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-e self-organizing model and expectation-maximization method are two traditional identification methods for switching
models. -ey interactively update the parameters and model identities based on offline algorithms. In this paper, we propose a
flexible recursive least squares algorithm which constructs the cost function based on two kinds of errors: the neighboring two-
parameter estimation errors and the output estimation errors. Such an algorithm has several advantages over the two traditional
identification algorithms: it (1) can estimate the parameters of all the sub-models without prior knowledge of the model identities;
(2) has less computational efforts; and (3) can update the parameters with newly arrived data. -e convergence properties and
simulation examples are provided to illustrate the efficiency of the algorithm.

1. Introduction

Least squares (LS) algorithm is the most widely used
method in parameter estimation [1–3]. It defines a cost
function which is composed of the errors between the
true outputs and the predicted outputs. -en, the esti-
mations can be obtained by solving the derivative
function of the cost function. -e LS algorithm has fast
convergence rates but with the cost of heavy computa-
tional efforts [4, 5]. In addition, the LS algorithm needs
to compute the inverse of a matrix. If the matrix has a
high order or is ill-conditioned, the LS algorithm is
inefficient [6–9].

To reduce the computational efforts and to avoid the
matrix inversion, the recursive least squares (RLS) algorithm
is a good choice. -e basic idea of the RLS algorithm is to
update the parameter estimations using the newly arrived
data, that is, the cost function of the RLS algorithm is
composed of only one set of data rather than all the collected
data [10–12]. -erefore, the RLS algorithm has less com-
putational efforts, and it does not require calculating the
matrix inverse. However, the RLS algorithm has slow
convergence rates when compared with the LS algorithm
[13, 14]. With the aim to increase the convergence rates,
many modified RLS algorithms are developed, e.g., the

multi-innovation RLS algorithm [15, 16] and the hierar-
chical RLS algorithm [17, 18].

Although the RLS algorithm and its modified counter-
parts can identify systems with less computational efforts
and fast convergence rates, they have the assumption that
the considered model is a single model. If the system is
described by a switching model, those algorithms are in-
efficient. Switching models are widely used in engineering
practices [19, 20]. Such models have several modes with
different dynamical properties, and the modes are associated
with various operating conditions [21, 22]. -e difficulty in
switching system identification is that the times of the
operating points (model identities) may be unknown. To
identify the switching models, one should first determine the
operating points/model identities.

-e self-organizing model (SOM)-based method and the
expectation-maximization (EM) method are two classical
identification algorithms which are usually used for
switching models [23–26]. -e SOM method introduces
several cost functions which correspond to each sub-model
in each iteration, and the smallest cost function is associated
with the true model in this sampling instant [23]. -e EM
algorithm regards the model identities as hidden variables
and updates these identities in the EM-E step; once the
identity estimations are obtained, the parameter estimations

Hindawi
Complexity
Volume 2022, Article ID 2605570, 11 pages
https://doi.org/10.1155/2022/2605570

mailto:jyj1981917@126.com
https://orcid.org/0000-0002-6580-5315
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2605570


are computed in the EM-M step. -ese two steps run in-
teractively until these two kinds of estimations converge to
their true values [27, 28]. -e SOMmethod should compute
several cost functions in each iteration, and the EM algo-
rithm needs to compute the model identities first. In ad-
dition, both these algorithms are offline algorithms. -at is,
they have heavy computational efforts and cannot update the
parameters based on newly arrived data.

-e flexible least squares (FLS) algorithm, first de-
veloped by Kalaba and Tesfatsion [29], is used for time-
varying system identification. Its cost function contains
two parts: one is the error of the two parameters in the
two neighboring instants, and the other is the error
between the true outputs and predicted outputs [30–32].
Due to the first error, the parameter estimations can catch
the varying parameters. Inspired by the FLS algorithm,
we develop a novel FLS algorithm for switching models.
-is algorithm is termed as flexible recursive least squares
(FRLS) algorithm. Compared with the SOM, EM, and FLS
algorithms, this algorithm has the following advantages:
(1) the FRLS algorithm is an online algorithm, and thus it
can update the parameters with newly arrived data; (2)
the FRLS algorithm has less computational efforts; and
(3) the FRLS algorithm can estimate the parameters of all
the sub-models without prior knowledge of the model
identities.

