Games on Networks. Rationality, Dynamics and Interactions

Giorgio Fagiolo

giorgio.fagiolo@sssup.it
https://mail.sssup.it/~fagiolo

Sant'Anna School of Advanced Studies, Pisa, Italy

Dipartimento di Scienze Economiche e Statistiche Università di Trieste May 2007

Agent-Based Computational Economics (ACE)

- Methodology: Empirical validation in ACE models
- Applications: ACE models and policy

Networks

- Game-theoretic models of strategic network formation
- Empirical properties of economic networks

Industrial dynamics: models and empirical evidence

- Firm locational choices and the geography of industrial agglomeration
- Firm size and growth dynamics: the role of financial constraints

Statistical properties of micro/macro dynamics

- Statistical properties of household consumption patterns
- Statistical properties of country-output growth

Agent-Based Computational Economics (ACE)

- Methodology: Empirical validation in ACE models
- Applications: ACE models and policy

Networks

- Game-theoretic models of strategic network formation
- Empirical properties of economic networks

Industrial dynamics: models and empirical evidence

- Firm locational choices and the geography of industrial agglomeration
- Firm size and growth dynamics: the role of financial constraints

Statistical properties of micro/macro dynamics

- Statistical properties of household consumption patterns
- Statistical properties of country-output growth

- Agent-Based Computational Economics (ACE)
 - Methodology: Empirical validation in ACE models
 - Applications: ACE models and policy
- Networks
 - Game-theoretic models of strategic network formation
 - Empirical properties of economic networks
- Industrial dynamics: models and empirical evidence
 - Firm locational choices and the geography of industrial agglomeration
 - Firm size and growth dynamics: the role of financial constraints
- Statistical properties of micro/macro dynamics
 - Statistical properties of household consumption patterns
 - Statistical properties of country-output growth

Agent-Based Computational Economics (ACE)

- Methodology: Empirical validation in ACE models
- Applications: ACE models and policy

Networks

- Game-theoretic models of strategic network formation
- Empirical properties of economic networks

Industrial dynamics: models and empirical evidence

- Firm locational choices and the geography of industrial agglomeration
- Firm size and growth dynamics: the role of financial constraints

Statistical properties of micro/macro dynamics

- Statistical properties of household consumption patterns
- Statistical properties of country-output growth

My Homepage

https://mail.sssup.it/~fagiolo/welcome.html

Background

Open Issues in Dynamic Game Theory

Pros and Cons

- Sharp and powerful models addressing strategic setups
- Based on two over-simplifying assumptions
 - hyper-rational players w/o computational bounds
 - everyone always plays with everyone else

• Why such assumptions?

- Underlying philosophy: Razor of Occam
- Allow for analytical solutions and sharp implications
- Extensions are very difficult (time, agents, etc.)
 - loosing analytical tractability
 - getting anything-goes type of results

Open Issues in Dynamic Game Theory

Pros and Cons

- Sharp and powerful models addressing strategic setups
- Based on two over-simplifying assumptions
 - hyper-rational players w/o computational bounds
 - everyone always plays with everyone else

Why such assumptions?

- Underlying philosophy: Razor of Occam
- Allow for analytical solutions and sharp implications
- Extensions are very difficult (time, agents, etc.)
 - loosing analytical tractability
 - getting anything-goes type of results

Empirical Plausibility

Hyper-rationality vs. experimental economics

- Persistent and predictable violations of rationality and decision-theory axioms
- Bounded-rationality theory closer to reality than hyper-rationality

Interactions vs. real-world networks

- Economic agents typically interact (e.g. play games) locally
- Examples: imitation, adoption, cooperation, ...
- Keywords: neighborhood, relevant others, interaction group

Endogenous interactions

- Economic agents choose whom they interact with along the process: set of opponents in the game might endogenously evolve
- Whom one plays the game with becomes a strategic variable
- Strategies in the game (e.g., cooperate or not) co-evolve with set of players with whom one plays the game

Empirical Plausibility

Hyper-rationality vs. experimental economics

- Persistent and predictable violations of rationality and decision-theory axioms
- Bounded-rationality theory closer to reality than hyper-rationality

Interactions vs. real-world networks

- Economic agents typically interact (e.g. play games) locally
- Examples: imitation, adoption, cooperation, ...
- Keywords: neighborhood, relevant others, interaction group

Endogenous interactions

- Economic agents choose whom they interact with along the process: set
 of opponents in the game might endogenously evolve
- Whom one plays the game with becomes a strategic variable
- Strategies in the game (e.g., cooperate or not) co-evolve with set of players with whom one plays the game

