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ABSTRACT As both the generation resources and load types have changed and grown over the past few
decades, there is a growing need for analysis that spans traditional simulation boundaries; for example,
evaluating the impact of distribution-level assets (e.g. rooftop solar, EV chargers) on bulk-power system
operation. Co-simulation is a technique that allows simulators to trade information during run-time,
effectively creating larger and more complex models. HELICS is a co-simulation platform that has been
developed to enable these kinds of power system analysis, incorporating tools from a variety of domains
including the electrical power grid, natural gas, transportation, and communications. This paper summarizes
the technical design of HELICS, describes how tools can be integrated into the platform, and reviews a
number of analyses that have been performed using HELICS. A short video summary of this paper can be
found at https://youtu.be/BIUiR_K87Wc.

INDEX TERMS power system analysis computing, power system simulation, HELICS, co-simulation,
natural gas, transportation, multi-energy analysis, multi-domain analysis, energy system analysis

I. INTRODUCTION

TRADITIONALLY, the electrical energy system has
been conceptually divided into the bulk power system

(composed of generation and transmission assets) and the
distribution system, with each of those domains having spe-
cific areas of analytical interest. Analysis of the bulk power
system has focused on ensuring that there is sufficient gener-
ation capacity at all times to meet the load of the system,
that the capacity of the transmission network is sufficient
to transport the electrical energy to the substations, and that
generation resources are dispatched in an economical manner
while keeping the system stable and secure in the face of typ-

ical disruptions. Similarly, analysis of the distribution system
has often been most concerned with ensuring sufficient ca-
pacity in the substation transformers, distribution transform-
ers, and distribution lines; managing voltage at the point of
connection with customers; and protecting the system from
the impacts of faults. The reality, though, is that these two
domains are physically one system–and consequently, there
are certain types of analysis that require a more integrated
perspective. For example, the idea of transactive energy
[1], where customers’ assets respond to value signals (often
based on wholesale energy prices) has been studied for many
years and has recently experienced regulatory change in the
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US with FERC Order 2222 [2]; transactive energy requires
analysis techniques that span both bulk power systems and
distribution domains.

Further, analysis needs can easily extend beyond the bulk
power and distribution systems to other systems. Over the
past two decades, there has been a dramatic shift in the
United States away from coal as a prime-mover fuel to
natural gas [3]. While coal is often delivered by train car
and can be stored on-site at the generator, natural gas is
transported by pipe and is much more like a just-in-time fuel
source. Disruptions in the natural gas supply are not only felt
more quickly (as compared to coal) but have the potential for
greater impact on the electrical power system because both
the natural gas and electrical networks are linked through
these large generators [4].

Communications systems pose another analysis need; all
areas of the electrical power system have been affected by the
widespread adoption of communications technologies. Pha-
sor measurement units (PMUs) have been widely deployed
across the United States and have found use in bulk power
system operation for monitoring voltage stability [5] and
system oscillation detection [6]. The data required for these
applications relies on effective transport over communication
systems, and to understand the effects of communication
system imperfections (e.g., delays, out-of-order data arrival,
missing data), the communication system must be explic-
itly modeled. Without a data-dynamic multi-domain analysis
technique, it would not be possible to assess the performance
of the applications and algorithms that use PMU data from
such real-world systems.

To address these kinds of analysis challenges, there are two
options: build a new simulator that models all the necessary
domains in an integrated code base, or find a method for tying
existing simulators together such that the inputs and outputs
from each are coupled during runtime. From a practical
standpoint, the former is generally untenable as it requires a
new, integrated simulation tool for every unique combination
of domains. The latter is not only much more practical but
allows the use of existing tools and the (often) years of
development, improvement, and validation they bring to the
table. This technique is called “co-simulation” and has been
in use in various forms for several decades. Past and current
platforms include HLA [7], FMI [8], Mosaik [9], IGMS [10],
FNCS [11] and HELICS [12]. Co-simulation has been used
to address a wide variety of these emerging analysis needs:
communication system impacts in managing microgrid assets
for power balancing [13], transactive energy mechanisms for
appropriate integration of the wholesale and retail markets
[14] (even at very-large scales [15]), transient analysis [16],
and DER integration and management [17]–[20].

This work focuses on the Hierarchical Engine for
Large-scale Infrastructure Co-Simulation ("HELICS"), a co-
simulation platform that was originally planned and defined
through the work in [12], which described the design of the
core co-simulation platform prior to its’ full implementation.
With several years of active development, these original plans

have been implemented and expanded upon to produce a
general purpose, flexible co-simulation platform. HELICS
has been used in a wide variety of analyses and use cases,
and is available as open-source software [21]. This work will
summarize the design of HELICS as it is implemented today,
including recent improvements, user-support tools that have
been added to increase ease of use, and the analyses and use
cases that have been conducted using HELICS.

II. DESIGN OF HELICS
The design requirements for HELICS are described in detail
in [12]; in summary, HELICS needed to be scalable, open-
source, modular, cross-platform, minimally invasive, easy to
integrate and use, support a broad range of simulators, and
accommodate mathematical considerations such as iteration.
These design requirements led directly to the software design
strategy of using a layered approach in the software and a
concept of a hierarchy in co-simulation topology.

A. DESIGN PRIORITIES AND PHILOSOPHY
The following design priorities directed much of the design
of HELICS and supporting tools.

1) Make it as easy as possible for participating simulation
tools of all kinds to work together

2) Participating simulation tools cannot impose restric-
tions or requirements on other federates

3) Participating simulation tools should maintain control
and autonomy

4) Implement in layered and modular architecture so as to
be adaptable to a wide variety of scenarios and needs

5) Centralized control and/or management should be min-
imized

The first design priority, ease of integration, influenced
the development of language bindings for many common
programming languages, such as Python, MATLAB, Java,
and others. It also led to continuous improvements in docu-
mentation and ease of use in the APIs and allowed conversion
between data types and units in the interfaces.

The second priority (excluding tools from placing require-
ments on each other) requires that the timing and interfaces
of one participating simulation tools not impose additional
timing or interface requirements on others. This allows a
great deal of flexibility in how participating simulation tools
are defined at the expense of a more complicated timing
coordination inside of HELICS; this flows back to the first
priority. Fundamentally, HELICS allows each participating
simulation tool to make the choices that work the best for it
individually with the expectation that HELICS will manage
the timing and data exchange complications that may arise.

The third priority, maintaining local control and autonomy,
motivated HELICS to be implemented as a library rather
than a runtime; this significantly affects how HELICS is
used in many cases. Many simulation tools that interact
with HELICS can be run as standalone executables, and
having HELICS as a library means that any tool that provides
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HELICS support can choose when and how it implements
the HELICS APIs and how it will operate when part of a
HELICS federation. This autonomy is in contrast to other co-
simulation environments or platforms that than only allow
operations when a specific run-time application is running.
Furthermore, this autonomy requirement drove the HELICS
library and APIs to provide fine-grained control over the co-
simulation operations within a participating simulation tool.

The use of layers in the HELICS design philosophy (the
fourth design priority) is applicable in the general software
design philosophy as described above and also supports the
use of a hierarchy of brokers and layers within the co-
simulation itself, providing significant scalability advantages
for HELICS. This is closely tied with the decision to mini-
mize central control as articulated in the fifth design priority.
(Researchers in [22] have performed a scalability compari-
son of HELICS with other co-simulation platforms and the
results bear out the advantages of distributed time-keeping
for co-simulations with many federates.)

In any coordinated co-simulation, there must be some
central entity doing some coordination, and HELICS makes
the conscious choice to minimize the operations performed
by that entity. In each co-simulation there is an entity called
the “root broker” and the root broker has two main responsi-
bilities: 1) trigger the start of co-simulation data exchange 2)
act as a last-chance router for messages and data. Note that
managing the timekeeping for all participating simulation
tools is not centralized in any way; this is intentionally not
the role of any broker. Removing this central control was
anticipated to be necessary for large scale co-simulations as
it removes a major bottleneck and make parallelism across
the participating simulation tools quite natural.

The timekeeping operation is intentionally distributed to
allow scalability and a high degree of user control. Each
participating simulation tool has a local time coordinator
responsible for determining when to allow it to execute its
local model and other simulation tasks. The algorithmic
principle it uses is that each simulation tool can execute a
particular simulation time when there is no possibility of
data coming from other participating simulation tools to be
produced at any simulation time prior to the time about to
be simulated. That is, each participating simulation tool has
causality respected and enforced by HELICS. Simulation
tools requesting the same simulation time are assumed to
execute in parallel, and exchanged data generated at a partic-
ular simulation time would be available at the next iteration
of that simulation time or when a greater simulation time
is executed. (There is a flag that can be set to allow one of
these simulators running in parallel to wait until all other
simulators have finished.)

Generally, a simulation time earlier than the one requested
by a given simulation tool is granted when any of its inputs
from other simulation tools change; when this happens, all
data from that simulation time is available. However, this
conservative and distributed time management strategy can,
in a few cases, be very non-optimal. Therefore, HELICS

allows the use of a centralized coordinator (at user discretion)
when setting up the co-simulation. Additionally, HELICS can
execute asynchronous timekeeping, essentially turning off
time coordination in favor of user control or when real-time
management is used by all participating simulation tools.

