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1. Overview

❑ Concerns all social scientists share:

— How do real-world social systems work?

— How could real-world social systems work better?

❑ Ideally, social science modeling should permit:

— Careful tailoring of models to purposes at hand 

— Open-ended modeling of dynamic processes

— Matching of modeled agents to empirical referents,   
e.g., “human” agents should be permitted to “breathe”
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2. completely Agent-Based Modeling (c-ABM)

▪ Rough Characterization: Modeling of real-world processes 
as open-ended dynamic systems of interacting agents

Key Features:

— Enables “historical” study of complex dynamic real-world 
systems as unfolding sequences of events. 

— Events are fully driven by agent interactions, starting from 
initially-specified agent states (culture-dish modeling).

— Agents can be broadly specified to represent physical, 
biological, social, and/or institutional entities.

— Role of the modeler is restricted to the specification of initial 
agent states, and to the non-perturbational observation, 
recording, and analysis of model outcomes.



c-ABM Modeling Principles (MP1) – (MP7)
https://www2.econ.iastate.edu/tesfatsi/ace.htm
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(MP1) Agent Definition:  An agent is a software entity 
within a computationally constructed world that can affect 
world outcomes through expressed actions.

(MP2) Agent Scope:  Agents can represent a broad range 
of entities, e.g., individual life-forms, social groupings, 
institutions, and/or physical phenomena. 

(MP3) Agent Local Constructivity: An intended action 
of an agent at a given instant is determined by the agent’s 
state (data, attributes, and/or methods) at this instant.    

http://www2.econ.iastate.edu/tesfatsi/ace.htm


c-ABM Modeling Principles … Continued
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(MP4)  Agent Autonomy:  All agent interactions (expressed 
agent actions) at a given instant are determined by the ensemble 
of agent states at this instant.

(MP5) System Constructivity: The state of the world at a 
given instant is determined by the ensemble of agent states at 
this instant.

(MP6)  System Historicity:  Given an initial ensemble of agent 
states, any subsequent world event (change in agent states) is 
induced by prior and/or concurrent agent interactions.

(MP7) Modeler as Culture-Dish Experimenter: The role of 
the modeler is limited to the configuration and setting of initial 
agent states, and to the non-perturbational observation, analysis, 
and reporting of world outcomes.



c-ABM Modeling Principles … Continued
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❑ Models adhering to the seven c-ABM modeling principles 
(MP1) - (MP7) are computational laboratories.

— Modelers configure and set initial agent states, but 
subsequent world events are driven entirely by agent 
interactions.

— Thus, modelers can be genuinely surprised by these 
subsequent events.  

— c-ABM is thus analogous to biological experimentation 
with cultures in Petri dishes. 



3.  Facilitating study of critical societal issues that cross
traditional disciplinary boundaries: Two c-ABM Illustrations 
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▪ Many critical issues facing societies today are exceedingly 
complex, with intertwined social and physical aspects.

▪ c-ABM permits researchers to model these societal issues without 
regard for artificial disciplinary boundaries.

— Broader range of possible causal factors and linkages  
can be given joint systematic consideration. 

▪ For illustration, two such c-ABM studies will briefly be reviewed.



Two Socio-Physical c-ABM Illustrations 
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Study 1:  Welfare-Enhancing Management of a Watershed

[1] L. Tesfatsion, C.R. Rehmann, D.S. Cardoso, Y. Jie, and W.J. Gutowski (2017), “An Agent-Based
Platform for the Study of Watersheds as Coupled Natural and Human Systems” (Preprint,pdf,1.2M),
(code/data repository), Environmental Modelling & Software 89, 40-60. 

TEAM: Economist;  Civil Engineer;  Ag Economist;  Computer Scientist;  Hydrologist/Climatologist

NOTE 1.1: The c-ABM watershed platform (Java) developed in [1] is an extended modified version of the
OpenDanubia platform (Java) developed by Barthel et al. (Env. Modelling & Software 23, 2008, 1095-1121)
for the study of climate change impacts on the Upper Danube watershed in Germany.

NOTE 1.2:  The particular watershed test case reported in [1], and summarized below, was undertaken as the 
first step in an Iterative Participatory Modeling (IPM) process conducted with watershed stakeholders.

