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Abstract

In the area of computer simulation Latin hypercube designs play an important role. In this paper
the class of maximin Latin hypercube designs is considered. Up to now only several two-dimensional
designs and designs for some small number of points are known for this class. Using periodic designs
and simulated annealing we extend the known results and construct approximate maximin Latin hy-
percube designs for up to ten dimensions and for up to 100 design points. All these designs can be
downloaded from the website http://www.spacefillingdesigns.nl.

Keywords: Computer experiment, Latin hypercube design, non-collapsing, packing problem, sim-
ulated annealing, space-filling.
JEL Classification: C90.

1 Introduction

A k-dimensional Latin hypercube design (LHD) of n points, is a set of n points xi = (xi1, xi2, . . . , xik) ∈
{0, . . . , n − 1}k such that for each dimension j all xij are distinct. An LHD is called maximin when
the separation distance mini6=j d(xi, xj) is maximal among all LHDs of given size n, where d is a certain
distance measure. Such maximin LHDs are very useful as designs for computer experiments. In this
paper, we concentrate on the `2-distance measure since this measure is often the first choice in practice.
We construct approximate maximin LHDs for up to ten dimensions and for up to 100 design points by
using periodic designs and simulated annealing. All these designs can be downloaded from the website
http://www.spacefillingdesigns.nl. As far as we know this is the first catalogue of maximin LHDs,
although there are several catalogues for classical design of experiments, see e.g. the WebDOETM website
of Crary (2001).

Our main motivation for investigating this subject is that maximin Latin hypercube designs are extremely
useful in the area of computer simulation. One important area where computer simulation is used a lot
is engineering. Engineers are confronted with the task of designing products and processes. Since physi-
cal experimentation is often expensive and difficult, computer models are frequently used for simulating
physical characteristics. The engineer often needs to optimize the product or process design, i.e. to find
the best settings for a number of design parameters that influence the critical quality characteristics of
the product or process. A computer simulation run is usually time-consuming and there is a great variety
of possible input combinations. For these reasons, meta-models that model the quality characteristics as
explicit functions of the design parameters are constructed. Such a meta-model, also called a (global) ap-
proximation model or surrogate model, is obtained by simulating a number of design points. Well-known
meta-model types are polynomials and Kriging models. Since a meta-model evaluation is much faster
than a simulation run, in practice such a meta-model is used, instead of the simulation model, to gain
insight into the characteristics of the product or process and to optimize it. A review of meta-modeling
applications in structural optimization can be found in Barthelemy and Haftka (1993), and in multidisci-
plinary design optimization in Sobieszczanski-Sobieski and Haftka (1997).
∗The research of B.G.M. Husslage is funded by the SamenwerkingsOrgaan Brabantse Universiteiten (SOBU).
†The research of E.R. van Dam has been made possible by a fellowship of the Royal Netherlands Academy of Arts and
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As observed by many researchers, there is an important distinction between designs for computer experi-
ments and designs for the more traditional response surface methods. Physical experiments exhibit random
errors and computer experiments are often deterministic (cf. Simpson et al. (2004)). This distinction is
crucial and much research is therefore aimed at obtaining efficient designs for computer experiments.

As is recognized by several authors, such a design for computer experiments should at least satisfy
the following two criteria (see Johnson et al. (1990) and Morris and Mitchell (1995)). First of all, the
design should be space-filling in some sense. When no details on the functional behavior of the response
parameters are available, it is important to be able to obtain information from the entire design space.
Therefore, design points should be “evenly spread” over the entire region. One of the measures often used
to obtain space-filling designs is the maximin measure. Secondly, the design should be non-collapsing.
When one of the design parameters has (almost) no influence on the function value, two design points
that differ only in this parameter will “collapse”, i.e. they can be considered as the same point that is
evaluated twice. For deterministic simulation models this is not a desirable situation. Therefore, two
design points should not share any coordinate values when it is not known a priori which dimensions are
important. To obtain non-collapsing designs the Latin hypercube structure is often enforced. It can be
shown that if the function of interest is independent of one or more of the k parameters then, after removal
of the irrelevant parameters, the projection of the LHD onto the reduced design space retains good spatial
properties; see Koehler and Owen (1996). Maximin LHDs are frequently used in practical applications,
see e.g. the examples given in Driessen et al. (2002), Den Hertog and Stehouwer (2002), Alam et al.
(2004), and Rikards and Auzins (2004).