B. HELICS LAYERS
To meet the design requirements for a modular cross-
platform design, the software for HELICS is partitioned into
a series of layers with programming APIs between each.
This allows development, testing, and modification of the
individual layers without major concern of impact to the
higher-level layers. A brief description of each of the layers
is included in the following section, and a diagram is shown
in Figure 1.

FIGURE 1: Layers of HELICS

1) Operating System/Communications Layer
The operating system/communications layer is responsible
for the individual networking components and specific op-
erating systems aspects. HELICS includes several messag-
ing types between participating simulation tools, including
ZeroMQ, UDP, TCP, MPI, interprocess communication, and
inprocess channels; others can be added as needs arise.
Support for user-defined communication channels is also
planned but currently unimplemented. These communication
modules enable communication between different processes,
computers, and operating systems. They can be swapped
with a simple change in user-exposed configuration files or
command line arguments and also can be mixed and matched
for specific communication channels between federation par-
ticipants via the HELICS multi-broker (see section III-C).
Helper objects exist to allow mixed mode communication
and bridging between different networking technologies.

2) Core Library Layer
The core layer represents the minimum set of features neces-
sary for a co-simulation, including time synchronization, ex-
ecution control, and data exchange between simulation tools.
The core layer uses the APIs of the platform layer to manage
data exchange and is agnostic to the actual communication
protocol in use. The core layer manages the threads used by
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HELICS and handles the HELICS messages that go between
the different components. The actual message transmission is
left to the communications layer. The core layer handles the
data management and buffering as the data flows between the
different interfaces.

3) Application Layer
The application layer is the primary interface among ap-
plication simulation tools interacting with the co-simulation
framework. Although the core API communication layer was
designed to be simple and generic, the application layer
API is intended to make it easier for generic applications of
different types to interact in a flexible fashion. The core layer
represents a generic low-level co-simulation. The application
layer adds meaning to it with the inclusion of support for
specific data types as well as user-defined units and types
associated with the value- and message-based interfaces.

4) Apps Layer
The apps layer builds additional functionality on top of the
application API and defines additional helper tools such
as players, recorders, probes, and a broker application. In
addition, there are support layers intended to allow inter-
operability between different co-simulation platforms such
as FMI. The intention is to allow generic tools that can be
used in a wide variety of situations with tighter HELICS
integration than regular user applications.

5) Domain Layer
When working with specific domains, it may be necessary
to define certain conventions in use. These conventions and
any APIs around them would live in the domain layer. These
could include things such as the naming conventions, con-
nection methodologies, unit conventions, and other types of
standards that may only be applicable to a small subset of
users (but could be highly useful to those users) and allow
tools to be swapped in and out with ease. A more detailed
description is given in Section III-E.

6) Management Layer
The upper layer of HELICS operates on the whole of the co-
simulation or set of co-simulations and is designed to help
manage large co-simulations in a sensible fashion. This in-
cludes common tasks such as debugging, data management,
and workflow tooling. Significant future effort is expected
in this area as co-simulations become more complex and
detailed with a greater number of simulation tool instances.

C. FEDERATE TYPES
A “federate” is defined as a specific instance of a simulation
tool. Multiple instances of a simulation tool (with different
input data or models) may be used in a given co-simulation,
and each are referenced as a unique federate. The application
layer defines a few specific federate types to more cleanly
separate the APIs and intent. For logical separation, the

application API differentiates “value federates,” “message
federates,” and “combination federates,” which, as the name
implies, uses both message and value federate constructs.

1) Value Federates
Value federates are intended to replicate connections between
federates on a physical level. Examples of the types of
data that would typically be exchanged as values could be
voltages, forces, positions, irradiance, etc. Because HELICS
value connections are attempting to represent a physical
reality, the connections are continuous (persistent), unidirec-
tional, have state, have a specific data type, and optionally can
be assigned a unit of measurement. (See Section II-D1 for ad-
ditional discussion on value interface characteristics.) Value
federates represent these value connections through specific
HELICS interfaces called “publications” and “inputs.” The
structure and definitions for a value federate are intended
to match the features of an FMU for co-simulation, and an
FMI-specific application is available to directly support co-
simulation FMUs. Value federates also support iterative loops
(or “superdense time steps” in the FMI nomenclature) to al-
low federates to converge their models and reach consistency
in any value connections.

2) Message Federates
While the value federate is targeted at applications and com-
ponents interacting at a direct physical level, the message
federate is intended to interact with federates simulating
a telecommunications or computer networking exchange.
Common examples are sensor measurements and control
signals. Message federates capture and define interaction
through data packets called “messages” which send data
through HELICS “endpoints.” These endpoints send and
receive data in discrete messages that are generated by a
federate, pass through the federation, and then are received
and used by a specific HELICS federate. No history of the
packets is maintained by HELICS, and it is not persistent the
way that a value interface is. HELICS acts as a courier for
messages between endpoints and not an auditor or logger of
those messages. See Section II-D2 for additional discussion
on message interface characteristics.

3) Combination Federates
While interactions can be defined in terms of HELICS value
or message types, some federates may need to use both. Com-
bination federates merge the two types and allow interactions
to be defined for via either type.

4) Callback Federates
In some cases, the operations of a federate is very well
defined and compact, and many individual copies of that
federate may be needed for a particular analysis. Examples
of this could be thermostats or EV charge controllers where
the control logic is simple and the number of user-defined
parameters are limited. In these kinds of cases, HELICS
provides a means of implementing the federate entirely using
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callbacks. The interactions of a federate are defined in terms
of callback operations and are executed by the core layer in a
continuous fashion, simplifying the interactions and allowing
large numbers of federates to be handled in a compact and
efficient manner. (Note that all callback operations run in a
single thread.) Callback federates may be implemented as
value, message, or combination federates.

D. INTERFACE TYPES
The actual data transfer in HELICS occurs through “inter-
faces”; interfaces are external communication ports on a
federate, allowing it to send messages and values to other
federates. Some represent the value-based interactions and
some represent the message-based interactions, as well as
some that enable the crossover interactions of the two types.
The core layer of HELICS defines the basic operations of the
interfaces, and the application layer gives further meaning
to the data transfer and tools to enable more structured and
simple interaction with them. Table 1 provides a comparison
of the key differences between value and message character-
istics.

TABLE 1: HELICS Value and Message Characteristics

Value Interface Message Interface
Metaphor Physical connection Packet communication

Data Types
Double, complex,
Boolean, vector,
string, int, raw bytes

String, raw bytes

Units Use and
conversion supported Not supported

Connections Targeted Targeted or addressable
Directionality Unidirectional Bidrectional
Connectivity 1-N or N-1 N-N
Timing Always immediate Delayable

Data Persistence Persists on
last sent value Deliver-and-forget

Filters Not supported Reroutable, modifiable

1) Publications and Inputs
Value federates interact through a publish-and-subscribe
mechanism: “publications” emit values and send them to “in-
puts.” Inputs subscribe to publications, or publications target
inputs—the connection can be defined from either the sender
or receiver. The specific content of the values is arbitrary and
includes explicit support for both generic data blocks (both as
raw bytes as well as JSON strings) and many common types,
such as floating-point numbers, integers, strings, complex
numbers, and arrays. HELICS provides strict type checking
between a publication and substation and will perform unit
conversion where applicable. The federate API also provides
functions to query if the value on an interface has been
updated since the federate last read it value, obtain the value,
and note the time of the update. Classes are also available that
encapsulate the interactions of a single input or publication.

2) Endpoints
Unlike value publication (which generally has no specific
destinations when defined), a message has a specific source,

destination, and delivery time. These messages could repre-
sent communication packets, events, or anything else that two
federates mutually understand. A message federate defines
“endpoints” that are the sources and destinations for the
message-based federate interaction. An endpoint may also
subscribe to a value-based publication, and HELICS will
generate and send a message every time the value is updated.
All messages must have a defined destination when sent,
although as a convenience for the user, a default destina-
tion may be defined for a given endpoint. This is called
“targeting,” and endpoints may be defined as “targeted” or
“untargeted.” Targeted endpoints specify a target or targets on
a per-endpoint basis. Untargeted endpoints may also specify
a message destination on a per-message basis.

3) Filters
Filters arose from a requirement to support communication
simulations at various levels of fidelity without requiring that
message federates alter their configuration based on the need
(or not) to use a filter. This concept requires the ability of
a filtering federate to insert itself into the messaging path,
transparently performing some kind of operation on received
messages before sending them on to their original destination
(or not). HELICS defines the concept of a “message filters”
(or often just “filters”) to support this functionality.