-e remainder of the paper is organized as follows.
Section 2 explains the switching model and traditional
identification algorithms. Section 3 proposes the offline FLS
algorithm and online FLS algorithm. Section 4 provides
several simulation examples. Finally, Section 5 summarizes
the paper and gives some future directions.

2. Problem Statement

Let us define some notations first: Imeans an identity matrix
of the appropriate sizes; the superscript T stands for the
matrix transpose; the norm of a matrix X is defined as ‖X‖ �

���������

λmax[XXT]

􏽱

; λmax[XXT] means the maximum eigenvalue of
matrix XXT; and the norm of a vector
z � [z1, z2, . . . , zn]T ∈ Rn is defined as ‖z‖ � (􏽐

n
i�1 z2

i )1/2.

2.1. Switching Model. Consider the following switching
model:

yi(t) � φT
i (t)ϑi + vi(t), i � 1, . . . , N, (1)

where yi(t) is the output of the i-th model; φi(t) ∈ Rmi is the
information vector of the i-th model, which is composed of
the input and output data before the sampling instant t; ϑi is
the parameter vector of the i-th model; vi(t) is a Gaussian
white noise and satisfies vi(t) ∼ N(0, σ2i ); and N is the
number of the sub-models.

In the sampling instant t, there is no knowledge of the
identity of the model. We aim to estimate the parameter
vectors ϑi, i � 1, . . . , N based on the collected data.

Collect L sets of input and output data, and define the
following cost function:

J ϑ1, ϑ2, . . . , ϑN( 􏼁 � 􏽘
L

t�1
􏽘

N

i�1
wi(t) yi(t) − φT

i (t)ϑi􏽨 􏽩
2
, (2)

where wi(t) is the model identity in the sampling instant t.
For example, in the sampling instant t, the true model is the s

-th model, and then the true values of the identities of all the
sub-models are w1(t) � 0, w2(t) � 0, · · ·, ws−1(t) � 0, ws(t)

� 1, ws+1(t) � 0, . . . , wN(t) � 0. To estimate the parameters,
the following assumptions are introduced.

Assumption 1. -e number of the collected data is larger
than the number of the unknown parameters, that is,

L>m1 + m2 + · · · + mN. (3)

In addition, assume that the number of data of the i-th
sub-model is Li; then,

Li >mi. (4)

Assumption 2. For the switching model proposed in (1), all
the input data are taken as persistent excited.

Assumption 3. All the sub-models have the same infor-
mation vector but different parameter vectors, that is, the
switching model can be written by

yi(t) � φT
(t)ϑi + vi(t), i � 1, . . . , N, φ(t) ∈ Rm

. (5)

Remark 1. Assumptions 1 and 2 can ensure that the in-
formation matrices of all the sub-models are nonsingular
[6]. Assumption 3 can also be easily obtained [33]. For
example, for a switchingmodel with unknown structures, we
can use the kernel method to describe the model, and all the
sub-models approximated by using the kernel method can
have the same structure.

2.2. Traditional Identification Algorithms. Rewrite the cost
function of the switching model as follows:

J ϑ1, ϑ2, . . . , ϑN( 􏼁 � 􏽘
L

t�1
􏽘

N

i�1
wi(t) y(t) − φT

(t)ϑi􏽨 􏽩
2
. (6)

Assume that the parameter estimations and identity
estimations in iteration k − 1 are 􏽢ϑ

k−1
i , i � 1, 2, . . . , N and

􏽢wk−1
i (t), t � 1, 2, . . . , L.
Both the SOM and EM algorithms estimate the pa-

rameters through two steps:

(1) Estimate the model identity estimations 􏽢wk
i (t), i �

1, 2, . . . , N, t � 1, 2, . . . , L, based on the parameter
estimations 􏽢ϑ

k−1
i , i � 1, 2, . . . , N.

