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Abstract. The reasons to use growing self-organizing networks are
investigated. First an overview of several models of this kind is given
are they are related to other approaches. Then two examples are pre-
sented to illustrate the speci�c properties and advantages of incremental
networks. In each case a non-incremental model is used for comparison
purposes. The �rst example is pattern classi�cation and compares the
supervised growing neural gas model to a conventional radial basis func-
tion approach. The second example is data visualization and contrasts
the growing grid model and the self-organizing feature map.

1. Introduction

Growing (or incremental) network models have no pre-de�ned structure. Rather,
they are generated by successive addition (and possibly occasional deletion) of
elements. At �rst sight this makes them a lot more complicated than networks
with static structure such as normal multi-layer-perceptrons or self-organizing
maps the topology of which is chosen a priori and does not change during pa-
rameter adaptation. For growing networks, however, suitable insertion strate-
gies have to be de�ned as well as criteria how to eventually stop the growth.

Is there any "pay-o�" for this added complexity? Are there any practical
or even principal advantages of using a growth process for network generation?
Why should anyone use incremental self-organizing networks?

We like to address the questions posed by contrasting incremental networks
and their corresponding non-incremental counterparts for a few examples. The
examples are taken both from unsupervised and supervised learning and should
illustrate that there are in fact some rather good reasons for using growing self-
organizing networks.

2. Overview of growing self-organizing networks

In this section we will give a short overview of di�erent incremental models
we have developed during the last few years. From an architectural point of



view these models are in fact not very di�erent at all. On the other hand, they
address quite distinct problems ranging from combinatorial optimization over
data visualization to pattern classi�cation and function approximation.

2.1. Common properties

We �rst like to state the properties shared by all models described below. This
"factorization" will then allow for a very concise description of the speci�c
features each model has.

Common to the models in this section is the following:

� The network structure is a graph consisting of a number of nodes (also
denoted as units) and a number of edges connecting the nodes.

� Each unit c has an associated position (or reference vector) wc in input
space.

� Adaptation of the reference vectors is done by generating an input signal
� and moving the reference vector of the nearest (or "winning") units s1
and its direct topological neighbors in the graph towards the input signal:

�ws1
= �b(� �ws1

)

�wi = �n(� �wi) (8i 2 Ns1
)

Thereby Ns1
denotes the set of direct topological neighbors of s1, i.e.

those units sharing an edge with s1. The symbols �b and �n are adaptation
constants with �b � �n.

� At each adaptation step local error information is accumulated at the
winning unit s1:

�Es1
= (error term)

The particular choice of the above error term depends on the applica-
tion. For vector quantization one would, e.g., choose �Es1

= kws1
� �k2

whereas for entropy maximization an appropriate term is �Es1
= 1: In

the case of supervised learning one can use, e.g., the classi�cation er-
ror whereas for a robotics application a positioning error might be used.
Abstractly speaking, the error term should be a measure which is to be
reduced and which is likely to be reduced in a particular area of the input
space by insertion of new units in exactly this area.

� The accumulated error information is used to determine (after a �xed
number of adaptation steps) where to insert new units in the network.

� All model parameters are constant over time.



When an insertion is done the error information is locally re-distributed
which increases the probability that the next insertion will be somewhere else.
The local error variables act as a kind of memory which lasts over several
adaptation/insertion cycles and indicates where much error has occurred. The
fact that the error information is kept even after insertions allows to have a
constant number of adaptation steps per insertion leading to a very fast build-
up of the network1. An exponential decay of all error variables stresses the
inuence of the more recently accumulated error information.

All models can in principle be used also for supervised learning by asso-
ciating output values to the units either of radial basis function (RBF) type
or of local linear mapping (LLM) type. This makes, however, most sense for
the growing neural gas method since it reects the inherent structure of the
data most accurately [5, 8]. The other two methods due to their �xed dimen-
sionality skew the input onto a certain number of dimensions and are for this
reason more suited for (unsupervised) data visualization (see the example given
below).

The respective di�erences of the models lie only in the constraints imposed
on the topology and will be described below.

2.2. Growing cell structures

The growing cell structures (GCS) model has a structure consisting of hyper-
tetrahedrons (or simplices) of a dimensionality chosen in advance [6]. A k-
dimensional hypertetrahedron is special among all k-dimensional polyhedrons
since it is the most simple one, having only k+ 1 vertices. Examples of hyper-
tetrahedrons for k 2 f1; 2; 3g are lines, triangles, and tetrahedrons.