Empirical Plausibility

Hyper-rationality vs. experimental economics

- Persistent and predictable violations of rationality and decision-theory axioms
- Bounded-rationality theory closer to reality than hyper-rationality

Interactions vs. real-world networks

- Economic agents typically interact (e.g. play games) locally
- Examples: imitation, adoption, cooperation, ...
- Keywords: neighborhood, relevant others, interaction group

Endogenous interactions

- Economic agents choose whom they interact with along the process: set of opponents in the game might endogenously evolve
- Whom one plays the game with becomes a strategic variable
- Strategies in the game (e.g., cooperate or not) co-evolve with set of players with whom one plays the game

A meta model (1/3)

Demographics and Time

- Agents: *I* = {1, 2, ..., *N*}
- Time: t = 1, 2, ...

Strategic Setup

- 2-person stage-game payoff matrix $\Pi = \{\pi(\cdot, \cdot)\}$
- Suppose agents play 2×2 bilateral games at each t
- Current strategy of agent i at time t: s_{i,t}
- Strategies can be repeatedly revised
- $s_{i,t} \in \{-1,+1\}$

Initial Interaction Structure

- Agents are located on nodes of a network/graph
- Links between agents mean playing games
- Each agent $i \in I$ plays the game with $V_{i,0} \subseteq I$ at time t = 0
- $V_{i,0}$: neighborhoods or interaction groups

A meta model (1/3)

Demographics and Time

- Agents: *I* = {1, 2, ..., *N*}
- Time: t = 1, 2, ...

Strategic Setup

- 2-person stage-game payoff matrix $\Pi = \{\pi(\cdot, \cdot)\}$
- Suppose agents play 2×2 bilateral games at each t
- Current strategy of agent i at time t: $s_{i,t}$
- Strategies can be repeatedly revised
- $s_{i,t} \in \{-1,+1\}$

Initial Interaction Structure

- Agents are located on nodes of a network/graph
- Links between agents mean playing games
- Each agent $i \in I$ plays the game with $V_{i,0} \subseteq I$ at time t = 0
- $V_{i,0}$: neighborhoods or interaction groups

A meta model (1/3)

Demographics and Time

- Agents: $I = \{1, 2, ..., N\}$
- Time: t = 1, 2, . . .

Strategic Setup

- 2-person stage-game payoff matrix $\Pi = \{\pi(\cdot, \cdot)\}$
- Suppose agents play 2×2 bilateral games at each t
- Current strategy of agent i at time t: $s_{i,t}$
- Strategies can be repeatedly revised
- $s_{i,t} \in \{-1,+1\}$

Initial Interaction Structure

- Agents are located on nodes of a network/graph
- Links between agents mean playing games
- Each agent $i \in I$ plays the game with $V_{i,0} \subseteq I$ at time t = 0
- V_{i,0}: neighborhoods or interaction groups

Initial Interaction Structures: Global vs. Local

Initial Interaction Structures: 2-Dimensional Lattices

A meta model (2/3)

Initial Conditions

- Initial interaction structure $\{V_{i,0}, i \in I\}$
- Initial strategy configuration $\{s_{i,0}, i \in I\}$

• Dynamics (t > 0)

- One or more agent(s) are chosen (at random)
- They are allowed to update their state $(s_{i,t}, V_{i,t})$
- With probability
 - $p \in (0, 1]$ change $s_{i,t}$ given $V_{i,t}$
 - $1 p \in [0, 1)$ change both $s_{i,t}$ and $V_{i,t}$

Choice

- Agents employ myopic best-reply rules
- Maximizing current total payoff

A meta model (2/3)

Initial Conditions

- Initial interaction structure $\{V_{i,0}, i \in I\}$
- Initial strategy configuration $\{s_{i,0}, i \in I\}$

• Dynamics (t > 0)

- One or more agent(s) are chosen (at random)
- They are allowed to update their state $(s_{i,t}, V_{i,t})$
- With probability
 - $p \in (0,1]$ change $s_{i,t}$ given $V_{i,t}$
 - $1 p \in [0, 1)$ change both $s_{i,t}$ and $V_{i,t}$

Choice

- Agents employ myopic best-reply rules
- Maximizing current total payoff

A meta model (2/3)

Initial Conditions

- Initial interaction structure $\{V_{i,0}, i \in I\}$
- Initial strategy configuration $\{s_{i,0}, i \in I\}$