Only a few authors consider maximin LHDs. For example, Morris and Mitchell (1995) use simulated
annealing to find approximate maximin LHDs for up to five dimensions and up to 12 design points, and
a few larger values, with respect to the `1- and `2-distance measure. Van Dam et al. (2006) derive
general formulas for two-dimensional maximin LHDs, when the distance measure is `∞ or `1, while for
the `2-distance measure (approximate) maximin LHDs up to 1000 design points are obtained by using
a branch-and-bound algorithm and constructing (adapted) periodic designs. Jin et al. (2005) describe
an enhanced stochastic evolutionary algorithm for finding approximate maximin LHDs. They also apply
their method to other space-filling criteria. Ye et al. (2000) propose an exchange algorithm for finding
approximate maximin symmetric LHDs. The symmetry property is used as a compromise between com-
puting effort and design optimality.

There is much more literature related to maximin designs that are not restricted to LHDs. Note that a
maximin design is certainly space-filling, but not necessarily non-collapsing.

First of all, the problem of finding the maximal common radius of n circles which can be packed
into a square is equivalent to the maximin design problem in two dimensions. Melissen (1997) gives a
comprehensive overview of the historical developments and state-of-the-art research in this field. For the
`2-distance measure in the two-dimensional case, optimal solutions are known for n ≤ 30 and n = 36, see
e.g. Kirchner and Wengerodt (1987), Peikert et al. (1991), Nurmela and Österg̊ard (1999), and Markót
and Csendes (2005). Furthermore, many good approximating solutions have been found for n ≥ 31; see
the Packomania website of Specht (2005). Baer (1992) solved the maximum `∞-circle packing problem
in a k-dimensional unit cube. The `1-circle packing problem in a square has been solved for many values
of n; see Fejes Tóth (1971) and Florian (1989). Mladenovic et al. (2005) describe a method to find the
densest packing of equal circles in a unit circle.

Secondly, the maximin design problem has been studied in location theory. In this area of research,
the problem is usually referred to as the max-min facility dispersion problem (see Erkut (1990)). Facilities
are placed such that the minimal distance to any other facility is maximal. Again, the resulting solution
is certainly space-filling, but not necessarily non-collapsing. A few papers consider maximin designs in
higher dimensions, e.g. Trosset (1999), Locatelli and Raber (2002), Stinstra et al. (2003), and Dimnaku
et al. (2005). These papers describe nonlinear programming heuristics to find approximate maximin
designs.

There are several other measures proposed in the literature besides maximin, e.g. maximum entropy,
minimax, IMSE, Audze-Eglais, and discrepancy. For a good overview, we refer to Koehler and Owen
(1996). In statistical environments Latin hypercube sampling is often used. In such an approach, points
on the grid are sampled without replacement, thereby deriving a random permutation for each dimen-
sion; see McKay et al. (1979). Giunta et al. (2003) give an overview of pseudo- and quasi-Monte Carlo
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sampling, Latin hypercube sampling, orthogonal array sampling, and Hammersley sequence sampling.
However, for deterministic computer experiments it is better to use one of the measures mentioned above
to get a better coverage of the design space. Bates et al. (1996) obtain designs for computer experiments
by exploring so-called lattice points and using results from number theory.

Several papers combine space-filling criteria with the Latin hypercube structure. Jin et al. (2005)
describe an enhanced stochastic evolutionary algorithm for finding maximum entropy and uniform designs.
Van Dam (2005) derives interesting results for two-dimensional minimax LHDs. Bates et al. (2004) propose
a permutation genetic algorithm to find optimal Audze-Eglais LHDs. Crary et al. (2000) developed I-
OPTTM to generate LHDs with minimal IMSE. They found that IMSE-optimal designs can have proximate
design points, which they call “twin points”; see also Crary (2002).

In literature different designs for computer experiments have been compared and the overall conclusion
tends to be that the maximum entropy and distance-based criteria often perform best; see e.g. Simpson
et al. (2001), Santner et al. (2003), and Bursztyn and Steinberg (2006).