The model is initialized with exactly one hypertetrahedron. Adaptation
steps as described above are performed. Always after a number � of these
adaptation steps the unit q with the maximum accumulated error is determined
and a new unit is inserted by splitting the longest of those edges emanating
from q. Moreover, additional edges are inserted to re-build the structure in
such a way that it consists only of k-dimensional hypertetrahedrons (again).
The exact re-connection procedure is actually simple enough to be described in
one sentence: Let the edge which is split lead from q to a unit f then the new
unit should be connected with q and with f and with all common neighbors of
q and f . This is valid for an arbitrary dimension k.

Since the GCS model has a �xed dimensionality it e�ectively realizes a
dimensionality-reducing mapping from the (possibly very high-dimensional)
input space into a k-dimensional space. This can be used for data visualization
and as a special case also for combinatorial optimization [9].

1We currently investigate a variant of the described method where all error information
is discarded after an insertion. This eliminates completely the need to redistribute or decay
error information but requires to make a number of adaptation steps per insertion which is
proportional to the network size.



2.3. Growing neural gas

The growing neural gas (GNG) model imposes no explicit constraints on the
graph. Rather, the graph is generated and continuously updated by competi-
tive Hebbian learning2, a technique proposed by Martinetz [11]. The core of the
competitive Hebbian learning method is simply to create an edge between the
winning and the second winning unit at each adaptation step (if such an edge
does not already exist). The graph generated is a subgraph of the Delaunay
triangulation corresponding to the reference vectors. The Delaunay triangula-
tion, however, is special among all possible triangulations of a point set since it
has been shown to be optimal for function approximation by Omohundro [14].

After a �xed number � of adaptation steps the unit q with the maximum
error is determined and a new unit is created between q and one of its neigh-
bors in the graph. Error variables are locally re-distributed and another �

adaptation steps are performed.
The topology of a GNG network reects the topology of the input signal

distribution and can have di�erent dimensionalities in di�erent parts of the
input space. For this reason a visualization is only possible for low-dimensional
input data.

2.4. Growing grid

The growing grid (GG) method [7] enforces a hyper-rectangular structure on
the graph. Stated otherwise, the graph is a rectangular grid of a certain di-
mensionality k. The starting con�guration is a k-dimensional hypercube (e.g.,
a 2 � 2-grid for k = 2 and a 2 � 2 � 2-grid for k = 3). To keep this structure
consistent, it is necessary to always insert complete (hyper)-rows or (hyper)-
columns.

Apart from this the growing grid is very similar to the methods described
above. Also the adaptation is done in exactly the same way. The accumulated
error information is used to identify after � adaptation steps the unit q with
maximum error. The longest edge emanating from q is determined and a new
complete hyper-row or -column is inserted such that this edge is split.

2.5. Relation to other models

What is the relation of the described incremental models to other approaches?
Both, the GCS model and the GG model have some relations to Kohonen's
self-organizing feature map (SOFM) [10] since a network structure of a �xed
dimensionality is used. In the case of GG the relation is even stronger since
a hyper-rectangular grid is produced which is also the most common network
structure for SOFM. Di�erent are the parameters which are constant in the
case of GCS and GG and time-varying for SOFM.

2Interestingly, there exists a seemingly unrelated technique also called competitive Heb-
bian learning described in Ray H. White (1992), Competitive Hebbian Learning: Algorithms
and Demonstrations, Neural Networks 5, pp. 261{275



Recently Bauer and Villmann have proposed an incremental self-organizing
network (GSOM) generating also a hyper-rectangular structure by inserting
complete rows or columns [2]. Instead of using accumulated error info to de-
termine where to insert new units, they always insert near the center of the
current topology. The network parameters are time-varying (e.g., the neigh-
borhood adaptation is cooled down according to saw-tooth shaped function).
In contrast to our GG method GSOM automatically chooses a dimensionality
during the growth process.

Bruske and Sommer have independently from us developed a method called
dynamic cell structures (DCS) [3] combining the principle of insertion based on
accumulated error (�rst proposed in [4]) with competitive Hebbian learning as
introduced by Martinetz. They have applied this to supervised learning and it
is rather similar to GNG.

The GNG method is somewhat related to the neural gas (NG) method
proposed by Martinetz. NG however, is a pure vector quantization method
not de�ning a topology among the units. Rather the adaptations are done
based on the distance in input space. Decaying parameters make it necessary
to pre-de�ne the total number of adaptation steps. The number of units is
constant.

NG, however, may be combined with competitive Hebbian learning to build
up a topology during self-organization. The resulting method has been called
"topology-representing networks" (which may be a term a little too general
for being limited to this particular model) [12] and delivers results comparable
to the (unsupervised variant of) GNG. It should be noted, however, that the
topology created by competitive Hebbian learning does not inuence in any
way the underlying NG method whereas in the case of GNG the topology is
exploited to position new units between existing ones.