• Dynamics (t > 0)

- One or more agent(s) are chosen (at random)
- They are allowed to update their state $(s_{i,t}, V_{i,t})$
- With probability
 - $p \in (0,1]$ change $s_{i,t}$ given $V_{i,t}$
 - $1 p \in [0, 1)$ change both $s_{i,t}$ and $V_{i,t}$

Choice

- Agents employ myopic best-reply rules
- Maximizing current total payoff

Best-Reply Rules: Examples

Strategy updating (given interaction structure)

$$s_{i,t+1} = \underset{s \in \{-1,+1\}}{\operatorname{arg\,max}} \sum_{j \in V_{i,t}} \pi(s; s_{j,t})$$

Strategy and interaction structure updating

$$(s_{i,t+1}, V_{i,t+1}) = \underset{(s,V) \in \{-1,+1\} \times \Gamma_t}{\operatorname{arg max}} \sum_{j \in V} \pi(s; s_{j,t})$$

Best-Reply Rules: Examples

Strategy updating (given interaction structure)

$$s_{i,t+1} = \underset{s \in \{-1,+1\}}{\operatorname{arg\,max}} \sum_{j \in V_{i,t}} \pi(s; s_{j,t})$$

Strategy and interaction structure updating

$$(s_{i,t+1}, V_{i,t+1}) = \underset{(s,V) \in \{-1,+1\} \times \Gamma_t}{\operatorname{arg max}} \sum_{i \in V} \pi(s; s_{j,t})$$

A meta model (3/3)

Constraining Endogenous Network Formation: Γ_t

- Agents always choose from the set of all possible networks
- Agents can only add/delete one link per period
- Enlarging/shrinking interaction window

We are interested in

- Dynamics of $\{(s_{i,t}, V_{i,t}), i \in I\}$ and statistics thereof
- Existence and stability of equilibria (if any)
- Equilibria: steady-states, ergodic distributions, etc.
- Analytical solutions vs. simulations

Remark: Extensions of the meta-model

- More complicated strategic games
- More complicated interaction setups

A meta model (3/3)

Constraining Endogenous Network Formation: Γ_t

- Agents always choose from the set of all possible networks
- Agents can only add/delete one link per period
- Enlarging/shrinking interaction window

We are interested in

- Dynamics of $\{(s_{i,t}, V_{i,t}), i \in I\}$ and statistics thereof
- Existence and stability of equilibria (if any)
- Equilibria: steady-states, ergodic distributions, etc.
- Analytical solutions vs. simulations

Remark: Extensions of the meta-model

- More complicated strategic games
- More complicated interaction setups

A meta model (3/3)

Constraining Endogenous Network Formation: Γ_t

- Agents always choose from the set of all possible networks
- Agents can only add/delete one link per period
- Enlarging/shrinking interaction window

We are interested in

- Dynamics of $\{(s_{i,t}, V_{i,t}), i \in I\}$ and statistics thereof
- Existence and stability of equilibria (if any)
- Equilibria: steady-states, ergodic distributions, etc.
- Analytical solutions vs. simulations

Remark: Extensions of the meta-model

- More complicated strategic games
- More complicated interaction setups

Three Classes of Models

Bounded-Rationality Games

- Interaction structure frozen (p = 1) and global
- Study dynamic games where agents are myopic
- Evolutionary-games literature (Samuelson, Vega-Redondo, Young)

Local-Interaction Games

- Interaction structure frozen (p = 1) but local
- Agents always play with the same neighbors

Endogenous-Network Games

- Endogenously-evolving interaction structure (p < 1)
- Agents are able both to change their strategy and to choose whom they
 play the game with

Three Classes of Models

Bounded-Rationality Games

- Interaction structure frozen (p = 1) and global
- Study dynamic games where agents are myopic
- Evolutionary-games literature (Samuelson, Vega-Redondo, Young)

Local-Interaction Games

- Interaction structure frozen (p = 1) but local
- Agents always play with the same neighbors

Endogenous-Network Games

- Endogenously-evolving interaction structure (p < 1)
- Agents are able both to change their strategy and to choose whom they
 play the game with

Three Classes of Models

Bounded-Rationality Games

- Interaction structure frozen (p = 1) and global
- Study dynamic games where agents are myopic
- Evolutionary-games literature (Samuelson, Vega-Redondo, Young)

Local-Interaction Games

- Interaction structure frozen (p = 1) but local
- Agents always play with the same neighbors

Endogenous-Network Games

- Endogenously-evolving interaction structure (p < 1)
- Agents are able both to change their strategy and to choose whom they
 play the game with

- Common issue: Equilibrium selection
 - Can these models provide a robust equilibrium selection criterion? Cf. evolutionary games
- 2 Local-Interaction Games
 - How do different networks affect equilibrium selection?
- Endogenous-Network Games
 - How does the process of endogenous network formation impact on equilibrium selection?