(2) Update the parameter estimations 􏽢ϑ
k

i , i � 1, 2, . . . , N

based on the model identity estimations 􏽢wk
i (t), i �

1, 2, . . . , N, t � 1, 2, . . . , L.
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-edifference between the SOM and EM algorithms is in
the first step. In the SOM algorithm, the model identity
estimate 􏽢wk

i (t) is 1 or 0. For example, in iteration k of the
sampling instant t, let

􏽢ϑ
k−1
s � argmin

􏽢ϑ
k−1

i (t)
y(t) − φT

(t)􏽢ϑ
k− 1
i􏼔 􏼕

2
, i � 1, 2, . . . , N􏼢 􏼣.

(7)

-en, wk
s (t) � 1 and the other identity estimations

wk
i (t) � 0, i≠ s.
On the other hand, in the EM algorithm, let

εi(t) � y(t) − φT
(t)􏽢ϑ

k−1
i􏼔 􏼕

2
, i � 1, 2, . . . , N. (8)

-en, the identity estimate wk
j(t) can be computed by

w
k
j(t) �

1/εj(t)

􏽐
N
i�1 1/εj(t)

. (9)

Remark 2. Both the SOM and EM algorithms are offline
algorithms; if the order of the system is large, their com-
putational efforts are heavy. In addition, they cannot update
the parameters with newly arrived data [23, 34].

3. Flexible Recursive Least Squares Algorithm

-e SOM and EM algorithms update the parameters through
two steps, and these two steps are related to each other. If one
kind of estimations has poor estimation accuracy, the other
may be also poor or divergent. In this section, we use the FLS
algorithm for the switching models, which can estimate the
parameters without prior knowledge of the model identities.

3.1. Offline FLS Algorithm. Define

Y(L) � [y(L), y(L − 1), . . . , y(1)]
T
,

Φ(L) �

φ(L) · · · 0

⋮ ⋱ ⋮

0 · · · φ(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R
Lm×L

,

Θ(L) � ϑT(L), . . . , ϑT(1)􏽨 􏽩 ∈ RLm
,

V(L) � [v(L), v(L − 1), . . . , v(1)]
T
.

(10)

-en, the switching model can be written as

Y(L) � ΦT(L)Θ(L) + V(L). (11)

Let

Ω �

μI −μI 0 · · · 0 0

−μI 2μI −μI · · · 0 0

0 −μI 2μI · · · 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 · · · 2μI −μI

0 0 0 · · · −μI μI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

Unlike the SOM and EM algorithms, the cost function of
the offline FLS algorithm is written by

J(Θ(L)) � Y(L) −ΦT(L)Θ(L)
����

����
2

+ ΘT(L)ΩΘ(L). (13)

Using the FLS algorithm to update the parameters yields

􏽢Θ(L) � Ω +Φ(L)ΦT(L)􏽨 􏽩
−1
Φ(L)Y(L). (14)

Remark 3. From equation (5), we can get that the offline FLS
(O-FLS) algorithm can estimate the parameters in only one
iteration and does not require the model identify estimation.
However, it increases the order of the information matrix
intensively. For example, the order of the information
matrix is Lm in the O-FLS algorithm, while in the EM and
SOM methods, the order is m.

Remark 4. -e offline FLS (O-FLS) algorithm requires a
high-order matrix inverse calculation, e.g.,
[Ω +Φ(L)ΦT(L)]− 1. When the high-order matrix is sin-
gular or ill-conditioned, computing its inverse is
impossible.

3.2. Flexible Recursive Least Squares Algorithm. To reduce
the computational efforts and to avoid a high-order matrix
inversion, this section proposes an online FLS algorithm
which is termed as flexible recursive least squares (FRLS)
algorithm.