Each message filter is associated with specific sources
and/or destinations. For example, consider modeling the in-
teraction of an automatic generation control (AGC) system
with a generator. In the simple model, control signals are
sent as messages from the AGC controller federate’s endpoint
directly to the generator federate’s endpoint. A more complex
co-simulation may require that the full communication path
between the generator and controller be modeled. With the
message filter functionality, filters can be inserted to convert
the original message to a specific communication packet
format (e.g., TCP/IP), to send the packet through a full
communication network simulation, and to decode the packet
back to the raw signal the generator model itself understands,
all without changing anything in the generator or controller
federates. The HELICS message object structure itself is such
that it keeps a record of the original source and destination
endpoints as well as the most recent intermediate end point.
This structure allows for things such as message delays,
random loss, message translation, or full-stack communica-
tion simulation to be included in a co-simulation without
requiring existing federates to be aware of the individual filter
manipulations.

Filter operations are automatic, and no user interaction is
required once the filter has been associated with endpoints
on federates. HELICS includes a few low-overhead filter
federates that provide functionality such as fixed delays,
random delays, random message drop, message rerouting,
and message cloning. The APIs also allow for the creation
of a user-defined filter as a stand-alone federate (such as a
communication system model) or via callbacks.
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4) Translators
While the distinct operations and definitions related to value
and message federates are valuable from a conceptual point
of view, in practice there are times when message federates
need to interact with value federates, and defining new inter-
faces may not be possible. For example:

• data acquisition device that converts measurements (val-
ues) to a digital packet stream (messages)

• a control relay moves a physical control point (value)
based on information received over a network (message)

This conversion of HELICS interface types is simplified
through a HELICS “translator.” A translator has the role
of converting packet data to value data and vice versa. A
translator can be thought of as a combined endpoint, input,
and publication, and can be connected as such to all other
HELICS interfaces. Data sent to a translator through an
endpoint results in a publication on a value interface and
any publications to the input of a translator get sent out as
a message to one or more predefined destination endpoints.
Like a filter, all operations of a translator are automatic and
transparent to the other federates. Support is included for
binary and JSON based translators as well as custom user-
defined translators.

5) Queries and commands
In addition to the synchronized data interfaces, HELICS in-
cludes an asynchronous query mechanism (called “queries”),
allowing any HELICS component to ask questions of another
component. For example, a HELICS component may query
available publications or endpoints, or query the entire fed-
erations structure from the root broker. Queries are useful
for programmatically determining the state or configuration
of the federation (monitoring) as well as allowing federates
to reconfigure themselves in response to the state of the
federation.

HELICS also provides an asynchronous interface allowing
federates and brokers to send instructions to other federates
and/or brokers; this is called the “command” interface. Built-
in commands supported directly by HELICS (and thus all
brokers and federates) include remote logging and debugging
interfaces. Aside from these built-in commands, arbitrary
commands can be define by those creating the federates
and federation to allow for customized command-and-control
across their federation.

E. PROGRAMMING LANGUAGE BINDINGS
HELICS provides language bindings in a variety of popu-
lar languages and supports federations with heterogeneous
federates in this regard. The primary library is developed
in C++, and a C++ API is available making use of C++17
standards [21]. A C shared library can be built alongside the
c++ library to support applications requiring a simpler, C-
style interface and for alternate compiler support. APIs in
a number of programming languages are supported, namely
Python [23], Java [24], MATLAB and Octave [25], Julia

[26], and C#. Other language interfaces are straightforward
to develop because of the universality of the programming
languages’ support for the C interface. Due to the language’s
popularity, the Python API has a wrapper-based interface
which is very similar to the C API, and a more class-oriented
interface that provides the same API functionality as the C
API but operating in a more Pythonic way. A similar class-
oriented API is in development for Matlab.

F. LINKAGE TO OTHER CO-SIMULATION
FRAMEWORKS
Although the underlying core does not interact directly with
existing co-simulation standards such as FMI and HLA,
the application layer exposes interfaces for these standards.
Since the designs and experience with these standards had a
significant influence on the structure and design of HELICS,
many functions and features from these standards map di-
rectly to concepts and functions in the core and application
layers of HELICS. Many functions defined as a part of the
“FMUs for co-simulations” standard will map to the concepts
in the value federate through the FMU-specific application,
HELICS-FMI [27]. The “helics-fmi” application allows one
or more FMUs to be loaded and run as part of a bigger co-
simulation in an easy-to-use fashion that works like other
federates. Future enhancements are planned that will allow
HELICS federates to be wrapped as FMUs.

A HELICS federate can interact with an HLA based co-
simulation through a bridge federate [28]. HLA and HELICS
have different notions of data management that needs to be
bridged, and though each implementation of HLA is unique,
this pattern is expected to hold for most implementations.

III. IMPLEMENTING A HELICS FEDERATION
A. INTEGRATING A SIMULATION TOOL WITH HELICS
For a given simulation tool to be able to participate in a
HELICS co-simulation, specific API calls in the HELICS
core library must be incorporated in some manner into the
operation of the simulation tool. There are generally two
techniques for performing this integration: direct integration
or wrapping the simulation tool. The specifics of the typical
HELICS API calls necessary to effectively integrate the tool
are discussed in Section III-B as it is their appropriate inte-
gration that allows simulation tools to be used as a HELICS
federate in a co-simulation.

1) Direct Simulation Integration
Direct integration of HELICS by incorporating HELICS API
calls into a simulation tool’s codebase is only possible if the
source code of the simulation tool is available for editing. In
this case, it is possible to evaluate the operational architecture
of the simulation tool and identify the points in operation
where the appropriate HELICS API calls can be inserted.
For simulation tools with an existing model of time (e.g.,
simulation tools that progress through time and update their
model state at each time step), identifying the appropriate
points to add the HELICS API calls is generally possible
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and typically straightforward. This is also true whether the
tools march through simulated time with regular timesteps or
are more event-driven and simulate specific times based on
events that trigger an update to the system being simulated.

As an example, the part of the hypothetical source
code for a fictitious C++-based simulation tool called
“GridSimulator” is shown in Listing 1. In this code
you can see the headers for the “helics_msg” library,
giving visibility to important HELICS API calls such
as CombinationFederate(), requestTime(), and
HelicsSubscriptionEndpoint.getMessage(),
among others. Alongside these are internal API calls
that GridSimulator has defined for itself such as
model.setLoad() and model.runPowerFlow().
#include helics_msg.h

...
federate = new helicscpp::CombinationFederate(*config);
...
granted_time = federate->requestTime(t)
mesg =(*sub)->HelicsSubscriptionEndpoint.getMessage(ep);
...
model.setLoad(bus1, mesg)
pf_results = model.runPowerFlow(granted_time)
(*pub)->HelicsPublication.publish(pf_results.volt1);
...

Listing 1: Direct integration of the HELICS APIs into the
fictitious C++-based simulation tool GridSimulator.

2) Wrapper Integration
Wrapper integrations are typically required in two specific
cases: 1) the source code for the underlying tool is not
available, and control of the tool is only provided via an
API or 2) the underlying tool is more of a library of relevant
functionality rather than a full-fledged simulation tool and
needs supporting code to create actual simulation functions
(e.g., time advancement). In either case, the role of the
wrapper code is to act as a bridge between the core sim-
ulation tool and the rest of the HELICS federation. This
bridge wrapper is realized in a language that has support
for both the simulation tool’s APIs and the HELICS APIs
and is responsible for controlling the simulation tool while
facilitating the synchronization and data exchange with the
rest of the federation.

Listing 2 shows an example of the use of a Python script to
provide this wrapper integration under the assumption that
the fictitious simulation tool GridSimulator has an appro-
priate API with a Python library/module. Though there are
strong similarities to the APIs used in the direct integration
example shown in Listing 1; this sample code uses the public
APIs made available by both GridSimulator and HELICS.
The API provided by GridSimulator must be sufficiently
featured to allow the wrapper to do things like update model
state based on data received from the co-simulation fed-
eration, control the flow of simulated time in the model,
and extract information from the model to publish it to the
federation.
import helics as h
import gridsimulator as gs

...
while time < maxtime:

granted_time = h.helicsFederateRequestTime(time)
control_signal= h.helicsEndpointGetMessage(endpoint)
gs.set_load(model_obj, "bus1", control_signal)
pf_results = gs.runPowerFlow(model_obj, granted_time)
h.helicsPublicationPublishDouble(pf_results.volt1)

...

Listing 2: Python-based wrapper integration of the HELICS
APIs into the fictitious simulation tool GridSimulator.

As previously mentioned, if the underlying simulation tool
is more of a library than a fully formed tool, the wrapper
must also take on additional responsibility to create the nec-
essary functionality expected of this type of simulation tool.
MATPOWER [29] is a good example of this; MATPOWER
provides a library with API calls to formulate and solve a
variety of power system problems but itself has no sense
of time. To create a MATPOWER-based simulation tool,
the developer must add functionality to create and update
model state as a function of simulated time. (This has been
accomplished as a part of the HELICS project through the
creation of a MATPOWER wrapper [30].) When comparing
code in Listing 1 vs Listing 2, the former makes no mention
of time, implying that GridSimulator is managing this itself
while the latter includes an explicit while statement that
advances time and model state.