There are a couple of other related models and the discussion here is not
meant to be complete overview.

3. Examples

In this section we like to give some examples contrasting incremental and non-
incremental networks.

3.1. Pattern classi�cation

A central property of the incremental networks described above is the possibil-
ity to choose an arbitrary error measure as the basis for insertion. In the case
of pattern classi�cation an obvious choice is the classi�cation error. In �gure 1
an RBF network is shown which was constructed with the supervised GNG
method. The problem is a two-class classi�cation problem and the data con-
sists of two large well-separated clusters and four smaller ones which are rather
close to each other and of less compact shape. The error-based growth process
leads in this case to a distribution of centers which di�ers considerably from



a) b)

c) d)

Figure 1: Classi�cation with supervised growing neural gas. Shown is a radial
basis function network generated by the supervised GNG method using the
classi�cation error as insertion criterion. a) generated nodes and edges b)
standard deviations of Gaussians (computed from mean edge length) c) raw
output of the networks d) decision regions obtained by thresholding the raw
output.

the distribution of the data. In the �nal network the large clusters are handled
by only a few rather large Gaussians whereas the majority of the Gaussians is
located in the region of the smaller clusters which are much harder to separate.

As contrast a more conventional RBF approach following largely the work
of Moody and Darken [13] is shown in �gure 2. This network was generated
by �rst distributing a �xed number of centers in input vector space with a
clustering method (NG plus competitive Hebbian learning in this case). Then
center positions were �xed, Gaussian activation functions were associated with
the centers with a width chosen equal to the mean edge length of the respective



center. The delta rule was then used to train the weights to the single linear
output unit which was needed to di�erentiate between two classes. Although
the size of the network is the same as that of the previous network in this case
the training patterns are not learned completely. The rather obvious reason is
that more units than necessary are used for handling the two large, but "simple"
clusters so that not enough units remain for handling the more di�cult areas.

Why are the results of supervised GNG and a conventional RBF network
so di�erent? The clustering method used in the conventional RBF network
uses only the input part of the training data (it disregards the class labels).
Therefore, it has no possibility of taking into account how di�cult it is to
classify in a certain area of the input space. Since all data looks alike the best
a clustering method can do is to distribute the available centers such that each
center gets a similar share of the input data. In the second phase the centers
are not moved anymore and the weights leading from the Gaussian units to the
linear output unit are trained using the available labelled data. Data points of
di�erent classes lying in the region of the same Gaussian evoke a very similar
activation vector and the linear output unit may not be able to separate them
even in the 33-dimensional space of Gaussian unit activations (33 is the size of
the networks in both examples). This is presumably what happened with the
network shown in �gure 2.

The supervised GNG network however starts with only a few units and
immediately begins training the weights to the output unit(s) while at the
same time the center positions are adapted (only slightly, however, since the
adaptation parameters are very small). If a classi�cation error occurs it is
accumulated at the nearest Gaussian unit which is in a sense responsible for
this area of the input space. After a while it becomes evident which Gaussian
unit q has most di�culties handling "its" data and a new unit is inserted
nearby, taking over part of the data of q. This is iterated until the network
performs su�ciently well. If in a region of the input space no misclassi�cations
occur then no units are added in this area even if there is a high density of data
points. The network concentrates its resources on the more di�cult areas.

A remark should be made concerning over-�tting. This is a potential prob-
lem for both approaches. If we increase the number of centers used for the con-
ventional RBF approach we eventually will reach a number where the training
data can be learned. Since the unsupervised clustering distributes the centers
regardless of the labels we will also have more centers in those areas of the
input space where the data is easy to classify potentially leading to over-�tting
there. For the supervised GNG network, on the other hand, we must de�ne a
criterion when the growth should be stopped or it will continue to generate new
units inde�nitely and over-�t to the data. A simple method to avoid this is to
observe the performance of the network on a separate validation set which is
not used for training. If the performance on the validation set does not improve
anymore the training should be stopped.



a) b)

c) d)

Figure 2: Classi�cation with a conventional radial basis function network.
Shown is an RBF-network consisting of 33 units generated in two phases as
proposed by Moody and Darken. First the centers are distributed in an un-
supervised fashion. In this case we used Martinetz' neural gas method with
competitive Hebbian learning to generate connections but another clustering
technique such as k-means would have produced similar results. In a second
phase the center positions are frozen, Gaussian activation functions are asso-
ciated with the units and weights to a linear output unit are trained with the
delta rule. a) nodes and edges b) standard deviations of Gaussians (computed
from mean edge length) c) raw output of the networks d) decision regions show-
ing how the network generalizes over unseen data. The network is not able to
classify all training examples correctly although it has the same size as the the
net in the previous �gure which had been generated by supervised GNG