- Common issue: Equilibrium selection
 - Can these models provide a robust equilibrium selection criterion? Cf. evolutionary games
- 2 Local-Interaction Games
 - How do different networks affect equilibrium selection?
- Endogenous-Network Games
 - How does the process of endogenous network formation impact on equilibrium selection?

- Common issue: Equilibrium selection
 - Can these models provide a robust equilibrium selection criterion? Cf. evolutionary games
- 2 Local-Interaction Games
 - How do different networks affect equilibrium selection?
- Endogenous-Network Games
 - How does the process of endogenous network formation impact on equilibrium selection?

- Common issue: Equilibrium selection
 - Can these models provide a robust equilibrium selection criterion? Cf. evolutionary games
- 2 Local-Interaction Games
 - How do different networks affect equilibrium selection?
- - How does the process of endogenous network formation impact on equilibrium selection?

Related Papers

- Fagiolo, G., Valente, M. and Vriend, N. (2007), "Segregation in Networks", *Journal of Economic Behavior and Organization*, forthcoming.
- Fagiolo, G. and Valente, M. (2005), "Minority Games, Local Interactions, and Endogenous Networks", Computational Economics, 25:41-57.
- Fagiolo, G. (2005), "Endogenous Neighborhood Formation in a Local Coordination Model with Negative Network Externalities", *Journal of Economic Dynamics and Control*, 29: 297-319.
- Of. also:
 - Fagiolo, G., Marengo, L. and Valente, M. (2004), "Population Learning in a Model with Random Payoff Landscapes and Endogenous Networks", Computational Economics, 24: 383-408.

- Fagiolo, G., Valente, M. and Vriend, N. (2007), "Segregation in Networks", Journal of Economic Behavior and Organization, forthcoming.
- Fagiolo, G. and Valente, M. (2005), "Minority Games, Local Interactions, and Endogenous Networks", Computational Economics, 25:41-57.
- Of also:
 - Fagiolo, G., Marengo, L. and Valente, M. (2004), "Population Learning in a

Related Papers

- Fagiolo, G., Valente, M. and Vriend, N. (2007), "Segregation in Networks", *Journal of Economic Behavior and Organization*, forthcoming.
- Fagiolo, G. and Valente, M. (2005), "Minority Games, Local Interactions, and Endogenous Networks", Computational Economics, 25:41-57.
- Fagiolo, G. (2005), "Endogenous Neighborhood Formation in a Local Coordination Model with Negative Network Externalities", *Journal of Economic Dynamics and Control*, 29: 297-319.
- Of. also:
 - Fagiolo, G., Marengo, L. and Valente, M. (2004), "Population Learning in a Model with Random Payoff Landscapes and Endogenous Networks", Computational Economics, 24: 383-408.

Related Papers

- Fagiolo, G., Valente, M. and Vriend, N. (2007), "Segregation in Networks", *Journal of Economic Behavior and Organization*, forthcoming.
- Fagiolo, G. and Valente, M. (2005), "Minority Games, Local Interactions, and Endogenous Networks", Computational Economics, 25:41-57.
- Fagiolo, G. (2005), "Endogenous Neighborhood Formation in a Local Coordination Model with Negative Network Externalities", *Journal of Economic Dynamics and Control*, 29: 297-319.
- Of. also:
 - Fagiolo, G., Marengo, L. and Valente, M. (2004), "Population Learning in a Model with Random Payoff Landscapes and Endogenous Networks", Computational Economics, 24: 383-408.

Segregation in Networks (1/3)

Revisiting Schelling spatial-segregation model

- Standard Schelling lattice setup
- Agents are now located on generic networks
- Interaction structure is frozen (p = 1)
- Agents employ best-reply dynamics
- They possibly move to empty nodes where they get more utility

- Do different network structures lead to less segregation?
- Does segregation emerge even if the underlying interaction structure is no geographically constrained?

Segregation in Networks (1/3)

Revisiting Schelling spatial-segregation model

- Standard Schelling lattice setup
- Agents are now located on generic networks
- Interaction structure is frozen (p = 1)
- Agents employ best-reply dynamics
- They possibly move to empty nodes where they get more utility

- Do different network structures lead to less segregation?
- Does segregation emerge even if the underlying interaction structure is not geographically constrained?