This paper is organized as follows. Section 2 describes how periodic designs can be used to obtain good
approximate maximin LHDs. A simulated annealing algorithm to construct such approximate maximin
LHDs is discussed in Section 3. Computational results for up to ten dimensions and for up to 100 design
points, as well as a comparison of both methods, are provided in Section 4. Finally, Section 5 contains
conclusions.

2 Periodic designs

Van Dam et al. (2006) show that two-dimensional maximin Latin hypercube designs often have a nice,
periodic structure. By constructing (adapted) periodic designs, many maximin LHDs and, otherwise,
good LHDs, are found for up to 1000 points. Therefore, extending this idea to higher dimensions seems
natural.

Let a k-dimensional Latin hypercube design of n points be represented by the sequences y1, . . . , yk, with
every yi a permutation of the set {0, . . . , n− 1}. As in the two-dimensional case, a design is constructed
by fixing the first dimension, without loss of generality, to the sequence y1 = (0, . . . , n− 1) and assigning
(adapted) periodic sequences to all other dimensions. Two types of periodic sequences are considered.
The first one is the sequence (v0, . . . , vn−1), where

vi = (s+ ip) mod (n+ 1)− 1, for i = 0, . . . , n− 1.

Here, s is the starting point of the sequence and p its period, which is chosen such that gcd(n+ 1, p) = 1,
resulting in a permutation of the set {0, . . . , n− 1}.

Note that the periodic designs obtained in this way resemble lattices; see e.g. Bates et al. (1996). The
main difference is that lattices are infinite sets of points, which may collapse, and, hence, to construct
a (finite) Latin hypercube design a proper subset of non-collapsing lattice points should be chosen. For
given n, the structure of the lattice will, however, not always lead to a Latin hypercube design with a
sufficient number of points. This in contrast to periodic designs, for which the modulo-operator insures
that for every combination of periods pj , with gcd(n+ 1, pj) = 1, j = 2, . . . , k, a feasible Latin hypercube
design is obtained.

The second type of sequence that is considered is the more general sequence (w0, . . . , wn−1), where
wi = (s + ip) mod n (note that we changed the modulus), for i = 0, . . . , n − 1. In this case, all pe-
riods p = 1, . . . , bn2 c will be considered. Note, however, that the resulting sequence w may no longer be
one-to-one, i.e. some values may occur more than once, and, hence, the resulting design may no longer be
an LHD. Now, let r > 0 be the smallest value for which wr = w0; it then follows that r = n

gcd(n,p) . When
r < n a way to construct a one-to-one sequence of length n is by shifting parts of the sequence by, say, q,
and repeating this when necessary. To formulate this more explicitly, for the updated sequence w it now
holds that

wi = (s+ ip+ jq) mod n, for i = jr, . . . , (j + 1)r − 1, and j = 0, . . . , gcd(n, p)− 1.

Let m represent the modulus and, hence, the type of sequence used, i.e. m = n + 1 corresponds to the
first type and m = n to the second. For given n, we now have to set the parameters (p, q, s,m) for
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every sequence y2, . . . , yk. To find the best settings for the parameters it would be best to test all values.
However, when the dimension and the number of points increase the number of possibilities increases
rapidly. Hence, computing all possibilities gets very time-consuming or even impossible. Therefore, three
classes of parameter settings (named A, B, and C) are distinguished and used throughout the whole
process. The largest one, class A, consists of checking the following parameter values: p = 1, . . . , bn2 c,
q = 1 − p, . . . , p − 1, s = 0, . . . , p, and m ∈ {n, n + 1}. Testing in three and four dimensions indicated
that almost all adapted periodic designs are based on a shift of 1 − p, −1, or 1 (as was the case for two
dimensions; see Van Dam et al. (2006)). Furthermore, most designs are found to have a starting point
equal to either p − 1 or p. Class B is therefore set up to be a subset of class A with the aforementioned
restrictions on the parameters q and s. Finally, for the dimensions 5 to 7 the number of possibilities has to
be reduced even further, leading to parameter class C, which (based on some more test results) restricts
class B to the values q = 1 and s = p, leaving the other parameters unchanged. Table 1 shows the different
classes used in the computations for each dimension.