B. HELICS FEDERATE LIFECYCLE
Integration of a simulation tool with HELICS is necessary
to allow it to be used as a HELICS federate and is realized
through the process of calling the appropriate HELICS APIs
to move the federate through its lifecycle. The following are
the sequential progression of states that a federate is required
to step through, as shown in Figure 2 with each stage marked
by the use of one or more HELICS APIs. All federates in a
HELICS-based co-simulation go through this same lifecycle,
although the specific APIs used depend on the functionality
the federate provides. Sections III-B1, III-B2, III-B3, and
III-B4 discuss the details of each of these stages.

1) Creation
Federate creation is the process of registering an executable
as part of a HELICS federation (co-simulation) and con-
figuring the simulation time synchronization process and
data exchange interfaces; this defines the HELICS “creation
state.” The HELICS library provides APIs to allows these
configuration steps to be done programmatically. For sim-
ulation tools where the user does not or should not have
access to the source code, it is also possible to access the
same configuration details via an externally defined JSON
file. Both techniques are demonstrated in Listing 3. In cases
where information from other federates is required for defin-
ing the interfaces, the entry into “initializing mode” can
be done iteratively, allowing a state where all federates are
registered and requested initializing mode but some may be
returned to the “creation” state to add additional interfaces or
connections.
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Process starts

import helics

f = helicsCreateCombinationFederate(‘config.json’)

f.enterInitializingMode()

f.enterExecutingMode()

Synchronize with federation:

f.requestTime(t)

Receive data on inputs:

data = h.subscriptions[s].value

Update internal model:

Simulator runs to time=t

Send data on outputs:

h.publications[p].publish(data)

helicsFinalize(f)

helicsCloseLibrary()

Process endsProcess is killed

completeSimulator raises
an exception

reiterate or
advance time

1) Creation

2) Initialization

3) Execution

4) Finalization

FIGURE 2: Lifecycle of a HELICS federate
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fed = h.helicsCreateCombinationFederateFromConfig("config.json")
# OR
fi = h.helicsCreateFederateInfo()
h.helicsFederateInfoSetFlagOption(fi, h.

HELICS_FLAG_ONLY_TRANSMIT_ON_CHANGE, True)
fed = h.helicsCreateValueFederate("name", fi)
sub1 = h.helicsFederateRegisterSubscription(fed1, "pub1")
pub1 = h.helicsFederateRegisterPublication(fed1, "pub1", h.

HELICS_DATA_TYPE_STRING, "")

Listing 3: Two alternative methods of configuring a HELICS
federate during the creation stage of the federate lifecycle.

2) Initialization
Once registered with the federation and configured, the feder-
ate makes the API call helicsFederateEnterInitializingMode()

to enter initialization mode. Initialization mode exists to
help a federation prepare to begin the advancement through
simulation time. This may involve iterative data exchange
with other federates to reach a collective consistent state,
loading in historical or state data to initialize its internal
model, or simply waiting for other federates to do any of the
above. Federates may also use initialization mode to publish
values that will be available to all federates in initialization
mode or, for those not involved in iteration, at simulation time
0 in the main simulation step (execution mode, see Section
III-B3). It is not required that federates enter initialization
mode, and any that choose to skip it will have no visibility
to the activities taking place by federates that are using it to
initialize their models.

3) Execution
Once the federate has been created, all subscriptions, pub-
lications, and endpoints have been registered, and the fed-
eration initial state has been appropriately set, federates
enter the main co-simulation mode by making a call to
helicsEnterExecutingMode() . The HELICS simulation time

is set to zero upon entering this mode, and any values
published or messages sent during initialization mode will
be available to the federation upon entering execution mode.
helicsEnterExecutingMode() can be considered a barrier to

the beginning of the co-simulation proper. After making a
call to helicsEnterExecutingMode() , the main execution of a
given federate is blocked until all other federates on which it
depends also make the same API call. Typically the topology
of the data exchange between federates is such that all
federates must make the call to helicsEnterExecutingMode()

before any of them begin executing the co-simulation.
Though the exact structure of the HELICS API calls by a

federate is a function of both the software architecture of the
underlying simulator and the particular use case being run,
generally there is a four-step loop each federate runs as it
advances through simulated time. These steps are shown in
the "Execution" portion of Figure 2.

1) Synchronize with federation:
helicsFederateRequestTime() is used by federates to

request a specific time to which it will advance its
internal model, thereby bringing it into synchronization

with the rest of the federation. The requested time is
defined by the dynamics of the internal model and/or
the typical simulation execution pattern of the under-
lying simulation tool. For example, a particular tool
may have a strict timestep of one second and expects
its model to be updated this frequently. Alternatively,
the model may be more stateless by nature and only
need to update when one of its inputs changes.
Though a federate may request a given time, HELICS
may grant an earlier time if there is new data on any
of the input interfaces the federate has defined. It is the
responsibility of the federate to determine what it will
do with these inputs (e.g., update its internal model,
ignore them), and there are configuration options to
help manage these early time grants to allow for more
computationally efficient federate operation.

2) Receive data on inputs Once granted a time, a federate
will typically check value inputs and message end-
points to collect any new data that defines the current
state of the rest of the federation using APIs such as
helicsIntGetDouble() , helicsInputGetJSON() (value

interfaces) and helicsEndpointGetMessage() (message
interfaces). These are effectively the boundary condi-
tions of the federate that intersect or overlap with the
rest of federation and contain the latest state data sent
by them.

3) Update internal model Given the federation state at
the federate’s interfaces, it is likely the federate now
has an inconsistent internal state with these boundary
conditions as defined by the information it just received
from the rest of the federation. To resolve this, the
federate will typically recalculate the state of its inter-
nal model using these new boundary conditions. This
effectively brings the federates internal model up to
date with the rest of the federation as of the granted
simulation time. As these are processes internal to the
federate and its model, there are no relevant HELICS
APIs for this process; instead, tool-specific APIs and
functionality are typically used.
For example, a distribution system federate may have
an input that represents the substation voltage as de-
fined by a bulk power system federate. When the bulk
power system federate solves and publishes out a new
voltage for the substation, the distribution system fed-
erate will see that change, update the substation voltage
in its internal model, and re-solve the distribution sys-
tem powerflow. This brings the distribution system’s
internal model (e.g., line flows, nodal voltages) into a
consistent state with the substation voltage.

4) Send data on outputs Once the internal state
has been updated, the federate will send out a
subset of its internal state variables to the rest
of the federation using HELICS APIs such as
helicsPublicationPublishDouble() (value interfaces)

or helicsEndpointSendMessage() (message interfaces).
The specific variables that are distributed are those
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defined in by the configuration of the federate and are
generally boundary conditions for other federates.

Given the necessarily circular nature of the dependencies
in the data exchange of the federates, it is typical for the
publication of values from one federate to trigger an update in
another, which in turn publishes new values back to the first.
Depending on the analysis requirements and the capabilities
of the federates involved, this circular dependency can be
resolved by the federates continuing to publish, get new in-
puts, recalculate their internal model and publish again until
a sufficient degree of consistency has been reached between
the necessary federates. This process is called “reiteration”
or “co-iteration,” and HELICS provides APIs to help enable
this convergence.

4) Finalization
Once the federate has completed its contribution to the co-
simulation and simulated all necessary time, it needs to
close out its connection to the federation using the API
helicsFederateFree() , signaling to the core and brokers that

the federate is leaving the co-simulation. Finally, once the
federate has completed finalization, helicsCloseLibrary() is
called to cleanup and close the HELICS library.

C. FEDERATION TOPOLOGIES

FIGURE 3: Single-broker federation

FIGURE 4: Broker hierarchy with multi-broker to span
HELICS core types

HELICS supports a distributed architecture for co-
simulation that allows for HELICS federates to exist and run
in distinct computing environments on different computing
hardware (which may be in very different geographic lo-
cations) as long as the communication protocol among the
hardware is supported by the HELICS core. This allows for
the creation of hierarchical co-simulation topologies linked
together by HELICS brokers.

In order to run a HELICS federation, there must exist at
least one HELICS broker that can communicate with all the
federates, at least indirectly; this is called the “root broker”.
Figure 3 shows the most commonly used “1 broker” ⇐⇒
“N federates” architecture. It is also possible to set up a
co-simulation that uses “1 broker” ⇐⇒ “M sub-brokers”
⇐⇒ “N federates” as seen in Figure 4. Doing so places
a broker over a set of the federates, with federate groups
typically defined by a common computing environment.
This layered architecture can can be extended to support an
arbitrary number of layers in the hierarchy. For example,
one federate group may all be on a particular institution’s
high-performance computing cluster, while another is on a
separate server at the same institution, while a third is on
the laptop of an entirely separate institution, with the root
broker running in a cloud instance. Each local broker allows
for low-overhead communication between its federates while
also supporting communication to the federation as a whole
as needed. Ideally, federates under a single broker are most
likely to need to exchange data with each other and less likely
to need to exchange data with those under other brokers, be-
cause the communication overhead is higher. Careful design
of the broker hierarchy can help mitigate slowdowns due to
network latency.