Assume that the parameter vector in the sampling
instant t − 1 is 􏽢ϑ(t − 1). Define the following cost
function:

J(ϑ(t)) � 􏽘
t

s�1
y(s) − φT

(s)ϑ(s)􏽨 􏽩
2

+ μ􏽘
t

s�1
[ϑ(s) − ϑ(s − 1)]

T
[ϑ(s) − ϑ(s − 1)].

(15)
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In the sampling instant t, all the parameter estima-
tions before t have been obtained, and thus (15) is
simplified as

J(ϑ(t)) � y(t) − φT
(t)ϑ(t)􏽨 􏽩

2

+ μ[ϑ(t) − 􏽢ϑ(t − 1)]
T
[ϑ(t) − 􏽢ϑ(t − 1)].

(16)

Taking the derivative of J(ϑ(t)) with respect to ϑ(t)

yields

􏽢ϑ(t) � φ(t)φT
(t) + μI􏽨 􏽩

− 1
[φ(t)y(t) + μ􏽢ϑ(t − 1)]. (17)

Next, we use the recursive method to obtain the rela-
tionships between 􏽢ϑ(t) and 􏽢ϑ(t − 1).

(17) is transformed into

􏽢ϑ(t) � φ(t)φT
(t) + μI􏽨 􏽩

− 1

φ(t)y(t) + μ􏽢ϑ(t − 1) + φ(t)φT
(t)􏽢ϑ(t − 1) − φ(t)φT

(t)􏽢ϑ(t − 1)􏽨 􏽩

� φ(t)φT
(t) + μI􏽨 􏽩

− 1

μ􏽢ϑ(t − 1) + φ(t)φT
(t)􏽢ϑ(t − 1) + φ(t)y(t) − φ(t)φT

(t)􏽢ϑ(t − 1)􏽨 􏽩

� 􏽢ϑ(t − 1) + φ(t)φT
(t) + μI􏽨 􏽩

− 1
φ(t) × y(t) − φT

(t)􏽢ϑ(t − 1)􏽨 􏽩.

(18)

-en, the FRLS algorithm can be summarized as follows:
􏽢ϑ(t) � 􏽢ϑ(t − 1) + Q(t)φ(t)E(t),

E(t) � y(t) − φT
(t)􏽢ϑ(t − 1)􏽨 􏽩,

Q(t) � φ(t)φT
(t) + μI􏽨 􏽩

− 1
.

(19)

Remark 5. Compared with the O-FLS algorithm, the FRLS
algorithm performs a low-order (m − order) matrix inver-
sion rather than a high-order (Lm − order) matrix inver-
sion. -erefore, the FRLS algorithm has less computational
efforts than the O-FLS algorithm (Algorithm1).

-en, the steps of the FRLS algorithm are listed as
follows.

In the FRLS algorithm, there exists a dense matrix in-
version, which leads to heavy computational efforts. To
further reduce the computational efforts, the following
lemma is introduced.

Lemma 1. For the matrices A ∈ Rn×n, B ∈ Rn×r, and
C ∈ Rr×n, if the matrix A is nonsingular, the following
equality holds:

(A + BC)
− 1

� A
− 1

− A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

. (20)

Proof. For the matrix (A + BC), we have

(A + BC) A
− 1

− A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

􏼔 􏼕

� I − B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

+ BCA
− 1

− BCA
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

� I − B + BCA
− 1

B􏽨 􏽩 I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

+ BCA
− 1

� I − B I + CA
− 1

B􏽨 􏽩 I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

+ BCA
− 1

� I.

(21)

In addition, we can obtain
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A
− 1

− A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

􏼔 􏼕(A + BC)

� I + A
− 1

BC − A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

C − A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

CA
− 1

BC

� I + A
− 1

BC − A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

C + CA
− 1

BC􏼐 􏼑

� I + A
− 1

BC − A
− 1

B I + CA
− 1

B􏼐 􏼑
− 1

I + CA
− 1

B􏼐 􏼑C

� I.