Dimension Class A Class B Class C
3
4
5
6
7

2 ≤ n ≤ 70
2 ≤ n ≤ 25
−
−
−

71 ≤ n ≤ 100
26 ≤ n ≤ 100
2 ≤ n ≤ 80
2 ≤ n ≤ 35
−

−
−

81 ≤ n ≤ 100
36 ≤ n ≤ 100
2 ≤ n ≤ 100

Table 1: Different classes of periodic sequences are checked for each dimension.

As an example, consider a three-dimensional adapted periodic LHD of 22 points. A best parameter
setting is found to be (p2, q2, s2,m2) = (8,−7, 7, 22) and (p3, q3, s3,m3) = (3, 0, 3, 23) and, hence, the
corresponding LHD, with separation distance 69, is defined by the sequences

y1 = ( 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ),
y2 = ( 7 , 15 , 1 , 9 , 17 , 3 , 11 , 19 , 5 , 13 , 21 , 0 , 8 , 16 , 2 , 10 , 18 , 4 , 12 , 20 , 6 , 14 ),
y3 = ( 2 , 5 , 8 , 11 , 14 , 17 , 20 , 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 1 , 4 , 7 , 10 , 13 , 16 , 19 ).

Thus, y3 is a periodic sequence, with m = n+ 1, and y2 is an adapted periodic sequence, with m = n and
q2 = −7. Note that to obtain a one-to-one sequence, the second part of y2, i.e. (0, 8, . . . , 14), is formed
by shifting the first part of y2, i.e. (7, 15, . . . , 21), by −7. The periods and shift are clearly visible in the
two-dimensional projection of the LHD in Figure 1. In this figure the y3-values are depicted at the design
points.

Like in the two-dimensional case, it may happen that for a given n the corresponding LHD has a
separation distance that is smaller than the distance of a design of n − 1 points. For these n, however,
better designs can usually be derived by adding an extra “corner point” to the LHD of n − 1 points. In
this way, a monotone nondecreasing sequence of separation distances was found for all dimensions; see
Table 3.

3 Simulated annealing

Another heuristic method that can be used to approximate `2-maximin Latin hypercube designs is simu-
lated annealing; see Aarts and Lenstra (1997). The general simulated annealing algorithm which we use is
described in Algorithm 1. In this algorithm, we still need to specify the acceptance probability function,
the annealing schedule, the terminating condition, and the neighborhood. All these parameters of the
algorithm influence its performance. In this paper, we focus our attention on the choice of the neighbor-
hood and the terminating condition. The chosen acceptance probability function is the commonly used
classic formula by Kirkpatrick et al. (1983):

P (Ecurrent, Eneighbor, T ) = exp
(
Ecurrent − Eneighbor

T

)
,

where Ecurrent and Eneighbor are the separation distances of the current LHD and the neighbor LHD,
respectively, and T is the temperature.
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Figure 1: Two-dimensional projection of the three-dimensional LHD (y1, y2, y3) of 22 points.

The annealing schedule starts with an initial temperature of 5. Each iteration the temperature is
decreased by 0.1 percent, as long as the temperature is above 0.5. Furthermore, every 1,000 iterations
the algorithm checks the number of improvements on the best solution found so far. If there were no
improvements during the last 1,000 iterations, the temperature is reset by multiplying it by 2.7, which is
approximately 0.999−1,000.

We have tried four different terminating conditions. The first two conditions terminate the algorithm
after a fixed number of 25,000 and 50,000 iterations, respectively. The third and fourth condition let the
number of iterations depend on the results of the algorithm in the following way. Every 1,000 iterations,
it is checked whether the best design has improved. If during five subsequent checks, i.e. during the last
5,000 iterations, no improvement is made, the algorithm terminates. In order to avoid running times from
becoming too large, the number of iterations is limited to 125,000 and 250,000 in the third and fourth
condition, respectively.