The segregation of federates under any number of brokers
also allows for explicit configuration of each sub-federation
to accommodate any particular networking or communica-
tion challenges particular to a given computing environment.
For example, looking again at Figure 4, the portion of
the federation operating in a high-performance computing
environment may want to use that cluster’s available MPI
hardware and thus use the HELICS MPI core. Those that
are running in a single server may all be written using the
Boost library and thus are able to use memory-based sharing
in the IPC core, while those on the laptop may just use
the default ZMQ core. HELICS is able to bridge these sub-
federations through the use of a “multi-broker” at the root
broker, allowing for more optimal data exchange for each
computing environment.

D. HELICS SUPPORTED SIMULATION TOOLS
Though the immediate application of HELICS is in power
system applications, HELICS is a general co-simulation plat-
form and can support data exchange between a variety of
simulation tools. Figure 5 shows many of the wide range
of tools with HELICS support (currently or planned), while
the following section highlights some of the most commonly
used tools that are known to have HELICS support and have
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been used in one or more demonstrations or studies.

FIGURE 5: A wide range of simulation tools with known
HELICS interfaces

• Transmission
-- PowerWorld - Steady-state power flows and opti-

mal power flows in [31]
-- P/SSE - Transient studies in [17]. Steady-state and

electromechanical dynamics implemented through
PyPSSE [32]

-- MATPOWER/MOST - Steady-state power flows,
optimal power flows, multi-period optimization
[30]

-- Andes - Python-based power system simulation
tool with many built-in models [33] used in [34],
[35], [36]

-- PYPOWER - Steady-state power flows and optimal
power flows is a supported tool in TESP [37]

-- SAInt (Electric Network) - Steady-state power
flow and optimal power flow [4]

• Distribution
-- GridLAB-D - Steady-state [38] and transient stud-

ies [17]. Examples of use include large-scale trans-
active energy studies [39], microgrid transactive
energy studies [38], smart grid communication
studies [40] and [41], microgrid DER integration
studies [42].

-- CYME - Steady-state and time series implemented
through CYMEpy [43]

-- OpenDSS - Steady-state and time series analysis
implemented through PyDSS [44]. Examples with
PowerWorld in steady-state [31] and transportation
in BEAM [45].

• Communication
-- HELICS built-in filters for delays, dropped pack-

ets, etc. E.g. evaluating transmission impact of

AGC delays from DERs [34] and EV smart chargin
[35]

-- ns-3 - Evaluates impacts on distribution system
operation due to communication effects [46]

-- Omnet++ - HELICS integration with supporting
examples [47]

• Natural Gas
-- SAINT - Dynamic and steady state hydraulic gas

simulations coupled with grid in [4], [48]
-- NGTransient - Evaluates natural gas pipline

physics [49]
• Other

-- BEAM - Transportation simulator, used to explore
impacts on distribution in [45]

-- Caldera - Provides EV charging profiles for inte-
gration with power system simulators [50], [51]

-- OpalRT - Real-time power system simulator used
for hardware-in-the-loop in [52], [53]

-- EnergyPlus - Multi-zone commercial is a sup-
ported tool in TESP [37]

-- Ochre - Residential model building simulator [54]

E. STANDARDIZED INTERFACES
To assist in the interchangeability of similar simulation tools
in a HELICS-based co-simulation, a few standardized use
cases and interface definitions have been developed. For
example, one use case that has been defined is a steady-
state transmission and distribution system powerflow. This
use case makes the following data-exchange requirements
between the two federates:

• Transmission Required Interfaces:
-- Inputs:

∗ Distribution system loads at all points of com-
mon coupling

-- Outputs:
∗ Transmission system bus voltages at all points

of common coupling
• Distribution Required Interfaces:

-- Inputs:
∗ Transmission system bus voltages at all points

of common coupling
-- Outputs:

∗ Distribution system loads at all points of com-
mon coupling

Although it may seem redundant for simply defined use
cases such as these, the mirrored definitions of the interfaces
allows the developer of the use case to confirm that every
input required by one federate has that met by an output from
another federate. Furthermore, each of the input and output
interfaces calls out a specific interface definition associated
with each federate type (not shown in the definition above).
For example, the distribution system federates load output
interface definition includes the following:
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• HELICS interface type: value
• HELICS interface name: pcc.<GUID>.pq
• Units: MVA
• HELICS data type: complex vector with a single com-

plex value for each phase (typically three phases).
• Tags (metadata): phases
The GUID in the interface name is intended to be related

to names from the model in question and thus allows the
definition to be applicable beyond any particular model file.
HELICS supports metadata tags that can be associated with
any interface; in this case, the “phases” tag is used to indicate
which phases are represented in the interface and allows the
receiving federate to comprehensively understand the data
that is being sent. For example, queries on the tags associated
with this interface will indicate how many elements are in
the complex vector that is being sent by the distribution
federate and which phases correspond to which elements.
The standardized definition of the phases tag for this purpose
has also been defined.

The standardization of the interfaces also makes it clear
when a federate may have to do some additional work
to support a given use case. For example, the distribution
system load interface at the point of common coupling with
the transmission system federate will produce a three-phase
unbalanced load as a vector of complex values. It is common
for transmission system simulation tools to only use positive-
sequence values in calculating their powerflows. The stan-
dardized interface definition makes it clear that there must be
a conversion from three-phase unbalanced to balanced power
before applying this value internally in the simulation tool.

F. MANAGING HELICS-BASED CO-SIMULATION
Depending on the number of federates in the co-simulation,
launching it may or may not be a challenge in and of itself.
Some tools can only be run from a GUI, and others only
on the command line. As the number of federates increases,
the chore of launching the co-simulation becomes more
time consuming, and simply managing its operation becomes
more complex. The HELICS teams has developed a number
of tools to help with these challenges.

1) Co-simulation Launching with “helics_cli”
“helics_cli” is functionality distributed as a part of Py-
HELICS (the Python language binding) that provides several
useful functions. The most popular of these is the ability
to launch a co-simulation, collect log messages, and write
them out to log files. “helics_cli” takes a JSON file as an
input, the contents of which define the federates to launch,
which command-line calls to execute when launching them,
and if it should generate a broker for the co-simulation or
let another process handle it. After writing this JSON file,
launching the co-simulation is handled with a simple single
command: helics run --path=<path to runner JSON> . If any
federate crashes during the co-simulation, “helics_cli” en-
sures all other federates close down cleanly as well. Though
only applicable for federates that can be launched from the

command line, it is the preferred method of launching a co-
simulation.

2) Co-simulation Data Collection with “helics_cli”
In addition to the launching functionality, “helics_cli” pro-
vides the ability to attach an observer federate that collects
all the value and message outputs and writes them to a
sqlite database. By default, the observer collects all output
data from all federates, but this can be a useful artifact in
debugging as well as a means of sharing results with others
by simply sharing the database file. sqlite is not intended for
large amounts of data and will not be appropriate for all co-
simulations. Additionally, adding an observer to a federation
may produce some degree of co-simulation slowdown if the
observer must write large volumes of data to the database and
must contend with network and/or local disk delays.

3) Co-Simulation Management
HELICS provides two methods of interacting with a running
co-simulation, and both use web technologies. The first is
a REST API that the HELICS broker provides; it offers a
set of queries that can be made to understand the topology
and state of the co-simulation. The API includes access to
any queries allowed in the system, as well as commands for
debugging and federation control II-D5. Brokers can also be
created through the API as part of the Broker server, which
can generate brokers on demand.

The second method is through “helics_cli” . “helics_cli”
provides a web-based GUI with additional functionality.
When launched, the GUI allows the user to see the compo-
sition of the federation, both in terms of federates as well
as their interfaces, launch the co-simulation, pause the co-
simulation, and evaluate the simulation state of a federate as
well as the most recent values and messages being sent by
the federation. Currently, the web GUI uses the “helics_cli”
observer capability allowing all these values to be written out
to an sqlite database; this database can be re-loaded by the
web GUI at a future time to inspect a co-simulation that took
place in the past. At this time, the web GUI is best suited
to smaller federates with more limited federate and interface
counts.

IV. APPLICATIONS OF HELICS-BASED CO-SIMULATION
A. OVERVIEW OF APPLICATIONS
Flexibility is one of the key requirements in the design of
HELICS [55] (see Section II-A), and it can support a wide
range of co-simulation use cases across many different fields.
This section highlights a number of past and ongoing efforts
using HELICS to demonstrate this breadth and provide a
starting point for readers who might be working on similar
project areas.

Given HELICS’s roots as a transmission-distribution-
communications-markets simulation framework for electric
power systems [12], many of the example applications
come from power grid use cases such as transmission-
distribution interactions, advanced grid control schemes, and
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even hardware-in-the-loop testing. However, a wide range
of other applications that involve co-simulation beyond the
power system can also readily be supported in HELICS.
These include multi-infrastructure applications and other ap-
plications as highlighted below. In addition, a much wider
range of applications are possible, and future researchers are
encouraged to use HELICS in more diverse ways and apply
it to even more fields.