(22)

-en, the proof is completed.
According to Lemma 1, the matrix Q(t) is simplified as

Q(t) � φ(t)φT
(t) + μI􏽨 􏽩

− 1

�
1
μ

I −
1/μ2φ(t)φT

(t)

1 + 1/μφT
(t)φ(t)

�
1
μ

I −
φ(t)φT

(t)

μ2 + μφT
(t)φ(t)

.

(23)

Remark 6. Based on equation (15), in each sampling instant,
a dense matrix inversion is transformed into vector mul-
tiplication.-erefore, the computational efforts are reduced.

3.3. Convergence Properties of the Two Kinds of FLS
Algorithms. -e convergence properties of the O-FLS and
FRLS algorithms are given in this section which can help the
researchers follow these two algorithms.

3.3.1. Convergence Property of the O-FLS Algorithm

Theorem 1. For the switching model proposed in (1), the
parameter estimations 􏽢Θ(L) updated by the O-FLS algorithm
are expressed by (5). ;en, 􏽢Θ(L) are biased.

Proof. Rewrite the O-FLS algorithm as follows:

􏽢Θ(L) � Ω +Φ(L)ΦT(L)􏽨 􏽩
− 1
Φ(L)Y(L). (24)

Substituting Y(L) � ΦT(L)Θ(L) + V(L) into the above
equation yields

􏽢Θ(L) � Ω +Φ(L)ΦT(L)􏽨 􏽩
− 1
Φ(L) ΦT(L)Θ(L) + V(L)􏽨 􏽩,

(25)

where V(L) is Gaussian white and independent on Φ(L),
and the above equation can be written by

􏽢Θ(L) � Ω +Φ(L)ΦT(L)􏽨 􏽩
− 1
Φ(L)ΦT(L)Θ(L). (26)

Since Φ(L) ∈ RLm×L, the matrix Φ(L)ΦT(L) is singular,
and the matrix Ω cannot be a zero matrix. -erefore, the
O-FLS algorithm is a biased algorithm.

Remark 7. A small μ can get more accurate parameter es-
timations. However, a small μmay lead to slow convergence
rates between the two neighboring sub-models. -erefore,
we should assign different values for μ. For example, in the
fixed interval, a small μ is better, while near the switching
points, a larger one is better.

3.3.2. Convergence Property of the FRLS Algorithm

Theorem 2. For the switching model proposed in (1), the
parameter estimations 􏽢ϑ(t) updated by the FRLS algorithm are
expressed by (10)–(12). ;en, the sequence 􏽢ϑ(t)􏽮 􏽯 is convergent.

Proof. -e FRLS algorithm is written by

􏽢ϑ(t) � 􏽢ϑ(t − 1) + φ(t)φT
(t) + μI􏽨 􏽩

− 1
φ(t) y(t) − φT

(t)􏽢ϑ(t − 1)􏽨 􏽩.

(27)

(i) Initialise 􏽢ϑ(0) � 1/p0, p0 � 106, 1 is a vector whose
(ii) entries all equal to 1, and assign a positive constant μ
(iii) repeat
(iv) for t � 1, 2, . . ., do
(v) Collect the input-output data u(t), y(t)

(vi) Form φ(t)

(vii) Compute E(t)

(viii) Compute Q(t)

(ix) Update 􏽢ϑ(t)

(x) end
(xi) until convergence

ALGORITHM 1: FRLS algorithm.
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Figure 1: -e parameter estimations and true parameters b1 and b2.
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Figure 2: -e parameter estimations and true parameters b3 − b5.
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Assume that the data from 1⟶ L1, L1≫m belong to
model 1, and subtracting the true value ϑ1 on both sides of
the above equation yields

􏽢e(t) � 􏽢e(t − 1) − φ(t)φT
(t) + μI􏽨 􏽩

− 1
φ(t)φT

􏽢e(t − 1)

� I − φ(t)φT
(t) + μI􏽨 􏽩

− 1
φ(t)φT

(t)􏼔 􏼕􏽢e(t − 1).
(28)

For the reason that

I − φ(t)φT
(t) + μI􏽨 􏽩

− 1
φ(t)φT

(t)􏼔 􏼕

������

������< 1, (29)

we have

‖􏽢e(t)‖<‖􏽢e(t − 1)‖. (30)

-erefore, the FRLS algorithm is convergent. □

Remark 8. -e FRLS algorithm has the assumption that the
identities of the data are unchanging in a fixed interval. If the
identities are changing continually, the FRLS algorithm is
divergent.