3.2. Data visualization

Visualizing complex and high-dimensional data is of increasing relevance in may
industrial and research areas. Self-organizing feature maps are often proposed
for this task since they generate a mapping from the possibly high-dimensional
input space to the low-dimensional structure used as network topology. In
many cases this is a rectangular, often square, two-dimensional grid of units.
There is no question that SOFMs generate those dimensionality-reducing map-
pings. The question is how well do they preserve topological relationships in
the original data? For a long time this issue was handled mostly by visual
inspection. Recently, however, an exact de�nition of topology preservation has
been given by Villmann et al., the so-called topographic function [16] which
makes it possible to actually do objective comparisons among di�erent archi-
tectures. In contrast to earlier work by Bauer and Pawelzik [1] the topology
of the given data is taken into account for this measure which we regard as an
important contribution. We do not use this measure in the present article but
we plan to do this in the future and like to mention this work.

In the following we like to investigate the representation of a rather simple
data set realized by a) the self-organizing feature map and b) our growing grid
method. The data comes from a 9�1 rectangular area and has been "colored"
black and white for easier visualization

For the SOFM we chose an array of size 15 � 15. We then performed a
self-organizing process with a parameters and decay functions as proposed by
Ritter et al. [15]. The result of the self-organization can be seen in �gure 3.
The projection of the network in the input space is shown in �gure 3 a). The
representation of the data onto the maps is depicted in �gure 3 b). It is rather
obvious that the map represents the data in a rather skewed way. This is not
surprising since the shape of the manifold containing the data (an elongated
rectangle) and the shape of the map (a square) are rather di�erent. There is
a mapping from one to the other but the topology is only partially preserved
(which would certainly be con�rmed by the mentioned topographic function
which relates the distances in input space to those in output space).

If we now use the same data to let a growing grid network develop the
result looks quite di�erent as can be seen in �gure 4. There is a much better
correspondence between representation on the map and actual distances in the
input space.

Another propoperty of the growing grid method may be of particular im-
portance for data visualization. We could continue the simulation and let the
network add more rows and columns if we decided after inspecting the result
obtained so far that we needed a higher resolution. Since all model parameters
are constant this is easily possible. The self-organizing feature map in �gure 3,
however, is �nished in a certain sense. We have cooled down the parameters
(neighborhood range and adaptation strength) according to a speci�c schedule
and there is no obvious way of increasing the size of the network and letting
it re-organize without loosing the order achieved so far. We could of course
interpolate new units from existing ones but we would be limited to the convex



a) Projection of network into input space

b) Projection of data to network

Figure 3: A self-organizing feature map has adapted to a uniform distribution
in a 9 � 1 two-dimensional area. The network consists of 15 � 15 units. Due
to the mismatch between network structure and shape of the data manifold a
skewed representation results.

hull of the present set of units in doing this. The only general way to increase
the resolution is to repeat the whole process with a larger network. Even then,
however, we can not be sure that the size is su�cient and it might be necessary
to try even larger networks. With the growing grid, on the other hand, we can
completely re-use the results of previous simulations.

4. Discussion

In this paper we tried to clarify the motivation behind growing self-organizing
networks. We did this by �rst giving an overview of di�erent incremental mod-
els which all are based on the principle of insertion based on locally accumulated

error information and which di�er mainly in the constraints imposed on their
topology. We related those incremental models to other approaches. We pre-
sented two examples, one from supervised and one from unsupervised learning,
to point out speci�c advantages of incremental approaches.



a) Projection of network into input space

b) Projection of data to network

Figure 4: A growing grid self-organizing network has adapted to the same
distribution as in the previous �gure. Starting from a 2 � 2 grid a 43 � 6
network has developed automatically. The width/height ratio of the network is
7:17 and matches fairly well the corresponding ratio of the data manifold (9).

Summarizing, these advantages are:

� The possibility to use problem dependent error measures to determine
where new units are inserted (insertion where necessary)

� The possibility to interrupt the self-organization process or to continue a
previously interrupted one: due to the constant parameters there are no
di�erent phases in the self-organization

� Fewer magic numbers to de�ne: the network size need not be de�ned in
advance but can be de�ned indirectly by giving a performance criterion
which must be met. For each parameter only its value must de�ned and
not starting value, end value as well as its function over time as in many
other approaches.

Another goal of the paper was to shed a little light on the sometimes confus-
ing multitude of self-organizing models and to indicate some relations among
them. This could not at all be complete but perhaps we were able to answer
one or the other question with our remarks.
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