
228-247.

Yourdon, E. (1985), Structured Walkthroughs, 3rd Edition, Yourdon Press, New York, NY.

Yücesan, E. and S.H. Jacobson (1992), “Building Correct Simulation Models is Difficult,” In Pro-
ceedings of the 1992 Winter Simulation Conference, J.J. Swain, D. Goldsman, R.C. Crain,
and J.R. Wilson, Eds. IEEE, Piscataway, NJ, 783-790.

Yücesan, E. and S.H. Jacobson (1996), “Intractable Structural Issues in Discrete Event Simulation:
Special Cases and Heuristic Approaches,” ACM Transactions on Modeling and Computer
Simulation, to appear.
74

	CHAPTER 10
	Verification, Validation and Testing
	OSMAN BALCI
	Virginia Tech
	10.1 INTRODUCTION
	10.2 THE LIFE CYCLE AND A CASE STUDY
	Figure 10.1. The life cycle of a simulation study....
	Problem Formulation
	Case Study
	Figure 10.2. The Traffic Intersection at Prices Fo...

	Investigation of Solution Techniques
	Case Study

	System Investigation
	Case Study

	Model Formulation
	Case Study
	Table 10.1. Probabilistic Models of Vehicle Intera...
	Table 10.2. Estimated Probabilities of Right Turns...

	Model Representation
	Case Study
	Figure 10.3. Model Specification in the Visual Sim...

	Programming
	Case Study

	Design of Experiments
	Case Study

	Experimentation
	Case Study

	Redefinition
	Case Study

	Presentation of Simulation Results
	Case Study

	10.3 VERIFICATION, VALIDATION AND TESTING PRINCIPL...
	Principle 1: VV&T must be conducted throughout the...
	Principle 2: The outcome of simulation model VV&T ...
	Figure 10.4. Model Credibility versus Cost and Uti...

	Principle 3: A simulation model is built with resp...
	Principle 4: Simulation model VV&T requires indepe...
	Principle 5: Simulation model VV&T is difficult an...
	Principle 6: Simulation model credibility can be c...
	Principle 7: Complete simulation model testing is ...
	Principle 8: Simulation model VV&T must be planned...
	Principle 9: Type I, II and III errors must be pre...
	Figure 10.5. Type I, II and III Errors in a Simula...

	Principle 10: Errors should be detected as early a...
	Principle 11: Multiple response problem must be re...
	Figure 10.6. Model and System Characteristics.
	Figure 10.7. Joint Confidence Region Representing ...

	Principle 12: Successfully testing each submodel (...
	Principle 13: Double validation problem must be re...
	Principle 14: Simulation model validity does not g...
	Principle 15: Formulated problem accuracy greatly ...

	10.4 VERIFICATION, VALIDATION AND TESTING TECHNIQU...
	Figure 10.8. A Taxonomy of Verification, Validatio...
	Informal VV&T Techniques
	Audit
	Desk Checking
	Documentation Checking
	Face Validation
	Inspections
	Reviews
	Turing Test
	Walkthroughs

	Static VV&T Techniques
	Cause-Effect Graphing
	Control Analysis
	Data Analysis
	Fault/Failure Analysis
	Interface Analysis
	Semantic Analysis
	Structural Analysis
	Symbolic Evaluation
	Syntax Analysis
	Figure 10.9. Identification of Syntax Errors durin...

	Traceability Assessment

	Dynamic VV&T Techniques
	Figure 10.10. Visual Simulation of Global Air Traf...
	Acceptance Testing
	Alpha Testing
	Assertion Checking
	Beta Testing
	Bottom-Up Testing
	Comparison Testing
	Compliance Testing
	Debugging
	Execution Testing
	Fault/Failure Insertion Testing
	Field Testing
	Functional Testing
	Graphical Comparisons
	Interface Testing
	1. Parameter interfaces: pass data or function ref...
	2. Shared memory interfaces: enable submodels to s...
	3. Procedural interfaces: are used to implement th...
	4. Message passing interfaces: enable an object to...
	1. Interface misuse: occurs when a submodel calls ...
	2. Interface misunderstanding: occurs when submode...
	3. Timing errors: occur in real-time, parallel and...

	Object-Flow Testing
	Partition Testing
	Predictive Validation
	Product Testing
	Regression Testing
	Sensitivity Analysis
	Special Input Testing
	Statistical Techniques
	Table 10.3. Statistical Techniques Proposed for Va...
	Figure 10.11. A Validation Procedure Using Simulta...