4. Examples

4.1. Example 1. Consider the following switching model:

Sub − model1:

y(t) � 0.5u(t − 1) + 0.67u(t − 2) − 0.34u(t − 3) + 0.23u(t − 4) + 0.76u(t − 5) + v(t),

Sub − model2:

y(t) � 1.5u(t − 1) − 0.5u(t − 2) + 1.24u(t − 3) − 0.23u(t − 4) − 0.36u(t − 5) + v(t),

u(t) ∼ N(0, 1), v(t) ∼ N 0, 0.12􏼐 􏼑.

(31)

Let
ϑ � b1, b2, b3, b4, b5􏼂 􏼃

T
,

ϑ1 � b1, b2, b3, b4, b5􏼂 􏼃
T

� [0.5, 0.67, −0.34, 0.23, 0.76]
T
,

ϑ2 � b1, b2, b3, b4, b5􏼂 􏼃
T

� [1.5, −0.5, 1.24, −0.23, −0.36]
T
.

(32)

Table 1: -e elapsed times and estimation errors of these three algorithms.

Algorithms FRLS EM SOM
Elapsed times (second) 1.704 2.257 2.038
Estimation errors 1.201% 1.145% 1.273%

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5

0

0.5

1

1.5

2

2.5

Estimated output
True output

Estimation error

Figure 3: -e output estimations and their estimation errors.
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In simulation, we collect 500 sets of input and output
data, where the data from 1: 250 belong to model 1, and
those from 251: 500 belong to model 2.

Use the FRLS algorithm for this switching model. -e
parameter estimations are shown in Figures 1 and 2. -e
predicted outputs and the true outputs, and their errors are
shown in Figure 3. In addition, apply the EM and SOM
algorithms for the switching model, where the initial
identities for each sub-model are ω0

j(t) � 1/2, j � 1, 2 and
t � 1, 2, . . . , 500. -e estimation errors and elapsed times of
the three algorithms are shown Table 1.

From this simulation, we can get the following findings:

(1) -e parameter estimations using the FRLS algorithm
can asymptotically converge to the true values (see
Figures 1 and 2).

(2) -e predicted outputs using the FRLS algorithm can
catch the true outputs (see Figure 3).

(3) -e number of the data in a fixed interval must be
larger than the number of the unknown parameters.

(4) All the FRLS, EM, and SOM algorithms are effective
for the switching model, but the FRLS algorithm has
the smallest elapsed times, that is, the FRLS

algorithm has the least computational efforts among
these three algorithms, as shown in Table 1.

4.2. Example 2: A Switching Open Channel System. In this
section, we consider an open channel system, which is
shown in Figure 4. -e radius of the channel is R, the length
of the channel is x, u(t) is the discharge at the upstream end,
y(t) is the discharge at the downstream end, and the slope is
β. To ensure the discharge y(t) to flow in a fixed speed, we
should control u(t). -e relationship between u(t) and y(t)

can be expressed by a linear model. In simulation, two
slopesβ1 � 10 and β1 � 15degrees are assigned to the open

β

u

y

x

R

Figure 4: -e open channel system.
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0
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1

t

δ

Figure 5: -e parameter estimation errors (FRLS).