For the simulated annealing algorithm, we have determined four different neighborhoods. In all four
neighborhoods the main idea is to change two points of the current LHD by exchanging one or more

Algorithm 1 General simulated annealing algorithm for approximating `2-maximin LHDs
Randomly select an initial LHD and calculate its separation distance
Best LHD = initial LHD
REPEAT

Create neighbor LHD of the current LHD
Calculate separation distance of the neighbor LHD
IF separation distance of neighbor LHD >= separation distance of current LHD

Current LHD = neighbor LHD
IF separation distance of current LHD >= separation distance of best LHD

Best LHD = current LHD
END

ELSE with probability depending on temperature and difference in
separation distance

Current LHD = neighbor LHD
END
Update annealing temperature

UNTIL terminating condition is met
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coordinate values. In three of the four neighborhoods, one point is required to be a critical point. A
critical point is a point which is at separation distance to one of the other points.

In the first neighborhood, one point j1 is selected randomly from all critical points and the other point
j2 randomly from all remaining points. This implies that the second point can either be a critical or non-
critical point. Once the points are selected, the number of coordinates to change is randomly selected.
Due to symmetry, at most bk2 c coordinates are changed. Subsequently, the coordinates to change are
randomly selected. The values of the two points in these coordinates are then exchanged, which results
in a new LHD.

As an example, consider the four-dimensional LHD of 10 points defined by the sequences

y1 = (5, 6, 9, 3, 1, 4, 2, 8, 0, 7),
y2 = (4, 5, 8, 6, 0, 2, 9, 7, 3, 1),
y3 = (0, 4, 6, 1, 9, 7, 3, 5, 2, 8),
y4 = (2, 3, 6, 5, 4, 9, 0, 7, 8, 1).

The critical points of this design are points 3 and 8, i.e. (9, 8, 6, 6) and (8, 7, 5, 7). If the critical point
j1 = 8, the random point j2 = 4, and the coordinates 2 and 3 are selected, the following neighbor is
obtained:

y1 = (5, 6, 9, 3, 1, 4, 2, 8, 0, 7),
y2 = (4, 5, 8, 7 , 0, 2, 9, 6 , 3, 1),
y3 = (0, 4, 6, 5 , 9, 7, 3, 1 , 2, 8),
y4 = (2, 3, 6, 5, 4, 9, 0, 7, 8, 1).

The second neighborhood is very similar to the first. The only difference is that always one coordinate
is selected instead of a random number of coordinates. Note that for k = 3 both neighborhoods are the
same.

In the third neighborhood, also one coordinate is changed, however, now the coordinate is not randomly
selected. Instead, all coordinates are tried and the one which results in the neighbor with the largest
separation distance is selected. If more coordinates result in the same separation distance, the one with
the lowest index is selected.

The fourth neighborhood is again very similar to the second neighborhood. The difference is that the
first point is randomly selected from all points, instead of only the critical points.

Although the described approach appears to be quite similar to simulated annealing algorithms for find-
ing good LHDs used by other authors, it is different in the following ways. Firstly, our approach does
not impose a certain additional structure on the LHD, like, for instance, symmetry; see e.g. Ye et al.
(2000). Secondly, the maximin distance criterion is used as the objective function. This in contrast to
the approach of, for example, Morris and Mitchell (1995), who minimize a surrogate measure. The reason
for using a surrogate measure is to minimize the number of critical points. The main disadvantage of
this measure is, however, that it contains an extra parameter, which needs to be set for every value of k
and n. An inaccurate setting of this parameter could lead to the situation where designs with a larger
maximin distance have a larger value for the surrogate measure. On the other hand, a disadvantage of
using the maximin distance criterion is that many designs may have the same objective value. However,
we have reduced this problem by using neighborhoods that use critical points and by accepting equally
good designs. By using critical points, we also implicitly try to reduce the number of critical points,
without the need to introduce a surrogate measure.

4 Computational results

Periodic and adapted periodic designs have been constructed for up to seven dimensions and for up to
100 design points, using the different classes depicted in Table 1. Using simulated annealing, approximate
maximin Latin hypercube designs have also been obtained for dimensions 8 to 10. All computations have
been performed on PCs with a 800-MHz Pentium III processor. Table 2 shows the total CPU-times needed
to construct approximate maximin Latin hypercube designs, for up to 100 points, for each dimension.