	Structural Testing
	Submodel/Module Testing
	Symbolic Debugging
	Top-Down Testing
	Visualization/Animation
	Figure 10.12. Traffic Intersection Simulation Mode...

	Formal VV&T Techniques

	10.5 CREDIBILITY ASSESSMENT STAGES
	Table 10.4. Applicability of the VV&T Techniques f...
	Formulated Problem VV&T
	Feasibility Assessment of Simulation
	System and Objectives Definition VV&T
	Model Qualification
	Communicative Model VV&T
	Programmed Model VV&T
	Experiment Design VV&T
	Data VV&T
	Experimental Model VV&T
	Presentation VV&T

	10.6 CONCLUDING REMARKS

	REFERENCES
	Ackerman, A.F., P.J. Fowler, and R.G. Ebenau (1983...
	Adrion, W.R., M.A. Branstad, and J.C. Cherniavsky ...
	Aigner, D.J. (1972), “A Note on Verification of Co...
	Allen, F.E. and J. Cocke (1976), “A Program Data F...
	Backhouse, R.C. (1986), Program Construction and V...
	Balci, O. (1986), “Requirements for Model Developm...
	Balci, O. (1988), “The Implementation of Four Conc...
	Balci, O. (1990), “Guidelines for Successful Simul...
	Balci, O., A.I. Bertelrud, C.M. Esterbrook, and R....
	Balci, O. and R.E. Nance (1985), “Formulated Probl...
	Balci, O. and R.E. Nance (1987), “Simulation Model...
	Balci, O. and R.E. Nance (1992), “The Simulation M...
	Balci, O. and R.G. Sargent (1981), “A Methodology ...
	Balci, O. and R.G. Sargent (1982a), “Some Examples...
	Balci, O. and R.G. Sargent (1982b), “Validation of...
	Balci, O. and R.G. Sargent (1983), “Validation of ...
	Balci, O. and R.G. Sargent (1984), “Validation of ...
	Banks, J. (1996), “Software for Simulation,” In Pr...
	Banks, J., J.S. Carson, and B.L. Nelson (1996), Di...
	Banks, J., D. Gerstein, and S.P. Searles (1987), “...
	Barendregt, H.P. (1981), The Lambda Calculus: Its ...
	Beizer, B. (1990), Software Testing Techniques, Se...
	Bell, P.C. and R.M. O’Keefe (1994), “Visual Intera...
	Birta, L.G. and F.N. Özmizrak (1996), “A Knowledge...
	Chusho, T. (1987), “Test Data Selection and Qualit...
	Cohen, K.J. and R.M. Cyert (1961), “Computer Model...
	Damborg, M.J. and L.F. Fuller (1976), “Model Valid...
	Derrick, E.J. and O. Balci (1995), “A Visual Simul...
	Department of Defense (1995), “Modeling and Simula...
	Deutsch, M.S. (1982), Software Verification and Va...
	Dijkstra, E.W. (1975), “Guarded Commands, Non-dete...
	Dillon, L.K. (1990), “Using Symbolic Execution for...
	Dobbins, J.H. (1987), “Inspections as an Up-Front ...
	Dunn, R.H. (1984), Software Defect Removal, McGraw...
	Dunn, R.H. (1987), “The Quest for Software Reliabi...
	Emshoff, J.R. and R.L. Sisson (1970), Design and U...
	Fairley, R.E. (1975), “An Experimental Program-Tes...
	Fairley, R.E. (1976), “Dynamic Testing of Simulati...
	Fishman, G.S. (1978), Principles of Discrete Event...
	Fishman, G.S. and P.J. Kiviat (1967), “The Analysi...
	Forrester, J.W. (1961), Industrial Dynamics, MIT P...
	Gafarian, A.V. and J.E. Walsh (1969), “Statistical...
	Gallant, A.R., T.M. Gerig, and J.W. Evans (1974), ...
	Garratt, M. (1974), “Statistical Validation of Sim...
	Gass, S.I. (1983), “Decision-Aiding Models: Valida...
	Hermann, C.F. (1967), “Validation Problems in Game...
	Hetzel, W. (1984), The Complete Guide to Software ...
	Hollocker, C.P. (1987), “The Standardization of So...
	Howden, W.E. (1976), “Reliability of the Path Anal...
	Howden, W.E. (1980), “Functional Program Testing,”...
	Howrey, P. and H.H. Kelejian (1969), “Simulation V...
	Hunt, A.W. (1970), “Statistical Evaluation and Ver...