B. TRANSMISSION-DISTRIBUTION INTERACTIONS
The continued increase in deployment of distributed energy
resources (DERs), electrification of end uses—especially
transportation—and increased opportunities for demand-side
resources to participate in wholesale markets (e.g. FERC-
2222 [2]) have all created an unprecedented need to better
understand and simulate the interactions between the trans-
mission and distribution portions of the electric grid. This
includes everything from market-timescale interactions to
questions around higher-speed engineering phenomena such
as frequency response or electromechanical stability.

1) TSO-DSO interactions
a: Price-responsive demand
A number of past co-simulation efforts have looked at the
interactions between wholesale electric power markets and
demand that responds to price signals. For example, [56]
compared simulations using transmission only (with demand
price elasticity) versus using a full transmission and distribu-
tion co-simulation with individually price-responsive loads.
They found that the transmission-only simulation failed to
capture key oscillations and differences in load profiles ver-
sus fixed demand. Moreover, the transmission-only simula-
tion introduced some erroneous price spikes that were not
present with the more detailed transmission and distribution
co-simulation.

In a separate and larger study, Hansen, et al. [14] evaluated
integrated wholesale and retail markets with price-responsive
DERs for 15,000 distribution systems with over one million
DERs. In particular, the study found that at high levels of
real-time energy market participation by DERs, it is best for
DERs to bid their demand into wholesale energy market. If
instead DERs simply respond to real-time prices as they clear
(so called “prices-to-devices”), oscillations in physical power
system and in market clearing price develop (see Figure 6).

b: Transmission-Distribution-Market Platforms
Given the interest in the interactions between wholesale
and retail markets, multiple testbeds that pre-couple a fixed
set of simulation tools have been developed, each with a
somewhat distinctive objective. Here we introduce three such
efforts. Rather than competing with HELICS, these frame-
works provide a higher level of abstraction. Notably, two
were originally developed with semi-custom co-simulation
frameworks and have since been adapted to use HELICS
for enhanced coordination and more modular interfaces to
component tools.

FIGURE 6: Results from [14] showing the impact of DER
participation in an integrated transactive wholesale-retail
market when DERs do and do not bid their demand into the
market. Without bidding, oscillations develop in the power
system and market clearing price.

The Integrated Grid Modeling System (IGMS) [10] rep-
resents an early example of this type of platform. It cap-
tures ISO-to-appliance scale simulation by bringing together
highly detailed wholesale market operations in FESTIV [57]
with transmission-scale power flow in MATPOWER [29]
and dozens to thousands of distribution system simulations
each running in a separate instance of GridLAB-D [58]. In
this context, FESTIV provides multiple nested timescales
for wholesale markets including day-ahead and intra-daily
security-constrained unit commitment, real-time security-
constrained economic dispatch, and automatic generator con-
trol (AGC) estimation to capture actual seconds-scale com-
mands and (imperfect) response of generators to meet regu-
lation and other reserve product demands. GridLAB-D pro-
vides both distribution-scale 3-phase unbalanced power flow
and simplified models of buildings with end uses, including
thermal models for weather dependence, a wide-range of
individual appliances, and mechanisms for price-responsive
control.

Originally, IGMS used a custom Python and MPI-based set
of scripts to orchestrate the co-simulation [18], and the chal-
lenges with such an approach helped to inform the design of
the HELICS platform. Later, the IGMS platform was ported
over to use HELICS for co-simulation instead, resulting in
faster performance and significantly improved modularity
and scalability.

The Transactive Energy Simulation Platform (TESP) [59]
was developed to provide a means of evaluating transactive
energy mechanisms using a common suite of simulation tools
such as GridLAB-D, PYPOWER, and Energy+. Users build
their own custom transactive agents operate the system per-
forming tasks such as DER management (e.g. HVAC systems
or EV chargers), running retail markets, or operating the
distribution system. TESP has been used for several studies
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FIGURE 7: Based on the comprehensive bulk power system
and distribution system modeling, simulation, and analysis in
[39], the flow of money from customer to generator in today’s
power system can be more easily summarized.

and includes sample agents, models, and datasets from these
studies as starting points for new users of the platform.
Further details can be found in Section IV-D6.

Recently, TESP was used to implement an integrated
wholesale-retail day-ahead and real-time energy market con-
trolling HVACs, electric water heaters, and batteries in a
study called "Distribution System Operator + Transactive" or
"DSO+T". This study comprehensively evaluated the impact
of widespread adoption of a transactive energy system in
ERCOT, looking at both the technical and economic impacts
under the ERCOT power system as it exists today and in a
hypothetical high-renewable future. Full results can be found
in [39]. Figure 7 shows the flow of money from consumer
to generator; this perspective would only be possible through
the fully integrated bulk power system and distribution sys-
tem modeling with wholesale and retail market operations
enabled by co-simulation.

Another recent platform [54] focused on high-fidelity sim-
ulation of the distribution-level aspects of transactive energy
schemes, notably including those based on distributed ledger
approaches such as blockchain. Here, detailed home models
are included with a combination of operational, controllable,
high-resolution residential energy (OCHRE) simulators for
each home and the foresee™ home energy management
system (HEMS) to coordinate a home-level, rather than
individual appliance, participation in the transactive mar-
ket. The HEMS also coordinates DERs including solar and
storage. OpenDSS provides a simulation of the distribution
power flow and utility equipment. A generic distributed-
ledger smart-contract mechanism then links these to various
market configurations for comparison.

A recent study with this framework compared a fairly tra-
ditional double-auction market clearing (similar to wholesale
electricity markets) to peer-to-peer approaches and found that
in nearly all cases, both markets provided customer energy
cost savings relative to net metering tariffs. For the simulated
utilities, both markets provided increased revenue with high
DERs, but lower revenue with low DERs, compared to net
metering. Of these, the double-blind market with high DERs
was noteworthy for providing a modest increase in utility
income while increasing cost savings for a large fraction

FIGURE 8: Results from [60] showing difference between
using full-fidelity (dashed lines) and simplified (solid lines)
distribution physics models in an integrated wholesale-retail
transactive system.

of customers. Moreover, every customer on the feeder (in-
cluding those without DERs) saw cost savings in all cases
relative to the self-consumption-favoring tariffs being rolled
out in some states. Additional results along with detailed
descriptions of the co-simulation implementation including
timing can be found in [54].

c: Improving TSO-DSO co-simulations
Some past efforts have also looked into ways to enhance
TSO-DSO co-simulation performance or accuracy. For ex-
ample, [60] developed a simplified representation of price-
responsive DERs in an integrated wholesale-retail transactive
system. These analysis typically use co-simulation to bridge
the physical and market models in wholesale (transmission)
and retail (distribution) systems. The simplified model re-
duced the data transfer over the co-simulation bus and the
computational load in modeling the physics and market be-
havior in the distribution system.

For improving accuracy and real-world applicability,
it is also important to expand the research-oriented co-
simulations above—which typically duplicate one or more
test feeders and connect them directly to the transmission
bus—to use full-scale, heterogeneous distribution system
models that capture (or mimic) the large diversity and full
topology seen in the grid. Ideally such underlying data would
also capture substations, sub-transmission, and other parts
of the grid often left out in the examples described above.
Reference [31] represents a start in this direction by using
HELICS to co-simulate hundreds of synthetic separate dis-
tribution feeders, substation, and subtransmission systems
in OpenDSS connected to synthetic transmission systems
running in PowerWorld.
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d: Future TSO-DSO Directions
In addition to further using such methods to explore future
grid scenarios and inform related decisions, there remain a
number of opportunities for future research extensions in this
application area, including:

• Working out challenges associated with convergence at
the transmission-distribution interface. In this area, past
work has shown that for some applications, taking ad-
vantage of co-iteration to ensure consistency of bound-
ary conditions can play an important part in simulation
accuracy. However, this additional back and forth can
not only can be slow, but also may never converge.
Ongoing work is looking at ways to speed convergence
through approaches such as gradient descent and heavy-
ball heuristics to overcome convergence challenges par-
ticularly with electrically linked/looped distribution sys-
tems connected to multiple transmission nodes

• Integrating co-simulation into industry practice. A
particularly promising idea in this space would use
HELICS to enable operators of two parts of the grid
to conduct synchronized simulations without sharing
proprietary models. For example, an independent sys-
tem operator (ISO) could run time-series simulations of
upcoming market operations using their own tools and
link with HELICS through the Internet to distribution
simulations run by one or more local utilities. ISO New
England is an early adopter of HELICS and has begun
using HELICS in an exploratory fashion to help under-
stand the impact of distribution load characteristics on
bulk power system transient response.

2) Co-simulation With Faster Dynamics
In addition to the typically quasi-steady-state timescales of
TSO-DSO interactions described above, the growth of DERs
in general, and in distribution-connected inverter-based re-
sources (IBRs) requires careful coordination at electrome-
chanical dynamics (and faster) timescales. Here again, co-
simulation can be useful for scaling, automation, integrating
the effects of communication latency on control-schemes,
and more.

