## Integrated Transmission and Distribution Effects of Demand-Side Participation

Auswin Thomas<sup>a</sup> and Leigh Tesfatsion<sup>a,b</sup>
Electrical & Computer Engineering<sup>a</sup> and Economics<sup>b</sup>
Iowa State University
{agthomas,tesfatsi}@iastate.edu

Panel Session: Wholesale and Retail Market Interaction Requirements for Effective Demand-side Participation

IEEE PES GM 2015, Denver, CO 30<sup>th</sup> July 2015





## **Presentation Outline**

- Why an Integrated Retail and Wholesale (IRW) scope for Transactive Energy (TE) studies?
- An agent-based IRW platform suitable for TE studies IRW Test Bed: Homepage <a href="http://www2.econ.iastate.edu/tesfatsi/IRWProjectHome.htm">http://www2.econ.iastate.edu/tesfatsi/IRWProjectHome.htm</a>
- ☐ The IRW Test Bed permits:
  - Agent-based modeling of complex IRW interactions among physical devices, transaction rules/regulations, & human participants
  - Testing for efficient and reliable IRW system operations
  - Testing for unintended adverse consequences (e.g., gaming opportunities, dynamic instabilities from IRW feedback loop effects)
- ☐ Illustrative IRW-TE test case: Demand response





## Why an IRW Scope for TE Studies?

## Energy transactions typically form an IRW Feedback Loop:







### IRW Test Bed = AMES + Distribution Feeders

http://www2.econ.iastate.edu/tesfatsi/IRWProjectHome.htm



Power & Energy Society

## IRW Test Bed records transaction histories for each transacting agent (ISO, GenCo, LSE, Retail Customer)



Power & Energy Society

### **IRW-TE Test Case: Effects of Demand Response (DR)**

- DR has been used for three distinct concepts:
  - Central down/up management of demand
  - Automated down/up demand dispatch
  - Price-responsive retail customer demand
- Main barriers to DR implementation to date
  - Lack of a supporting regulatory framework
  - Lack of a compelling DR business model that covers all system participants



## Compelling DR Business Model Requires IRW Scope

- □ For non-operator participants:
  - Should provide economic incentives that sustain voluntary participation
- For transmission & distribution system operators:
  - Should sustain/improve reliability of operations
- For society:
  - Should encourage efficient energy usage (non-wastage of resources)
  - Should reduce environmental pollution





## **IRW-TE Test Case: Basic Specifications**

## Wholesale Power System (AMES)

- Meshed 5-bus transmission grid
- 5 GenCos
- 2 LSEs servicing conventional loads only (no price sensitivity)
- 1 LSE servicing a feeder with conventional loads & smart (price-sensitive) A/C loads

## Distribution Feeder

- Radial distribution grid
- 500 houses
- Multiple types of houses
- Multiple types of house residents







## IRW Feedback Loop for Test Case: Open-Ended Dynamics



## **Attributes of a House-Resident Agent**

- Comfort function measuring house-resident's comfort (in utils) as a function of inside air temperature
- Bliss temperature = Inside air temperature providing highest comfort to the at-home resident
- α = Non-negative scalar parameter (utils/\$) giving a resident's trade-off between comfort and electricity cost (higher α → higher concern for cost relative to comfort)
- $\mathbf{k}$  = Parameter vector indicating hours that a resident is away from home each day ( $\mathbf{k} = 0 \Longrightarrow$  always at home)





## **Smart A/C Controller for Households**

A. Thomas, P. Jahangiri, D. Wu, C. Cai, H. Zhao, D. Aliprantis, and L. Tesfatsion, *IEEE Trans. Smart Grid*, Vol. 3, No. 4, 2012, 2240-2251



#### **Retail Price**

DAM Price + Markup

#### Weather

Temp, humidity, solar radiation,...

#### **House-Resident Attributes**

α setting, bliss temp, k values for away hours, ...

#### **House and A/C Structural Attributes**

Btu ratings, dimensions, COP (Coefficient of Performance),...





