
An Introduction to the HLA
Part 1

Roger McFarlane

School of Computer Science

McGill University

Montreal, CANADA

Overview

 Introduction
– What is the HLA?

– Motivation

– Goals

– History

 HLA Components
– The RTI

– HLA Rules

– Object Model Templates

 For Next Time …

Introduction

 What is the HLA?

 Motivation

 Goals

 History

What is the HLA?

 A general framework facilitating interoperability
and reusability of distributed simulation
components

 Developed by the Defense Modeling and
Simulation Office (DSMO)

 Developed for the United States Department of
Defence (DoD)

 IEEE Standard 1516-2000

Motivation

 Many large/complex simulations involve
individual “sub-simulations” of components

 “Sub-simulations” are often heterogeneous (in
the type of simulation and type of component)

 Simulators for the components may already
exist

 Re-implementing or retrofitting a simulation
system is risky and expensive

Goals

 Reusability
– A component simulation may be used in different scenarios

and applications over its lifetime

 Interoperability
– Aggregate simulations composed of multiple component

simulations

– Aggregate simulations distributed across heterogeneous
hardware and software platforms

– Reuse without significant code change or development cost

– Combine component simulations with diverse models of
computation and representation

History

HLA Components

 Definitions & Terms

 Technical Architecture

 HLA Rules

 Object Model Templates

 Run-Time Interface Specification

Definitions & Terms (1)

 Federate
– An application which supports the HLA and is

capable of participating in a simulation.

 Federation
– A declaration between federates describing how

and what will be simulated.

 Federation Execution
– A run-time instantiation of a Federation; that is, an

actual simulation execution.

Definitions & Terms (2)

 The HLA provides the Federation formalism

by which Federates can be modeled such that

the framework can support Federation

Execution

 This is really no different from any other type of

modelling and simulation application!

Technical Architecture

SimulationLive PlayerSupport Utility

Run-time Infrastructure

Federation

Management

Object

Management

Time

Management

Declaration

Management

Ownership

Management

Data Distribution

Management

* * *

Run-Time Infrastructure (1)

 Software layer providing common services to
federates

 RTI Specification defines the interfaces
federates must use to obtain services and
interact with other federates

 RTI Specification defines interfaces to be
exposed by federates in order to be
recognizable by the services and by other
federates

Run-Time Infrastructure (2)

 Improvements on older standards
– DIS

– ALSP

 Provides efficient inter-federate
communications

 Separate simulation concerns from
communication concerns

 Language and platform independent

Service Groups

 Federation management

 Declaration management

 Object management

 Ownership management

 Time management

 Data Distribution management

 Support services

Federation Management

 Controls federation-wide activities during a

federation execution

 Services offered:

– Creation and destruction of federation executions

– Joining and resigning of federates

– Pause/Resume federation execution

– Save/Restore federation execution

Declaration Management

 Manages the publisher/subscriber model for

information exchange

 Services Offered:

– Publish Object/Interaction class

– Subscribe to Object Class Attribute

– Subscribe to Interaction Class

– Control Updates

– Control Interactions

Object Management

 Manages the lifecycle and message passing

for object instances

 Services Offered:

– Register/Discover Object

– Update/Reflect Attribute Values

– Send/Receive Interaction

– Remove Object

– Manage Transport/Ordering

Ownership Management

 Supports cooperative modelling by allowing

attribute ownership to be transferred across

instances

 Services Offered:

– Assume/Divest Attribute Ownership

– Acquire/Release Attribute Ownership

– Notification of ownership changes

Time Management (1)

 Coordinates federate time advancement along the

federation time axis

 Attempts to preserve causality and ordering

 Mechanisms supported:

– Conservative synchronization (with look ahead)

– Optimistic synchronization (e.g., time warp)

– Hybrid methods

– Time-stepped

– Real-time driven

Time Management (2)