GridLAB-D’s motor dynamic models and inverter models
support traditional transient analysis with a number such
studies. [61] Coupled PSS/E with GridLAB-D to evaluate the
impacts of a bus-fault event, comparing the performance of
the high-inertia induction motors (transmission-connected)
and low-inertia induction motors (distribution connected). A
similar study in [62] looked at the performance of IBRs when
operating as grid-forming inverters, showing dramatically
improved response to a transmission-connected-generator
trip, particularly at very high penetrations (see figure 9).

Recent work with the Cyber-Physical Dynamic Simulation
(CPDS) testbed highlights this potential with a focus on fre-
quency response by DERs. [63] describes this framework’s
use of ANDES [33] as an open-source transmission-scale
dynamics simulation platform coupled through HELICS to
multiple instances of OpenDSS. This work also validates the

FIGURE 9: Results from [62] showing the impact of inverter-
based resources on transient response in a HELICS-based co-
simulation.

co-simulation vs. a combined, single-tool model showing a
very close match. It further highlights how the co-simulation
computation time is nearly identical for the small test sys-
tems while also scaling well (much less than linearly) to
much larger-scale systems (e.g., 2,000 transmission nodes
and 1 million distribution nodes) through the parallelization
enabled by the HELICS-based co-simulation.

In addition, co-simulation has been used to automate full-
interconnect scale dynamic simulation in a real-time context
within an ISO-like energy management system (EMS) frame-
work. Specifically, in [64], HELICS was used to automate
the updates to a commercial eTerra EMS system in conjunc-
tion with an online transient stability analysis tool (TSAT)
developed by PowerTech to evaluate the potential to use the
composite load model within WECC-wide on-line stability
analysis.

C. RESILIENT DISTRIBUTION SYSTEM MODELING
A resilient distribution system (RDS) uses local resources,
such as customer-owned solar or community-owned battery
storage, to prepare for disturbances and more rapidly recover
from system events—for example, by linking hospital back-
up generators and community solar to extend the operational
time of the hospital during a disaster. This requires new
control and communication systems, sometimes aggregated
into microgrids, that can either provide services to or operate
independently from the bulk system. This coordination, both
between the bulk system and RDS or within the RDS, is
being tested in simulation prior to deployment to maximize
performance and integration of DERs.

CleanStart DERMS uses HELICS to evaluate the potential
for achieving black start and restoration objectives through
ad-hoc microgrids powered by DERs [65]. The goal is to
implement a DER management system that can start a mi-
crogrid after an outage, then slowly re-energize the rest of
the system by integrating additional DERs and nearby gen-
eration. Coupled models of distribution, sub-transmission,
and communication systems, along with multiple dispatch,
restoration, and control layers, are being tested to identify
issues and improve the effectiveness of the control systems.
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Communication layers are implemented to understand the
robustness of the system to lost or limited data, assuming that
the system will need to operate during extreme conditions.

Co-simulation was used to evaluate the performance of
a resilience-based transactive system for coordinating cen-
tralized control and distributed field devices in partnership
with Duke Energy. Operations during “blue” sky and “gray”
sky conditions were evaluated to determine the effectiveness
of the control design in conditions that are challenging to
replicate in the field. The Duke-RDS project was a proof of
concept that successfully demonstrated that coordination of
distributed assets, using existing commercially off-the-shelf
relays and open-source software, can produce a more flexible
system [66].

The National Renewable Energy Cooperative (NRECA) is
using HELICS to support machine learning for energy theft
detection [67]. To do so, NRECA built distribution system
models connected to agents that control loads in the distri-
bution system to simulate energy theft. These simulations
generate large-scale datasets that in turn are used to train
models using machine learning. Using HELICS to link the
power system models and the energy-theft agents allows
the location and behavior of the energy theft to be easily
modified, allowing the creation of large, robust datasets that
provide a better training environment for machine learning.
This higher-quality training produces higher-quality detec-
tion models.

D. ADVANCED COORDINATION AND CONTROL
SCHEMES
It is expected that advanced control systems will continue to
be integral to the growth of the future power system, partic-
ularly in light of high penetrations of distributed resources.
These controls will often cross traditional boundaries from
behind-the-meter building controls to distribution systems
to transmission operators, and will include communication
systems operated by a variety of owners. It is important to
understand how all of these new controls will interact with
each at the system scale to ensure stability, cost effectiveness,
and the desired outcome. Here again, co-simulation can help.

1) CyDER
In one example, the increasing complexity of transmission
system interactions makes it helpful to automate the inte-
gration of data from multiple sources into Energy System
Management applications. The also applies at the distribution
level for management of DERs. The Cyder project [68] used
FMI modules to develop a plug-and-play co-simulation for
simulating operation and control in high-penetration DER
scenarios and was an early test case for FMI capabilities
within HELICS.

2) Citadels
The Citadels project is a US Department of Energy (DOE)
Grid Modernization Laboratory Consortium (GLMC) project

that was designed to increase operational flexibility be-
tween multiple microgrids using peer-to-peer control over
an OpenFMB messaging bus through a consensus design
algorithm on commercial hardware. To test the algorithms
before deployment on the demonstration hardware, a power-
communication-control co-simulation was developed to eval-
uate the performance of the microgrid and device control
agents over a variety of scenarios (see Figure 10 for a fed-
eration architecture diagram). HELICS linked GridLAB-D,
ns-3, and custom control agents developed in Python to test
variations on distributed optimal power flow and collabora-
tive autonomy algorithms to maximize DER utilization, both
under normal operations and with degraded communications.
By utilizing the co-simulation platform, issues such as false
convergence due to communication delays, synchronization
errors, and overall algorithm efficiency were addressed be-
fore moving to a full hardware testbed emulator [69].

FIGURE 10: Federation architecture from [69] showing the
connection between GridLAB-D modeling the power system,
Python load device agents, the communication system mod-
eling in ns-3, and Python microgrid agents.

3) Autonomous Energy Systems
Autonomous energy systems (AES) use distributed hierar-
chical controls to manage very large numbers of DERs and
other resources using nested cells to enable effective local
management and reduced data needs for larger-scale coordi-
nation [70]. HELICS has been used extensively in evaluating
and refining the algorithms and architecture for AES control
schemes [71]. This includes both large-scale simulation of
the entire San Francisco Bay area with millions of control-
lable DERs as well as detailed algorithmic development such
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as evaluating communication delay constraints for primal-
dual control schemes [72], [73]

4) GridAPPS-D
GridAPPS-D is an advanced distribution system management
platform largely developed and maintained by PNNL [74].
The platform allows the development and evaluation of var-
ious distribution management applications and evaluation of
their impacts on locally managed simulation models. Co-
simulation via HELICS is an essential tool in the platform
as it allows the various controllers and applications to be
dynamically deployed on the existing models. This degree
of modularity gives GridAPPS-D flexibility and versatility
to experiment and evaluate new distribution system manage-
ment techniques and technologies. Figure 11 provides a high-
level look at how GridAPPS-D is envisioned as a platform
to facilitate an ecosystem of interoperable distribution sys-
tem management software applications for utilities, solution
providers, and researchers to support an advanced multi-
stakeholder, multi-objective grid.

FIGURE 11: High-level overview of the architecture of
GridAPPS-D [74] and its role as a platform to facilitate an
ecosystem of interoperable distribution system management
software applications for utilities, solution providers, and
researchers.

5) GO-Solar
The Grid Optimization with Solar (GO-Solar) project [75]
developed a novel multi-part control approach that com-
bines predictive state estimation–through matrix comple-

tion and multi-kernel learning–and on-line multi-objective
optimization–using voltage-load sensitivity to guide a high-
speed single-step gradient with linearized power flow. To-
gether, these can efficiently manage extreme penetrations of
solar and other DERs using only a few measurement points
and only a few control nodes. HELICS was used to test this
multi-part control scheme at scale as part of a large-scale in-
tegrated transmission-distribution operational co-simulation
with more than 400 real-world feeders covering the entire
island of Oahu. HELICS was also used to test the algorithms
with more than 90 hardware devices through power hardware
in the loop to explore the impacts of actual device behavior
[52], [53].

6) TESP
The Transactive Energy Simulation Platform [59] was de-
veloped as a means of allowing designers of transactive
energy systems to more readily evaluate their performance.
Such systems are generally multi-domain, frequently with
modeling of the transmission and distribution systems both
as power delivery networks but also as market operation
environments. Detailed modeling of customer loads is often
required to allow minute-by-minute control actions to be
taken. TESP provides an integration of suitable tools for
modeling transactive environments such as GridLAB-D for
distribution systems, including distributed generation and
residential thermodynamic modeling [76], PYPOWER [77]
and AMES [78] for transmission systems, Energy+ for large
commercial models [37], ns-3 for communication system
modeling of control and coordination signals [79], and a
collection of Python agents that manage transactive loads
and implement portions of the transactive markets. TESP
has been used to perform a number of analyses, including
an initial demonstration of TESP capabilities [80] (see Fig-
ure 12 for an overview of the co-simulation data-exchange
topology), a consensus-based fully-decentralized transactive
mechanism [38], and the previously mentioned ERCOT-scale
evaluation of an integrated retail and wholesale real-time and
day-ahead energy market [39].