.

Study 2:  Customer-Centric Design of an Electric Power System 

[2] S. Battula, L. Tesfatsion, Z. Wang (2020), "A Customer-Centric Approach to Bid-Based Transactive
Energy System Design" (WP Version,pdf,1.7MB), IEEE Transactions on Smart Grid 11(6), 4996-5008

TEAM: Electrical & Computer Engineer;  Economist;  Electrical & Computer Engineer

https://www2.econ.iastate.edu/tesfatsi/WACCShedPlatform.RevisedWP15022.pdf
https://bitbucket.org/waccproject/waccshedsoftwareplatform
https://bitbucket.org/waccproject/waccshedsoftwareplatform/src/master/
https://bitbucket.org/waccproject/waccshedsoftwareplatform
https://lib.dr.iastate.edu/econ_workingpapers/75


Illustrative Study [1]  

Welfare-Enhancing 
Management of a 

Watershed

Empirical Anchor

Ioway Creek Watershed,
Central Iowa

(Known as Squaw Creek 
Watershed prior to 2020)

Outlined in purple 

10

City of 
Ames



Study [1]:  Overview
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▪ Approach  
Develop a c-ABM watershed platform permitting study of coupled interactions 
among hydrology, climate change, & strategic human behavior over time

▪ Empirical Anchor:  Ioway Creek Watershed (Central Iowa)   
— Single basin consisting of upstream farmland and a downstream city (Ames).

— Randomly fluctuating precipitation & market prices affect cropland planting & yields.

— Farmland water run-off contributes to downstream city flood damage. 

— Farmers can reduce run-off by setting aside potential cropland as “water-retention land”    
with natural coverage; but this reduces potential farmer profits from crop sales.

— City Manager can budget subsidies for farmers to increase set-aside of water-retention 
land; but this reduces budget monies available for city levee investment & city services.

▪ Normative Social Design Question:  Incentive Alignment
Does there exist a budget-allocation policy for the City Manager that  

aligns city goals & constraints with farmer goals & constraints?



Study [1]:  Agent Hierarchy for the Watershed World
(Down-arrows denote “has a” relations;  up-arrows denote “is a” relations)
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The Watershed World is implemented by the WACCShed (Water and Climate Change Watershed ) Platform,

an open-source Java platform developed by Y. Jie, D.S. Cardoso, W.J. Gutowski, C. Rehmann, and L. Tesfatsion
(2013-2014) at ISU.   Code/Data Repository:   https://bitbucket.org/waccproject/waccshedsoftwareplatform

https://bitbucket.org/waccproject/waccshedsoftwareplatform
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Decision-Making “Human” Agents
Corn Farmers (annual allocation of

land, corn planting & harvesting,
and consumption & savings);

City Manager (annual allocation of 
budget, Farmer subsidy payouts).

Physical Agents (Data Driven)
Basin (population, land attributes, …)

Climate (20-year hourly rainfall pattern)
Hydrology (HEC-HMS, Feldman et al. 2000) 

Maps farmer land allocations 

+ land attributes (e.g., curve numbers)

+ rainfall (hourly depth in inches) 

Water discharge rate into city 
(which affects extent of city

flood damage) 

Institutional Agents (Data Driven)
Markets (cost/price data)

Annual input planting cost ($/acre)
and retail corn price ($/bushel).

Study [1]:  Agent Actions and Interactions

X

Farmers
x

x

City 
Manager

x

Rainfall

Run-off

Flooding

Markets



❑ Empirically-Based Probability Distribution (S,P) for Scenarios:  

▪ A scenario set S was constructed consisting of 31 climate/market scenarios s,   
each 20 years in length with an associated probability P(s).  This construction 
was based on Ioway Creek Watershed data (1997-2013) for rainfall, seed costs, 
fertilizer costs, and retail corn prices.

▪ The 31 scenarios were numbered -15, -14, …, -1, 0, +1, +2, …, +14, +15, based on       
their Hamming signed-distance from a “normal” (typical) scenario “0”.  