 Federates request permission to advance their

local time

 Services offered

– Request Time Advance

– Notification of Granting of Time Advance

– Request Next Event

– Notification of Granting of Next Event

– Queue Management

Data Distribution Management

 Efficient data transmission between federates

 Uses routing spaces to direct data only to the

interested parties

– Publisher specifies the update region

– Subscribes specify their interest region

– Intersection define routing space

Support Services

 Miscellaneous functionality useful to joined

federates

– Name-to-handle transformation

– Handle-to-name transformation

– Setting advisory switches

– Manipulating regions

– RTI start-up and shutdown

HLA Rules

 Define the behaviour and capabilities of

federates and federations

 Five rules for Federates

 Five rules for Federations

Federation Rules

 Must have an Federation Object Model (FOM)
documented using the OMT

 All object representation occur in the Federates, not in
the RTI

 Data exchange between instances of objects in
different Federates occurs via the RTI

 Federates must interact with the RTI in accordance
with the HLA Interface Specification

 During Federation Execution, an instance attribute may
be owned by at most one federate at any given time

Federate Rules

 Must have a Simulation Object Model (SOM) documented

using the OMT

 Must be able to update/reflect instance attributes and

send/receive interactions as specified in their SOM

 Must be able to dynamically transfer/accept ownership of

attributes during federation execution as specified in their

SOM

 Must be able to vary the conditions under which they

provide attribute updates as specified in their SOM

 Must manage their local time in a manner which allows

them to coordinate data exchange with other federates

Object Model Templates

 Provide a mechanism for specifying data

exchange and coordination within a federation

 Provide a mechanism for describing the

capabilities of federate

 Facilitates design and implementation of

common tools for building HLA compliant

objects

Types of Object Models

 Simulation Object Model (SOM)

 Federation Object Model (FOM)

 Management Object Model (MOM)

SOM – Simulation Object Model

 Information exposed/consumed by a federate

– Objects

– Interactions

– Attributes (of Objects and Interactions)

– Parameters (of Objects and Interactions)

FOM – Federation Object Model

 Specifies data exchange between federates

– Objects

– Interactions

– Attributes (of Objects)

– Parameters (of Interactions)

 Provides the “information model contract”

which governs the simulation

 Provides the foundation for interoperability

MOM – Management Object Model

 A predefined set of information elements to be

included in the FOM

 Contains data relevant to Federation Execution

 Federates may also include referenced to the

MOM if they may influence Federation

execution.

OMT Components (1)

 Object model identification table

 Object class structure table

 Interaction class structure table

 Attribute table

 Parameter table

 Dimension table

 Time representation table

OMT Components (2)

 User-supplied tag table

 Synchronization table

 Transportation type table

 Switches table

 Datatype tables

 Notes table

 FOM/SOM lexicon

Object Model Identification Table

 Describes object model’s identity

 Useful for developers seeking reusable object

models

 Why the object model was constructed

 How the object model was constructed

 Who knows about the object model

 Where to look for more information

Example –
Object Model Identification Table

Category Information

Name Object Model Name

Type “SOM” or “FOM”

Version Version Identifier

Modification Date Last Modified Date (YYYY-MM-DD)

Purpose Why was this object model developed

Application Domain Type of Application

Sponsor Name of Sponsoring Organization

POC Point of Contact’s Name

POC Organization Point of Contact’s Organization

POC Telephone Point of Contact’s Telephone Number

POC Email Point of Contact’s Email Address

References Where to look for further information

Other Any other relevant data

Object Class Structure Table

 Defines super/sub-class relationships

 For a SOM, classes may be tagged …
– P: The federate is capable of publishing at least one attribute

of the object class.

– S: The federate is capable of subscribing to at least one
attribute of the object class.

– PS: Both publish and subscribe

– N: The federate is neither capable of publishing nor
subscribing to any attributes of the object class.

 For a FOM, the same tags indicate if least one federate
is capable of publishing or subscribing to any attribute
of the object class

Example –
Object Class Structure Table

HLA

Object

Root

(N)

Customer (PS)

Bill (PS)

Order (PS)

Employee (N)

Greeter (PS)

Waiter (PS)

Cashier (PS)

Food (S)

Main Course (PS)

Appetizer (S)
Soup (S)

Clam Chowder

(PS)

Manhattan (P)

New England (P)

Beef Barley (PS)

Salad (S)

Entrée (S)
Seafood (S)

Shrimp (PS)

Salmon (PS)

Pasta (PS)

Interaction Class Structure Table

 Specific actions which a federate may perform

 Hierarchy similar to Object Class Structure Table

 SOM Interactions may be tagged
– P: The federate is capable of publishing the interaction class

– S: The federate is capable of subscribing to the interaction
class

– PS: Both publish and subscribe

– N: The federate is neither capable of publishing nor
subscribing to the interaction class

 Same tags used for a FOM meaning there does (not)
exist a federate capable of publishing/subscribing to
the interaction class.