	Johnson, M.E. and M. Mollaghasemi (1994), “Simulat...
	Khanna, S. (1991), “Logic Programming for Software...
	Kheir, N.A. and W.M. Holmes (1978), “On Validating...
	King, J.C. (1976), “Symbolic Execution and Program...
	Kleijnen, J.P.C. (1975), Statistical Techniques in...
	Knepell, P.L. and D.C. Arangno (1993), Simulation ...
	Knight, J.C. and E.A. Myers (1993), “An Improved I...
	Law, A.M. (1983), “Statistical Analysis of Simulat...
	Law, A.M. and W.D. Kelton (1991), Simulation Model...
	Manna, Z., S. Ness, and J. Vuillemin (1973), “Indu...
	Martin, J. and C. McClure (1985), Diagramming Tech...
	Miller, D.K. (1975), “Validation of Computer Simul...
	Miller, D.R. (1974a), “Model Validation Through Se...
	Miller, D.R. (1974b), “Sensitivity Analysis and Va...
	Miller, L.A., E.H. Groundwater, J.E. Hayes, and S....
	Moose, R.L. and R.E. Nance (1989), “The Design and...
	Myers, G.J. (1978), “A Controlled Experiment in Pr...
	Myers, G.J. (1979), The Art of Software Testing, J...
	Nance, R.E. (1993), “A History of Discrete Event S...
	Nance, R.E. (1994), “The Conical Methodology and t...
	Nance, R.E. and C.M. Overstreet (1987), “Diagnosti...
	Naylor, T.H. and J.M. Finger (1967), “Verification...
	Orca Computer (1996a), Visual Simulation Environme...
	Orca Computer (1996b), Visual Simulation Environme...
	Ould, M.A. and C. Unwin (1986), Testing in Softwar...
	Overstreet, C.M. and R.E. Nance (1985), “A Specifi...
	Ören, T.I. (1981), “Concepts and Criteria to Asses...
	Ören, T.I. (1986), “Artificial Intelligence in Qua...
	Ören, T.I. (1987), “Quality Assurance Paradigms fo...
	Paul, R.J. (1989), “Visual Simulation: Seeing is B...
	Perry, W. (1995), Effective Methods for Software T...
	Prather, R.E. and J.P. Myers, Jr. (1987), “The Pat...
	Pressman, R.S. (1996), Software Engineering: A Pra...
	Ramamoorthy, C.V., S.F. Ho, and W.T. Chen (1976), ...
	Rattray, C., Ed. (1990), Specification and Verific...
	Reynolds, C. and R.T. Yeh (1976), “Induction as th...
	Richardson, D.J. and L.A. Clarke (1985), “Partitio...
	Rowland, J.R. and W.M. Holmes (1978), “Simulation ...
	Sargent, R.G. (1996), “Verifying and Validating Si...
	Schach, S.R. (1996), Software Engineering, Third E...
	Schlesinger, S., et al. (1979), “Terminology for M...
	Schmeiser, B. (1981), “Random Variate Generation,”...
	Schruben, L.W. (1980), “Establishing the Credibili...
	Shannon, R.E. (1975), Systems Simulation: The Art ...
	Sommerville, I. (1996), Software Engineering, Fift...
	Stucki, L.G. (1977), “New Directions in Automated ...
	Teorey, T.J. (1975), “Validation Criteria for Comp...
	Theil, H. (1961), “Economic Forecasts and Policy, ...
	Turing, A.M. (1963), “Computing Machinery and Inte...
	Tytula, T.P. (1978), “A Method for Validating Miss...
	U.S. GAO (1987), DOD Simulations: Improved Assessm...
	Van Horn, R.L. (1971), “Validation of Simulation R...
	Vincent, S. and A.M. Law (1995), “ExpertFit: Total...
	Watson, C.E. (1976), “The Problems of Problem Solv...
	Watts, D. (1969), “Time Series Analysis,” In The D...
	Whitner, R.B. and O. Balci (1989), “Guidelines for...
	Wilson, J.R. and A.A.B. Pritsker (1978), “A Survey...
	Woolley, R.N. and M. Pidd (1981), “Problem Structu...
	Wright, R.D. (1972), “Validating Dynamic Models: A...
	Yeh, R.T. (1977), “Verification of Programs by Pre...
	Yourdon, E. (1985), Structured Walkthroughs, 3rd E...
	Yücesan, E. and S.H. Jacobson (1992), “Building Co...
	Yücesan, E. and S.H. Jacobson (1996), “Intractable...