▪ The resulting probability distribution (S,P) is depicted below:

Study [1]: Experimental Design

14



❑ City Manager (Stackelberg Game Leader):  In February of each year t the City 

Manager allocates the city budget among city services, levee investment, and farmer subsidies for 
water-retention land set-aside, taking into account the effects of these subsidies on farmer land 
allocations in March.

— City Manager’s Goal:  Allocate city budget to maximize expected value of

City Social Welfare  =: [city social services] + ψ [city flood damage mitigation]

❑ Three Types of Treatment Factors: 
1. Farmer decision method, Risk Neutral or Risk Averse:  For allocation of farmland 

among cropland, fallow land, & water-retention land in March of each year t; 

2. Levee quality effectiveness LQE, Low or High:  Affects extent of city flood damage 

resulting from water discharge into city from January through October of each year t;

3. Farmer annual savings target θ0, Low, Moderate, or High:  End-of-year savings for 

each year t are carried over as initial money holdings for year t+1.

❑ For each tested treatment-factor configuration: 
Thirty-one watershed runs were generated, one for each climate/market scenario
s in S.  Each run consisted of 20 simulated years.  The resulting farmer welfare & 
city social welfare outcomes are reported in two forms:

1. Expected form, using the empirically-based probability distribution (S,P);

2. Differentiated by environmental scenario (s = -15, …, -1, 0, 1, …. +15 )

Study [1]: Experimental Design … Continued

15



▪ One farmer F, with savings target θ0 ≥ 0 & subsistence consumption Csub > 0 

▪ Two different land-allocation methods are tested for farmer F  

Method 1.  Farmer F is risk neutral  (i.e., F does not consider outcome variance)

In March of each year t, after seed/fertilizer costs become known and City Manager has 
announced a water-retention land subsidy rate, F selects a land allocation to maximize 
expected consumption ECt for t, subject to savings St ≥ θ0 and consumption Ct ≥  Csub.  

F then buys inputs and plants corn.  If realized rainfall/corn prices for t later result in         
Ct < Csub  for t (even if F reduces realized savings for t to 0), then F must exit watershed. 

Method 2. Farmer F is risk averse  (i.e., F does consider outcome variance)

In March of each year t, after seed/fertilizer costs become known and City Manager has 
announced a water-retention land subsidy rate, F selects a land allocation to maximize 
expected utility-of-consumption EU(Ct) for t, subject to savings St ≥ θ0 and consumption       
Ct ≥  Csub.  F has a strictly concave utility function U(C) = log(C – Csub + D), where D > 0.  

Given any expected consumption for t, F’s expected utility-of-consumption EU(Ct) for t 
depends on the variation of F’s consumption Ct(st) across the scenarios st in St = {set of

possible scenarios for years τ ≥ t, given history up to t}.  All else the same as Method 1. 

Study [1]: Illustrative Test Case 
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Study [1]: Total Farmer Welfare Results.  Realized across 

20 simulated years for different settings (θ0, LQE), differentiated by scenario s 
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Farmer is Risk Neutral  Farmer is Risk Averse



Study [1]: Total City Social Welfare Results.  Realized across 

20 simulated years for different settings (θ0, LQE), differentiated by scenario s
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With Farmer Risk Aversion
Xx
XFarmer is Risk Neutral Farmer is Risk Averse



❑ Motivated by three premises 

1. Electric power systems are increasingly dependent on renewable power
resources (wind, solar, …) with uncertain volatile generation.

2. To ensure system efficiency & reliability, power demand and power supply 
must be in continual balance 
— for wholesale power transactions, supported by the transmission network;
— and for retail power transactions, supported by the distribution network. 

3. To ensure customer welfare, customer goals/constraints need to be aligned 
with system efficiency/reliability constraints without violating customer privacy.

One promising way forward:
Market-based Transactive Energy System (TES) designs for integrated
transmission and distribution systems that: 
— permit ancillary balancing-support services to be contractually procured 

from customers with controllable electrical devices;
— permit decentralized implementations that respect customer privacy. 