Although our heuristics only consider a subset of all possible Latin hypercube designs it can be seen
from the table that still a considerable amount of time is needed to find good LHDs in higher dimensions
and for a large number of points. Fortunately, however, these computation times are a one-time cost, i.e.
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once a good design has been found, and its coordinates saved, the design can be used over and over again
in various applications, without incurring the computational costs again.

dimension 3 4 5 6 7 8 9 10
CPU-time (hrs) PD 145 61 267 108 232 − − −
CPU-time (hrs) SA 500 181 152 520 246 460 470 470

Table 2: Total CPU-times needed to construct approximate maximin LHDs, up to 100 points, using
periodic designs (PD) and simulated annealing (SA).

Table 3 shows the squared `2-maximin distances that were obtained by applying both heuristics. From
this table it can be seen that (adapted) periodic designs work particularly well for larger values of n. For
dimension 3 to 5 a break-even point, i.e. a point (or, better, an interval) where the preference shifts from
the designs found by simulated annealing to (adapted) periodic designs, is clearly visible in the table.
Furthermore, these break-even points seem to increase with the dimension of the design and it is to be
expected that break-even points for k-dimensional designs, with k ≥ 6, will occur for larger values of n,
i.e. n > 100. This behavior could be explained by the “border effect”, i.e. the irregularity of designs
that is caused by the borders of the design space. Clearly, the number of “borders” of the k-dimensional
box region increases exponentially, with respect to k. However, due to the Latin hypercube structure
the number of design points that are located on or near these borders is limited. This, in turn, leads to
very irregular optimal Latin hypercube designs when the number of design points is small with respect
to the number of borders (which again depends on k). Hence, the nice, periodic structure that is sought
for by our periodic heuristic only works well when the number of design points is relatively large, when
compared to the dimension. Van Dam et al. (2006) already show the presence of this particular behavior
in two-dimensional maximin Latin hypercube designs, i.e. the optimal designs found can all be represented
by periodic designs. The results of Table 3 suggest that this behavior also occurs in higher dimensions.
Simulated annealing, however, does not depend on an underlying structure and can therefore often find
better designs, especially for smaller values of n. Since all six- and seven-dimensional (adapted) periodic
designs, of 3 to 100 points, are dominated by the designs found by simulated annealing, maximin distances
of the former are only computed for up to seven dimensions. Concerning the different neighborhoods for
the simulated annealing algorithm (see Section 3), it turned out that the second neighborhood yields,
in general, the best results. For the terminating conditions, the first two conditions, generally speaking,
result in the best LHDs for n ≤ 50, whereas the third and fourth condition are better for larger values of n.

Our heuristics are able to generate all best-known maximin Latin hypercube designs (see Morris and
Mitchell (1995)), except for the cases k = 6, n = 12 and k = 7, n = 14, for which slightly worse designs are
obtained. For the case k = 3, n = 11, however, we obtained an improved (and optimal) design. Further-
more, using a branch-and-bound algorithm, the three-dimensional designs of up to 13 points have been
verified to be optimal.

5 Conclusions

This paper discusses two heuristics to obtain approximate maximin Latin hypercube designs. Such designs
play an important role in the area of computer simulation. The first heuristic is based on the observation
that many optimal LHDs, and two-dimensional LHDs in particular, exhibit a periodic structure. By con-
sidering periodic and adapted periodic designs, approximate maximin LHDs for up to seven dimensions
and for up to 100 design points are constructed. The second heuristic uses simulated annealing to find
approximate maximin LHDs for up to ten dimensions. Although simulating annealing algorithms have
been used before to deal with this type of problem, our adapted neighborhood structure, which is based
on critical points, and the use of a different objective function, turned out to work particularly well. Com-
bining both heuristics resulted in many new approximate maximin Latin hypercube designs. The periodic
heuristic tends to work well when the number of design points is large, with respect to the dimension of
the design, whereas the simulated annealing algorithm performs better for smaller values. The obtained
squared `2-maximin distances are provided in Table 3. All corresponding approximate `2-maximin Latin
hypercube designs can be downloaded from the website http://www.spacefillingdesigns.nl.
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3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dimn
PD SA PD SA PD SA PD SA PD SA SA SA SA