Table 2: -e parameter estimations of sub-model 1.

t ϑ1,1 ϑ1,2 ϑ1,3 ϑ1,4 ϑ1,5 δ1(%)

100 0.17234 0.23763 0.01434 0.02163 0.00859 57.58089
300 0.34494 0.47465 0.01688 0.02067 0.00220 15.25782
500 0.40302 0.55258 0.01768 0.02042 0.00016 1.40728
700 0.40657 0.55271 0.01770 0.02038 0.00008 1.10091
800 0.40818 0.55113 0.01770 0.02036 0.00006 1.20170
1000 0.41006 0.54930 0.01770 0.02032 0.00004 1.40738
True
values 0.40970 0.55790 0.01830 0.02020 −0.0045
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Table 3: -e parameter estimations of sub-model 2.

t ϑ2,1 ϑ2,2 ϑ2,3 ϑ2,4 ϑ2,5 δ2(%)

1100 0.38576 0.07080 0.03194 0.03643 0.03259 52.18099
1300 0.80948 0.14792 0.03312 0.02342 0.07819 1.29770
1500 0.80628 0.14756 0.03302 0.02351 0.07556 1.20113
1700 0.80948 0.14792 0.03312 0.02342 0.07819 1.29770
1800 0.80960 0.14778 0.03313 0.02342 0.07823 1.31978
1000 0.81009 0.14728 0.03313 0.02341 0.07822 1.39991
True values 0.80470 0.15730 0.03300 0.02310 0.07630
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Figure 6: -e parameter estimation errors (EM).
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Figure 7: -e parameter estimation errors (SOM).
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channel system. -ese two slopes lead to two different
dynamics which should be described by two models: [14]:

Sub − model1:

y(t) � 0.4097y(t − 1) + 0.5579y(t − 2) + 0.0183u(t − 1)

+ 0.0202u(t − 2) − 0.0045u(t − 3) + v(t),

t � 1, 2, . . . , 1000,

Sub − model2:

y(t) � 0.8047y(t − 1) + 0.1573y(t − 2) + 0.0330u(t − 1)

+ 0.0231u(t − 2) + 0.0763u(t − 3) + v(t),

t � 1001, 1002, . . . , 2000.

(33)

We collect 2000 sets of input-output data using Matlab
software, where the sequence u(t){ } is generated by

u � idinput L′, RBS′, [0, 1], [−1, 1]( 􏼁. (34)

-e data from t � 1: 1000 belong to model 1, and those
from 1001: 2000 belong to model 2.

Apply the FRLS algorithm for the considered switching
model. -e parameter estimations and their estimation
errors δ � ‖􏽢ϑi(t) − ϑ‖/‖ϑ‖, i � 1, 2, are shown in Figure 5 and
Tables 2 and 3.

Furthermore, we use the traditional EM and SOM algo-
rithms for the switching open channel system (ω0

j(t) � 1/2, j �

1, 2 and t � 1, 2, . . . , 2000). -e parameter estimations and
their estimation errors are shown in Figures 6 and 7.-e elapsed
times of these three algorithms are shown Table 4.

-is example shows that (1) all the FRLS, EM, and SOM
algorithms are convergent, as shown in Figures 5–7; (2) the
FRLS algorithm has the smallest elapsed times among these
three algorithms, and this is shown in Table 4, that is, the
FRLS algorithm has the least computational efforts among
these three algorithms.

5. Conclusions

An online FLS algorithm, termed as flexible recursive least
squares (FRLS) algorithm, is proposed for switching models
in this study. Its cost function is composed of the errors
between the two neighboring parameter estimations and the
errors between the true outputs and the predicted outputs.
With the help of the two neighboring parameter estimation
errors, the operating points of the switching models can be
determined, and the parameters of each sub-model can also
been obtained. Compared with the SOM and EM algo-
rithms, the FRLS algorithm can estimate the parameter
estimations without prior knowledge of the model identities.
In addition, the FRLS algorithm is an online algorithm,
which has less computational efforts and can update the
parameters with newly arrived data.

Although the FRLS algorithm has several advantages
over the traditional identification algorithms, several chal-
lenging issues about the FRLS algorithm need to be con-
sidered in future. For example, if the sub-models switch
continually, how to apply the FRLS algorithm to the
switching model? How to choose a suitable μ to make the
FRLS algorithm converge quickly to the true values? -ese
topics remain as open problems.
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