Study [2]:  Customer-Centric Design of an Electric Power System 
(Battula, Tesfatsion, & Wang, 2020, IEEE Transactions on Smart Grid)
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Study [2]:  Empirical Anchor 
x

U.S. regions with centrally-managed wholesale electric power systems
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Study [2]:  Illustrative ITD Household Test Case  
w

Integrated Transmission and Distribution (ITD) system for which:

(i) A 123-node distribution network is populated by 927 households; 
(ii)  Each household has a Heating, Ventilation, & Air-Conditioning (HVAC) system;
(iii)  Each HVAC system is smartly controlled (i.e., responsive to price signals) 
(iv)  The 123-node distribution network is linked to an 8-node transmission network

21

IDSO =  Independent Distribution System Operator (manages distribution system)

LSE = Load-Serving Entity (submits retail customer power demands into wholesale power market)

T

D

Linked



Study [2] ITD Household Test Case:  Agent Hierarchy for ITD System
(Down-arrows denote “has a” relations;  up-arrows denote “is a” relations)
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IDSO/LSE

The ITD TES Platform V2.0 is an open-source co-simulation platform, developed by S. Battula &  L. Tesfatsion

(2019-2021) with support from Pacific Northwest National Laboratory (PNNL) and Department of Energy (DOE).
GitHub Code/Data Repository: https://github.com/ITDProject/ITDTESPlatform

xxxxxx
Smart Meter (can 

send/receive signals)

x(AMES)

https://github.com/ITDProject/ITDTESPlatform


Study [2] ITD Household Test Case:  Agent Hierarchy for Transmission System
(Down-arrows denote “has a” relations;   up-arrows denote “is a” relations)
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AMES (Agent-based Modeling of Electricity Systems) V5.0 is an open-source java/python platform,
developed by S. Battula and L. Tesfatsion (2019-2021) with support from PNNL and DOE.
GitHub Code/Data Repository:  https://github.com/ames-market/AMES-V5.0

https://github.com/ames-market/AMES-V5.0


ITD TES Platform V2.0:  Key Co-Simulated Software Components 
(Specialized below to implementation of ITD Household Test Case)
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FNCS = Framework for Network Co-Simulation, developed at PNNL (2011-2016)

GridLAB-D
Distribution
System (C++/C)

FNCS (C++/Python)

IDSO (Python)

Structure

Smart Controller

Household
Resident

Structure

Smart Meter

Resident

Thermal Dynamics

AMES
Transmission
System 
(Java/Python)

GenCo1

GenCoN

LSE1

LSEM

…
Household

Thermal Dynamics

Smart MeterPython Python



Study [2] ITD Household Test Case: Transmission Network
8-Node Transmission Network Based on Data for the Texas Energy Region (ERCOT)  
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➢ This 8-Node transmission network was generated using a synthetic grid construction method developed by Tom 
Overbye & collaborators (Texas A&M University). 

➢ This method is included in the ERCOT Test System, an open-source java/python platform, implemented in part by 
AMES V5.0,  that was  developed by S. Battula and L. Tesfatsion (2019-2020) with support from PNNL and DOE.

➢ Code/Data Repository:  https://github.com/ITDProject/ERCOTTestSystem

https://github.com/ITDProject/ERCOTTestSystem


Study [2] ITD Household Test Case: Transmission Network … Continued
Schematic Depiction of 8-Node ERCOT Transmission Network
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The depicted 8-node ERCOT transmission network includes
distributed wind power (    ), solar power  (      ), and thermal generation (G).

The IDSO participates in 
the transmission system 
at the T-D Linkage Node 
( transmission node 2 )



T-D Linkage 
Node

T-D

Study [2] ITD Household Test Case:  Distribution Network

(123-node distribution network populated by 927 households:  IEEE 123)
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The IDSO participates in the distribution system at the SubStation (distribution node 150),
which is electrically connected to the T-D Linkage Node (transmission node 2).



Study [2] ITD Household Test Case:  Two-Way Communication Network 

The Independent Distribution System Operator (IDSO) is the top-level Local Intelligent 
Software Agent (LISA) in a two-way LISA  communication network with 927 “Edge LISAs”.  
An Edge LISA is a smart meter for one of the 927 households connected to the 123-node 
distribution network on depicted Slide 27.

h-1 h-2 h-927

IDSO 

LISA-927 LISA-1 LISA-2  

=  Edge LISA

=  Top LISA
(IDSO)

28

. . . 