2 3 3 4 4 5 5 6 6 7 7 8 9 10
3 3 6 4 7 5 8 6 12 7 13 14 18 19
4 6 6 12 12 11 14 15 20 16 21 26 28 33
5 6 11 12 15 11 24 15 27 16 32 40 43 50
6 14 14 16 22 23 32 28 40 29 47 54 61 68
7 14 17 16 28 23 40 28 52 31 61 70 80 89
8 21 21 25 42 32 50 42 66 46 79 91 101 114
9 21 22 25 42 39 61 45 76 47 93 112 126 141

10 21 27 36 50 55 82 62 91 68 110 130 154 172
11 24 30 39 55 55 80 62 108 69 128 152 178 206
12 30 36 46 63 62 91 91 136 95 150 176 204 235
13 35 41 51 68 64 101 91 136 95 174 202 232 267
14 35 42 70 75 86 112 104 152 119 204 228 265 298
15 42 48 71 83 88 124 111 167 129 211 257 296 337
16 42 50 85 90 101 136 130 186 155 238 286 330 378
17 42 53 85 97 113 150 131 203 161 256 312 367 415
18 50 56 94 103 123 162 155 223 186 281 344 398 458
19 57 59 94 113 136 174 169 241 195 305 370 438 498
20 57 62 106 123 139 184 210 260 226 332 403 472 542
21 65 66 116 127 165 201 210 283 236 361 438 517 592
22 69 69 117 137 174 215 223 304 270 384 467 555 643
23 72 74 130 146 178 224 236 324 273 410 501 596 685
24 76 78 138 154 201 242 258 343 308 444 538 639 739
25 91 81 156 162 205 255 286 368 350 467 583 688 792
26 91 86 156 171 226 269 296 387 365 499 612 726 854
27 91 90 157 178 238 287 310 410 382 526 648 780 896
28 94 94 174 188 258 302 339 427 406 561 693 826 953
29 94 98 174 196 269 322 346 452 417 593 733 876 1015
30 105 102 194 209 310 335 390 473 458 620 787 925 1086
31 107 106 212 215 310 347 390 504 482 657 812 976 1138
32 114 110 212 228 341 371 419 529 518 695 866 1026 1194
33 114 113 215 234 341 379 430 548 537 723 900 1084 1253
34 133 117 230 244 358 403 470 586 561 751 945 1135 1329
35 133 122 234 255 366 418 495 601 586 811 1002 1190 1398
36 133 129 250 261 400 427 518 631 636 831 1042 1257 1459
37 152 131 266 275 408 454 528 648 668 863 1079 1300 1516
38 152 134 283 279 415 464 561 681 709 923 1127 1367 1597
39 152 139 283 290 439 486 561 706 726 938 1192 1434 1665
40 155 146 291 301 492 505 632 739 786 970 1224 1489 1742
41 162 147 293 309 492 525 632 776 802 1016 1271 1562 1820
42 168 152 319 325 496 543 670 791 903 1064 1333 1639 1920
43 168 157 323 329 520 558 670 830 903 1112 1377 1683 1973
44 186 161 331 349 548 582 696 862 903 1140 1463 1752 2072
45 186 166 347 362 565 615 737 891 926 1192 1480 1820 2130
46 189 169 366 370 592 615 797 918 985 1243 1548 1906 2208
47 189 173 378 378 611 634 797 940 985 1268 1616 1958 2331
48 189 178 413 385 632 673 857 976 1054 1325 1658 2017 2387
49 196 180 415 399 634 680 893 1015 1074 1356 1729 2103 2470
50 213 185 415 414 663 699 893 1042 1113 1397 1772 2179 2556
51 213 189 421 426 692 727 917 1067 1161 1450 1855 2243 2639
52 213 198 455 429 709 742 1003 1100 1231 1486 1888 2325 2745
53 216 200 455 447 716 765 1003 1136 1241 1537 1949 2429 2825
54 233 213 477 454 760 783 1019 1171 1288 1577 2006 2473 2892
55 243 214 483 477 760 805 1082 1198 1325 1639 2084 2570 3054
56 243 216 515 479 784 830 1104 1236 1358 1701 2162 2623 3100
57 261 221 515 490 846 854 1136 1265 1479 1721 2194 2704 3215
58 261 227 539 500 846 878 1166 1303 1479 1795 2258 2796 3305
59 266 229 544 519 849 905 1223 1328 1509 1821 2356 2881 3399
60 273 237 568 530 904 928 1242 1381 1577 1899 2393 2939 3500
61 274 244 620 538 904 939 1258 1413 1615 1928 2488 3021 3588
62 283 245 620 554 934 991 1306 1450 1680 2023 2541 3132 3700
63 297 249 620 575 967 989 1380 1497 1680 2035 2607 3215 3767
64 297 258 625 579 985 1009 1430 1526 1769 2093 2734 3292 3955
65 314 260 630 582 997 1035 1430 1565 1786 2132 2723 3357 4034
66 314 269 666 602 1050 1051 1476 1590 1857 2180 2841 3474 4143
67 314 270 666 614 1072 1085 1482 1646 1868 2238 2868 3543 4224
68 314 278 685 623 1087 1119 1538 1664 1940 2295 2956 3647 4360
69 324 280 698 650 1112 1114 1588 1704 1965 2351 3075 3716 4455
70 325 285 716 658 1150 1135 1633 1759 2130 2417 3130 3841 4539
71 325 289 716 665 1150 1187 1644 1783 2130 2451 3161 3936 4689
72 341 296 750 678 1203 1197 1768 1862 2177 2503 3220 4027 4812
73 350 299 759 688 1229 1242 1768 1872 2206 2598 3305 4134 4873
74 350 306 767 703 1229 1269 1774 1910 2244 2614 3432 4224 5038
75 350 310 771 714 1274 1282 1862 1963 2295 2703 3513 4298 5171
76 363 324 813 750 1300 1318 1935 2024 2375 2756 3559 4395 5254
77 363 325 823 762 1308 1331 1947 2051 2403 2819 3617 4492 5399
78 387 337 844 761 1382 1360 2014 2079 2505 2870 3684 4577 5489