FIGURE 12: Overview of the co-simulation data-passing
topology used in one of the initial use cases (see [80]) for
PNNL’s Transactive Energy Simulation Platform [59].
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E. CYBER-PHYSICAL: COMMUNICATIONS, SECURITY,
AND MORE
The “smart grid” is fundamentally defined by the expansion
of both communication and automation in the power system.
Systems and components that were locally autonomous or
completely disconnected from management systems of the
power system are and have been connected, allowing for
new power system management techniques. This newly ex-
panded and connected network introduces new complexities
and potential vulnerabilities; communication systems are not
always reliable, distributed automation throughout the power
system can fail or behave in unanticipated ways, and mali-
cious actors have new avenues to compromise normal power
system operation. With the growth in the smart grid over
the past decade there has also come a need to perform new
analysis the bridge the cyber and physical domains, and co-
simulation is a primary tool for performing such analysis.

A number of efforts are underway to develop structures
and systems to model cyber-physical interactions between
the power grid and communication networks. For example,
the Agile Co-simulation for Cyber Energy System Security
(ACCESS) [81] seeks to understand cyber-related system
impacts on infrastructure systems including gas and grid.

Other efforts take advantage of the various ways HELICS
supports introducing communications into co-simulations.
For example, the CPDS project [34], [63] described earlier
uses HELICS’ built-in filters to introduce delays into the
communication stream. In contrast, [82], [83] integrates a full
packet-level communication simulation using ns-3 to evalu-
ate the detailed trade-offs among various low-level commu-
nication protocols as part of a hybrid home/grid coordination
control scheme.

1) Microgrid Control
Microgrids as a resilience strategy (and more generally as a
load and DER coordination strategy) have been studied for
over a decade, and the growth of inverter-based resources
(IBRs) has created both the possibility of viable islanded op-
eration as well as complexity in coordinating local generation
and load. Co-simulation provides a way of evaluating com-
plex control and coordination mechanisms and strategies by
linking high-fidelity power system models with controllers
defined in Python or MATLAB.

In [41], a test framework for microgrid control is de-
veloped to demonstrate the adverse impact of non-ideal
communications on the dynamic stability of networked mi-
crogrids connected to a centralized microgrid controller by
using physical grid, communication, and control models (see
Figure 13). [13] extends this further and evaluates the impact
of different communication technologies, network structures,
and media on the operations on an islanded microgrid using
a battery energy storage system to offset the loss of variable
generation. Ref. [38] implemented a consensus-based trans-
active system that required high-frequency communication
between participants. To aid in the development of a system
robust to communication system behavior, native HELICS

filters were used to replicate the effects of communication
system delays and dropped packets (see Figure 14).

(a) Microgrid frequency under ideal communications

(b) Microgrid frequency under non-ideal communications

FIGURE 13: Results from [41] showing the impacts of
frequency management in a microgrid when communication
system impacts are considered.

2) Wide Area Control
[84] as a part of NAERM (see Section IV-F) implemented a

wide-area frequency controller with remote frequency mea-
surements passing through a communication system simula-
tor prior to reaching the controller. The analysis showed that
as delays in the communication network increased the ability
of a standard frequency controller to manage the system
frequency failed, resulting in system separation.

F. MULTI-INFRASTRUCTURE INTERACTIONS
The power system is steadily becoming more connected and
reliant on resources outside of the direct control of utility
operators, driven by consumer-owned DERs that provide
resources at the edge of the grid, hundreds of generators that
connect to a single interstate natural gas pipeline, and intense

18 VOLUME 1, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3363615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hardy et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 14: Results from [38] showing the difference in
DER dispatch in a transactive system with controllers that
are susceptible to non-ideal communications (dashed lines)
and those that have been improved and are not (solid lines).

transportation loads that are mobile and less predictable.
To continue to operate the power system on leaner reserve
margins while simultaneously reducing costs and decar-
bonizing the system, holistic approaches to model, simulate,
and understand these inter-dependencies are necessary. Co-
simulation can help by bringing together existing simulators
from various domains to capture these and other interactions.

The North American Energy Resilience Model (NAERM,
[85]) is a DOE-led example, using co-simulation via HELICS
to link simulators from different energy domains and modular
data services to evaluate the resilience of the US energy sys-
tem to extreme, national-scale events (e.g., earthquakes, mas-
sive wildfires, polar vortex, etc.). NAERM combines com-
mercial and open-source tools from power systems (steady
state and dynamic) with production cost models, natural gas
simulations, and communication system models to develop
an engineering-class planning tool, capable of evaluating
the interdependencies between these domains and addressing
key resilience challenges.

Other efforts have focused on the interaction between the
power grid and another specific infrastructure. For instance,
[4] looks at the joint operations of the natural gas and grid
systems, using both a small test system and a larger, more
realistic model of the Belgium gas and grid systems. This
work uniquely uses encoord’s SAInt tool for both transient
gas simulation and AC optimal power flow. This allows illus-
trating the gas–grid couplings. The very close match between
the results of SAInt’s native, single matrix gas-grid coupling
and those where the gas and grid models are separated and
coordinated through HELICS helps validate the effectiveness
of co-simulation.

In the GEMINI-XFC project, HELICS is used to co-
simulate grid and transportation systems [45]. Specifically,
OpenDSS is used to simulate hundreds to thousands of
distribution feeders representing the entire San Francicso Bay
Area in conjunction with the BEAM transportation simulator
that captures individual vehicle travel for the same footprint
(see Figure 15 for the federation architecture). This platform
then enables exploring various control schemes to manage

grid voltage and congestion with widespread EV and extreme
fast charger use.

FIGURE 15: Federation architecture from [45] showing
information passing between the transportion modeling in
BEAM and the power system modeling in OpenDSS.

G. REAL-TIME AND HARDWARE TESTING
While a majority of the effort has gone into software-based
co-simulation. HELICS has been used in a number of circum-
stances to connect to real-time hardware devices. HELICS
has a real-time mode that controls the time granted based on
wall-clock timings. This can be used on one or all federates
to drive the simulation. This allows HELICS to connect any
software to a real-time hardware-in-the-loop (HIL) lab set
including real-time simulators such as Opal-RT or RTDS, and
other real-time systems including cybersecurity test beds.

For example, the signal driver for the hardware in the Sky-
fall [86] lab runs HELICS to connect with other simulation
tools for power system simulation and communication.

HELICS also underpins the wide range of HIL testing
conducted through the Advanced Distribution Management
System (ADMS) Testbed [87]. This testbed uses HELICS
to orchistrate interactions among commercial ADMS plat-
form controls, large-scale distribution grid simulation in
OpenDSS, and real-time controller and power HIL simu-
lation with Opal-RT to connect dozens of DER hardware
devices [88]. Hardware simulation with the ADMS testbed
has led to over a dozen published papers, including evalua-
tion of DERMS system performance [89], advanced control
schemes such as data-enhanced hierarchical control (DEHC)
[90], and next generation automation schemes [91]

V. FUTURE WORK
The HELICS core library could be considered feature-
complete as of HELICS v3.4 because it provides flexibility in
defining the message-passing and timing interfaces necessary
for integration of a variety of simulation tools and their
corresponding software architectures. There are expected to
be further developments to improve the usability of HELICS
to allow new users an easier on-ramp into creating HELICS-
based federations, debug the operation of existing feder-
ations, and more easily manage larger or more complex

VOLUME 1, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3363615

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hardy et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

federations. Prototype versions of some of these function-
alities are present in the existing web interface, but further
development effort is needed for them to reach a mature state.
This is a significant challenge, because it is desirable that
such a tool would be usable in all existing HELICS broker
topologies when running in complex deployment strategies
(e.g., single laptop, hybrid cloud, HPC, multi-institution) and
on all supported OSes.

Relatedly, we anticipate that as HELICS gains wider adop-
tion, there will be a need to provide or support some form
of workflow and/or deployment tool. These tools provide
ways of chaining together multiple existing tools to perform
more complex analysis. For example, a workflow tool may
make it possible to simulate the solar generation for a given
geography and take that output and provide it as an input to a
bulk power system tool. Sensitivity analysis and uncertainty
quantification are also common analyses that greatly benefit
from a workflow tool. Generally, we would like to see users
be easily able to use a HELICS federation in these kinds of
tools in the same way a single simulation tools would be used.

As of this writing, there has been somewhat limited testing
to evaluate the performance of HELICS to handle large num-
bers of interfaces and/or interfaces that send large amounts
of data, either as many small messages or individual large
messages. Testing to date has not shown any problems, but
more extensive evaluation would be helpful in validating the
expected performance.

The new analysis needs that motivated the development of
HELICS are migrating from academic concerns to real-world
planning and operations concerns, motivating the develop-
ment of co-simulation as part of industry practice. A key part
of enabling these analysis is the integration of commercial
industry software tools into the HELICS platform. As shown
in Section III-D, some of these tools have been integrated,
but many more are in common use throughout industry.
Integration for some of these tools may require additional
effort from the vendor to support one of the two integration
methods discussed in Section III-A.
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