# Demand-Response Retail Contracts: Wholesale prices are passed thru to households

- Retail prices charged to households for their day-D energy usage are the DAM LMPs from day D-1 with a profit mark-up
- Retail prices for day-D energy usage are conveyed by LSEs to households by evening of day D-1





## Illustrative A/C results for a single resident, always home Higher $\alpha$ = higher concern for cost; Bliss temp = 74°F

Inside air temp (°F)







## Illustrative A/C Results... Continued High insulation; Bliss temp = 74°F; Resident always home



| Alpha | Daily               |
|-------|---------------------|
| 7     | Energy<br>Cost (\$) |
| 0     | 2.04                |
| 500   | 1.98                |
| 2000  | 1.79                |
| 5000  | 1.40                |

Time period = One day (720 minutes)





## Illustrative A/C results for a single resident, away 8am-5pm Higher $\alpha$ = higher concern for cost; Bliss temp = 74°F

Inside air temp (°F)







## Illustrative A/C Results ... Continued

High insulation; Bliss temp = 74°F; Resident away 8am-5pm



| Alpha | Daily<br>Energy<br>Cost (\$) |
|-------|------------------------------|
| 0     | 2.01                         |
| 500   | 1.92                         |
| 2000  | 1.66                         |
| 5000  | 1.13                         |

Time period = One day (720 minutes)





## From single-household load to aggregated feeder load







## Aggregated feeder load illustration ... Continued

Uniformly distributed alpha and k values



#### Note:

k ≥ 0 determines hours when a resident is away from homek=0 implies always home







| Туре                             | Power<br>(kW) |
|----------------------------------|---------------|
| Uniform alpha & k values         | 24.15         |
| Uniform<br>alpha,<br><b>k</b> =0 | 25.42         |
| alpha=0,<br><b>k</b> =0          | 27.59         |

Time period = One day (720 minutes)





## **IRW-TE Test Case Specifications ...Continued**

- Exogenously given state vector for each day
  - Weather conditions
    - Outside air temperature
    - Other environmental forcing terms
  - Background (BG) conventional load profile (i.e., load not responsive to price changes)
- > 500 houses with conventional & smart A/C loads
- LSE DAM forecasting (demand bid) method
  - Day D-1 actual load → Day-D load forecast (demand bid)
- House-resident comfort/cost preference parameters α
  - Simulation treatment factors, not empirically derived
  - Set at uniformly-distributed random values unless

otherwise indicated



## Illustrative Findings for IRW Feedback Loop

Fluctuations in *Real-Time Market (RTM) price* at feeder bus (peak hour 18) under varied forcing-term and retail-price contracts







## Illustrative Findings for IRW Feedback Loop ... Continued



**Note:** Variation in weather and background load





## **Ongoing IRW-TE Research**

- Systematic investigation of IRW feedback loop & potentially adverse cobweb price effects under alternative retail-contract designs
- Improved test-case implementation
  - Fully online simulation
- More realistic test-case specifications
  - Multiple distribution feeders linked to multiple buses
  - Improved LSE forecasting methods





## Additional IRW Test Bed Capabilities for TE Studies

- ☐ IRW Test Bed can model human participants as strategic agents with learning capabilities
  - Can learn over time how to submit profitable bids & offers
  - Can learn over time how to better forecast prices & loads
- ☐ IRW Test Bed can test the *robustness of operational rules* against adverse unintended consequences
  - Gaming of IRW market rules by strategic market participants
  - IRW system unreliability resulting from local retail contracting





## **On-Line Resources for IRW-TE Research**

- □ IRW Project Homepage <a href="http://www2.econ.iastate.edu/tesfatsi/IRWProjectHome.htm">http://www2.econ.iastate.edu/tesfatsi/IRWProjectHome.htm</a>
- AMES Test Bed Homepage (Code/Manuals/Publications)
  <a href="http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm">http://www2.econ.iastate.edu/tesfatsi/AMESMarketHome.htm</a>
- Agent-Based Electricity Market Research
   <a href="http://www2.econ.iastate.edu/tesfatsi/aelect.htm">http://www2.econ.iastate.edu/tesfatsi/aelect.htm</a>
- □ Agent-Based Computational Economics (ACE) <a href="http://www2.econ.iastate.edu/tesfatsi/ace.htm">http://www2.econ.iastate.edu/tesfatsi/ace.htm</a>
- Auswin Thomas Homepage <a href="http://www.auswingeorgethomas.com/">http://www.auswingeorgethomas.com/</a>
- Leigh Tesfatsion Homepage <a href="http://www2.econ.iastate.edu/tesfatsi/">http://www2.econ.iastate.edu/tesfatsi/</a>