Table 3: (Maximin) squared `2-distance found using periodic designs (PD) and simulated annealing (SA).
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3 dim 4 dim 5 dim 6 dim 7 dim 8 dim 9 dim 10 dimn
PD SA PD SA PD SA PD SA PD SA SA SA SA

79 387 333 848 788 1382 1399 2037 2120 2525 2950 3775 4705 5633
80 403 344 873 786 1395 1430 2037 2152 2590 2979 3877 4807 5773
81 406 338 916 782 1406 1431 2064 2217 2642 3086 4001 4888 5901
82 406 353 938 825 1475 1482 2141 2239 2753 3118 3998 5030 6013
83 417 369 940 829 1501 1509 2141 2290 2767 3195 4076 5102 6097
84 426 363 967 838 1534 1510 2229 2325 2838 3227 4183 5222 6273
85 426 369 967 877 1552 1566 2232 2399 2874 3299 4324 5340 6397
86 428 376 967 867 1573 1578 2375 2437 3103 3335 4397 5423 6491
87 428 374 976 877 1598 1589 2375 2476 3103 3450 4474 5538 6622
88 437 374 1050 890 1685 1629 2398 2513 3183 3500 4524 5667 6803
89 443 378 1050 907 1690 1654 2400 2562 3183 3541 4578 5774 6872
90 481 384 1060 940 1710 1696 2516 2633 3190 3661 4699 5832 7040
91 481 393 1089 951 1748 1724 2516 2674 3234 3677 4850 5969 7163
92 481 394 1089 966 1805 1750 2599 2729 3277 3760 4873 6081 7286
93 481 402 1098 962 1813 1795 2604 2726 3361 3811 4984 6231 7488
94 481 405 1124 986 1881 1811 2747 2788 3474 3888 5067 6329 7536
95 481 413 1135 1010 1901 1846 2747 2817 3531 3940 5154 6396 7741
96 509 414 1261 1023 1965 1863 2769 2911 3639 4070 5220 6516 7777
97 515 419 1261 1027 1965 1899 2817 2960 3639 4069 5316 6649 8038
98 531 429 1261 1055 1965 1929 2850 3001 3690 4147 5445 6776 8242
99 531 449 1261 1040 2009 1950 2878 3043 3731 4214 5477 6912 8344

100 554 451 1261 1074 2053 1975 3000 3117 3903 4335 5597 6983 8450

Table 3: (Maximin) squared `2-distance found using periodic designs (PD) and simulated annealing (SA)
(continued).
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