Example –
Interaction Class Structure Table

HLA

Object

Root (N)

Customer

Transaction

(P)

Customer Seated (PS)

Order Taken (P)
From Kids Menu (P)

From Adult Menu (P)

Food Served (P)

Drink Served (P)

Appetizer Served (P)

Main Course Served (P)

Dessert Served (P)

Customer Pays (P)
By Credit Card (P)

By Cash (P)

Customer Leaves (P)

Attribute Table

 Properties of an object

 May be published by the object

 Other objects may subscribe to an attribute

 Declare how/when an attribute value changes

 Declares if attribute ownership may be transferred

between objects

– DA = Divest & Acquire

– N = Neither

 The transport used to communicate the attribute

Example – Attribute Table

Object Attribute Data Type

Update

Type

Update

Condition D/A P/S

Available

Dimensions Transportation Order

Root PTDO NA NA NA N N NA HLAReliable Timestamp

Employee PayRate Dollars Cond. Merit DA PS NA HLAReliable Timestamp

Seniority Years Periodic +1/year DA PS NA HLAReliable Timestamp

Phone Text Cond. Empl. Req. DA PS NA HLAReliable Timestamp

Address Text Cond. Empl. Req. DA PS NA HLAReliable Timestamp

Employee.

Waiter

Efficiency WaiterValue Cond. Perf. Rev. DA PS NA HLAReliable Timestamp

Manner WaiterValue Cond. Perf. Rev. DA PS NA HLAReliable Timestamp

State WaiterTask Cond. Work Flow DA PS NA HLAReliable Timestamp

Food.

Drink

Cups DrinkCount Cond. Cust. Req. N PS BarQuantity HLAReliable Timestamp

Food.

Drink.

Soda

Flavour FlavourType Cond. Cust. Req. N PS BarQuantity,

SodaFlavour

HLAReliable Timestamp

Parameter Table

 Additional information to characterize an

interaction

 Identify the transport used to deliver the

parameter

 Identify the ordering constraints for the

parameter

– Timestamp

– Receive (indeterminate order)

Example – Parameter Table

Interaction Parameter Datatype

Available

Dimensions Transportation Order

Customer

Seated

NA NA NA HLAReliable Timestamp

FoodServed.

MainCourse

Served.

TemperatureOK ServiceStat WaiterID HLAReliable Timestamp

AccuracyOK ServiceStat

TimelinessOK HLABoolean

Dimension Table

 Maps domain specific data values onto integer
values ranging from zero to some upper bound

 Specifies the legal values which may be
transmitted across the RTI

 Enables Data Distribution Management (DDM)
and Declaration Management (DM)

 Used to specify update and subscribe regions
to the RTI

Example – Dimension Table

Name DataType

Upper

Bound Normalization

Value If

Not

Specified

SodaFlavour flavourType 3 LinearEnumerated(

 Flavour,

 {Cola, Orange, Grape})

[0..3)

BarQuantity DrinkCount 25 Linear(

 NumberCups, 0, 25)

[0..1)