Segregation in Networks (2/3)

Regular

Random

Segregation in Networks (2/3)

Small-World

Scale-Free

Segregation in Networks (3/3)

Main results

- Segregation levels are always very high
- Network structure does not affect segregation levels
- Schelling results are very robust!!
- But agents do not move along paths...

Figure 8: Average Spectral Segregation Index (SSI) v. Network Classes. Average Degree d=4. Parameters: $M=100,\,\theta=0.3.$ MC Sample Size = 1000.

Figure 9: Average Spectral Segregation Index (SSI) v. Network Classes. Average Degree d=8. Parameters: $M=100,\,\theta=0.3.$ MC Sample Size = 1000.

Coordination Games with Endogenous Networks (1/3)

• Standard 2 × 2 Symmetric Coordination Games

- Agents placed on 1- or 2-dimensional lattices
- Play coordination games with their r-nearest neighbors
- In each period agents can either:
 - Play a coordination game given current neighborhood structure; or
 - Simultaneously choose strategy and neighborhood radius (r)
- Neighborhood adjustment is sticky and costly
- Network externalities may become negative (congestion effects)

- Frozen networks: Previous results show
 - Low coordination levels
 - Risk-efficient equilibria
- Does endogenous neighborhood adjustment favors higher coordination levels?
- Does it lead to Pareto-efficient equilibria?

Coordination Games with Endogenous Networks (1/3)

Standard 2 × 2 Symmetric Coordination Games

- Agents placed on 1- or 2-dimensional lattices
- Play coordination games with their r-nearest neighbors
- In each period agents can either:
 - Play a coordination game given current neighborhood structure; or
 - Simultaneously choose strategy and neighborhood radius (r)
- Neighborhood adjustment is sticky and costly
- Network externalities may become negative (congestion effects)

- Frozen networks: Previous results show
 - Low coordination levels
 - Risk-efficient equilibria
- Does endogenous neighborhood adjustment favors higher coordination levels?
- Does it lead to Pareto-efficient equilibria?

Coordination Games with Endogenous Networks (2/3)

Results: Coordination Levels

- Multiple equilibria (strategy and neighborhood structure)
- Endogenous neighborhoods formation does have an impact on equilibrium selection
- Higher coordination than in the "frozen interactions" case (but it must not be too fast, i.e. high p)

Coordination Games with Endogenous Networks (3/3)

Results: Equilibrium Selection and Efficiency

• Risk-efficiency is confirmed to be a robust equilibrium-selection criterion

	Average Strategy			Average Radius		
N = 51	c = 0.00	c = 1.00	c = 1.99	c = 0.00	c = 1.00	c = 1.99
$\theta = 1.0$	1.00	0.18	-1.00	1.00	1.13	1.00
$\beta = 10^{-6}$						
$\theta = 0.1$	0.84	-0.03	-1.00	1.00	1.01	1.00
$\theta = 1.0$	1.00	0.01	-1.00	1.00	1.00	1.00
$\beta = 1.5$						
$\theta = 0.1$	1.00	-0.05	-1.00	1.00	1.00	1.00

Table 2: MC Means of Average Strategy (\overline{s}_m) and Average Radius when the underlying stage-game is a generic coordination game. The parameter c measures the risk-efficiency of (-1,-1). Parameter Setup: c=0: (+1,+1) PE and RD; c=1: (+1,+1) and (-1,-1) risk equivalent; c=1.99: (-1,-1) is RD. MC Sample Size M=1000.

Local Minority Game

- Agents placed on random networks
- They care about being in the minority of their neighborhood
- Applications: Speculation, market-entry games
- Three setups:
 - Networks are frozen
 - Networks are frozen but link weights can be updated on the basis of past payoffs
 - Networks are endogenous: links can be both updated and deleted on the basis of past payoffs

- Comparing frozen vs. endogenous networks in terms of average payoffs
- Does endogenous network allow for more efficiency?
- Global efficiency vs. local information

Local Minority Game

- Agents placed on random networks
- They care about being in the minority of their neighborhood
- Applications: Speculation, market-entry games
- Three setups:
 - Networks are frozen
 - Networks are frozen but link weights can be updated on the basis of past payoffs
 - Networks are endogenous: links can be both updated and deleted on the basis of past payoffs

- Comparing frozen vs. endogenous networks in terms of average payoffs
- Does endogenous network allow for more efficiency?
- Global efficiency vs. local information