WaiterId EmpId 20 Linear(WaiterId, 0, 20) Excluded

Time Representation Table

 Declares the format used to represent time

– For a federate

– Across a federation

 Declares the semantics of time

– For a federate

– Across a federation

 Used by the RTI to coordinate federates during

federation execution

Example –
Time Representation Table

Category Datatype Semantics

Timestamp TimeType Floating point value

expressed in minutes

LookAhead LAType Non-negative floating point

value expressed in minutes

User-Supplied Tag Table

 Extensible mechanism for specifying auxiliary

data

 Provides additional control and coordination of

services provided by the HLA

Example –
User-Supplied Tag Table

Category Datatype Semantics

Update/Reflect NA NA

Send/Receive NA NA

Delete/Remove HLAascii Reason for deletion

Divestiture Request PriorityLevel High value for immediate

transfer

Divestiture Completion NA NA

Acquisition Request PriorityLevel High value for immediate

transfer

Request Update NA NA

Synchronization Table

 Provides a federate synchronization

mechanism

 Federates declare the synchronization points

they support

 Federations describe the synchronization

points to be used

Example –
Synchronization Table

Label

Tag

Datatype Capability Semantics

InitialPublish NA Achieve Achieved when all classes are

published and subscribed, and all

initially present objects are

registered

InitialUpdate NA Achieve Achieved when instance attribute

values for all initially present objects

are updated

BeginTimeAdvance NA Achieve Achieved when time management

services are invoked

PauseExecution TimeType Register

Achieve

Achieved when the time advance

after the time in the user-supplied

tag is attained; time advance

requests should then cease

Transportation Type Table

 The RTI provides different mechanisms for

transport of interactions and attributes between

federates

 Allows a federate designer to describe the

transports supported by the federate

 Allows federation designers to describe the

transportation contracts between federates

Example –
Transportation Type Table

Name Description

HLAreliable Provide reliable delivery of data in the sense that

TCP/IP delivers its data reliably

HLAbestEffort Make an effort to deliver data in the sense that

UDP provides best-effort delivery

LowLatency Choose the delivery mechanism that results in

the lowest latency from service initiation to

callback invocation at the receiving federate

Switches Table

 Configuration of RTI activities performed on
behalf of a federate

 A few services are configured globally for the
federation
– Auto Provide, Convey Region Designator Sets

 Most services are configured per federate
– Attribute Scope Advisory, Attribute Relevance

Advisory, Object Class Relevance Advisory, Service
Reporting

 Services may be either enabled or disabled

Switch Definitions (1)

 Auto Provide

– (Global) Should the RTI automatically solicit updates from

instance attribute owners when an object is discovered.

 Convey Region Designator Sets

– (Global) Should the RTI provide the optional Sent Region Set

argument with invocations of Reflect Attribute Values and

Receive Interaction.

 Attribute Scope Advisory

– Should the RTI advise federates when attributes of an

object instance come into or go out of scope.

Switch Definitions (2)

 Attribute Relevance Advisory
– Should the RTI advise federates about whether they should

provide attribute value updates for the value of an attribute of
an object instance.

 Object Class Relevance Advisory
– Should the RTI advise federates about whether they should

register instances of an object class.

 Interaction Relevance Advisory
– Should the RTI advise federates about whether they should

send interactions of an interaction class.

 Service Reporting
– Should the RTI report service invocations using MOM.

Example – Switches Table

Switch Setting

Auto provide Disabled

Convey region designator sets Disabled

Attribute scope advisory Enabled

Attribute relevance advisory Enabled

Object class relevance advisory Enabled

Interaction relevance advisory Enabled

Service reporting Disabled

Data Type Tables (1)

 Globally define data types referenced in other
tables

 Basic Data Table
– Name, Size in Bits, Interpretation, Endian, Encoding

 Simple (Scalar) Data Table
– Name, Representation, Units, Resolution, Accuracy,

Semantics

 Enumerated Data Table
– Name, Representation, Enumerator, Values,

Semantics

Data Type Tables (2)

 Array Data Table
– Name, Element Type, Cardinality, Encoding,

Semantics

 Fixed Record Data Table
– Record Name, Field-{Name,Type,Semantics}*,

Encoding, Semantics

 Variant Record Data Table
– Record Name, Encoding, Semantics,

Discriminant-{Name, Type, Semantics}*,
Alternative--{Name,Type,Semantics}*

Notes Table

 Named annotations may be attached to any

OMT entry

 A set of name/value pairs

 Value is free form explanatory text

 Name uniquely identifies the corresponding

explanatory text

 Notes may be referenced multiple times

FOM/SOM Lexicon

 Name/Value pairs

 Dictionary tables associating every class,

attribute, interaction, parameter, etc (by name)

with a free form text description (value)

For Next Time …

 A deeper look at the RTI

References (1)

 IEEE Std 1516-2000, IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA) -

Framework and Rules.

 IEEE Std 1516.1-2000, IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) -

Federate Interface Specification

 IEEE Std 1516.2-2000, IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) -

Object Model Template (OMT) Specification.

References (2)

 Roy Crosbie and John Zenor, “High Level

Architecture, Module 1 – Basic Concepts, Parts

1-6.” California State University, Chico.

http://www.ecst.csuchico.edu/~hla

 <Steffen Strassburger's text>

http://www.ecst.csuchico.edu/~hla