Local Minority Game

- Agents placed on random networks
- They care about being in the minority of their neighborhood
- Applications: Speculation, market-entry games
- Three setups:
 - Networks are frozen
 - Networks are frozen but link weights can be updated on the basis of past payoffs
 - Networks are endogenous: links can be both updated and deleted on the basis of past payoffs

- Comparing frozen vs. endogenous networks in terms of average payoffs
- Does endogenous network allow for more efficiency?
- Global efficiency vs. local information

Local Minority Game

- Agents placed on random networks
- They care about being in the minority of their neighborhood
- Applications: Speculation, market-entry games
- Three setups:
 - Networks are frozen
 - Networks are frozen but link weights can be updated on the basis of past payoffs
 - Networks are endogenous: links can be both updated and deleted on the basis of past payoffs

- Comparing frozen vs. endogenous networks in terms of average payoffs
- Does endogenous network allow for more efficiency?
- Global efficiency vs. local information

Main Results

- In a frozen-network setup agents attain lower payoffs
- When agents can add/discard links, population learns to "globally" win the local Minority Game
- Population splits into two stable (almost) equally-sized groups (+1 and -1)
- Agents in one group only select agents in the other group

Frozen Nets

Endo Nets

Bounded Rationality and Dynamics

- Agents behave myopically
- Markovian dynamics

Local Interactions

- Agents are located on the nodes of generic networks
- They hold a limited knowledge of the world
- They play games with their neighbors only

Endogenous Networks

- Agents are able to choose whom to play with
- Strategies and interaction structure endogenously co-evolve
- Window of observation adapts over time

- Analytical tractability
- Need for simulation-based analysis

Bounded Rationality and Dynamics

- Agents behave myopically
- Markovian dynamics

Local Interactions

- Agents are located on the nodes of generic networks
- They hold a limited knowledge of the world
- They play games with their neighbors only

Endogenous Networks

- Agents are able to choose whom to play with
- Strategies and interaction structure endogenously co-evolved
- Window of observation adapts over time

- Analytical tractability
- Need for simulation-based analysis

Bounded Rationality and Dynamics

- Agents behave myopically
- Markovian dynamics

Local Interactions

- Agents are located on the nodes of generic networks
- They hold a limited knowledge of the world
- They play games with their neighbors only

Endogenous Networks

- Agents are able to choose whom to play with
- Strategies and interaction structure endogenously co-evolve
- Window of observation adapts over time

- Analytical tractability
- Need for simulation-based analysis

Bounded Rationality and Dynamics

- Agents behave myopically
- Markovian dynamics

Local Interactions

- Agents are located on the nodes of generic networks
- They hold a limited knowledge of the world
- They play games with their neighbors only

Endogenous Networks

- Agents are able to choose whom to play with
- Strategies and interaction structure endogenously co-evolve
- Window of observation adapts over time

- Analytical tractability
- Need for simulation-based analysis

Applications and Results

Alternative strategic setups

- Schelling segregation game
- Coordination
- Minority
- ...and many more in the literature

Equilibrium selection

- Network endogeneity does have a huge impact on both the set of equilibria and on the selection process
- The system attains higher efficiency levels
- Population learning given and/or about networks
- Risk-efficiency is confirmed to be a robust selection principle

Network structure

- Network structure does not always affect equilibrium selection
- Still an open issue
- Answer depends on whether network topological properties affect agents decisions!

Applications and Results

Alternative strategic setups

- Schelling segregation game
- Coordination
- Minority
- ...and many more in the literature

Equilibrium selection

- Network endogeneity does have a huge impact on both the set of equilibria and on the selection process
- The system attains higher efficiency levels
- Population learning given and/or about networks
- Risk-efficiency is confirmed to be a robust selection principle

Network structure

- Network structure does not always affect equilibrium selection
- Still an open issue
- Answer depends on whether network topological properties affect agents decisions!

Applications and Results

Alternative strategic setups

- Schelling segregation game
- Coordination
- Minority
- ...and many more in the literature

Equilibrium selection

- Network endogeneity does have a huge impact on both the set of equilibria and on the selection process
- The system attains higher efficiency levels
- Population learning given and/or about networks
- Risk-efficiency is confirmed to be a robust selection principle

Network structure

- Network structure does not always affect equilibrium selection
- Still an open issue
- Answer depends on whether network topological properties affect agents decisions!

Thanks!

https://mail.sssup.it/~fagiolo/welcome.html