. . .

(Smart Meter)

x = Household



Study [2] ITD Household Test Case: 
Five-Step TES Design Consisting of Five Iterated Steps
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The Five-Step TES Design is an example of an IDSO-managed bid-based TES design.

Z

Z
Control
Step 5

At start of Control Step 5 the HVAC smart-controller for each household h either 
turns (or keeps) h’s HVAC system ON at power level P = P*(h) > 0 or OFF at power
level P = 0, depending on the price signal the IDSO communicated to h in Step 4.

HVAC

Controller

HVAC

Controller



SS

Study [2] ITD Household Test Case:  General State-Conditioned Form 
of Each Household’s Optimal Bid Function   
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Supply function for “ancillary service”
=  “IDSO-dispatchable power absorption”

Demand function for power usage

Technical Note:  In Step 2 of the Five-Step TES design, the HVAC smart-controller for each household h: 

— automatically constructs h’s optimal bid function for Control Step 5, as a function of h’s attributes and current state; 
— fully communicates this bid function to IDSO in the form of two real numbers (Π*, P*), where:  Π*  =: cut-off price 

signed either “+” (power usage) or “– “ (service);  and P* =: the ON power usage of h’s HVAC system.

(positive price           h pays  
for power usage) 

(negative price            h receives payment
for ancillary service)

(a) General optimal bid form for Household h
when h is in an ancillary service state

(b)  General optimal bid form for Household h
when household h is in a power usage state



Study [2] ITD Household Test Case: 
Illustrative IDSO Load-Matching Experiments for the Five-Step TES Design
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— The IDSO Target Load Profile for Day D+1  =  IDSO’s *day-ahead forecast* for 
household hourly net power withdrawal at T-D Linkage Node 2 during Day D+1.

— The IDSO submits this day-ahead forecast as a power demand bid into day-ahead 
wholesale power market conducted on Day D to try to ensure sufficient power is 
available at T-D Linkage Node 2 during Day D+1 to cover household hourly net 
power withdrawals at this node during Day D+1. 

— IDSO Matching Goal for the Five-Step TES design on Day D+1:  
*Realized* household hourly net power withdrawal at T-D Linkage Bus 2 during
day D+1 should match the IDSO’s power demand bid.

— The IDSO selects this goal in order to hedge against price risk on Day D+1: 
If total household net power withdrawal at T-D Linkage Node 2 realized on
Day D+1 is different than the IDSO’s Day-D forecast for this withdrawal – as
indicated by the IDSO’s Day-D power demand bid -- then the IDSO must either
pay (for extra power withdrawal) or be paid (for reduced power withdrawal),
where payments are calculated using whatever real-time market prices happen
to be realized on Day D+1. 



Study [2] ITD Household Test Case:  IDSO Load-Matching Example 1
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— In each 5-step iteration, the IDSO uses the bid functions received from households   
in Step 2 to determine retail prices in Steps 3–4.

— The IDSO then signals these retail prices to households at the beginning of Control Step 5.

RESULT: The price-controlled actual total household power withdrawal at T-D Linkage 
Node 2 during Day D+1 closely matches the IDSO target load profile for Day D+1.   

Example 1: IDSO Load-Matching Results for Operating Day D+1 = 1440 min.  Source:  [2, Fig. 5]



Study [2] ITD Household Test Case:  IDSO Load-Matching Example 1 … Continued
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— The figure reports the positive retail prices communicated by the IDSO at the beginning of 
each Control Step 5 during Day D+1 to all households in a power usage state.  The IDSO 
uses the household bid functions received in Step 2 to determine these retail prices.

— Households in ancillary service state receive no price signals from IDSO during Day D+1,
indicating IDSO does not need to buy ancillary service during Day D+1 to achieve its goal.

Example 1: Retail Prices Set by IDSO for Operating Day D+1 = 1440 min.   Source: [2, Fig. 6]



Study [2] ITD Household Test Case:  IDSO Load-Matching Example 2
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— In each 5-step iteration, the IDSO uses the bid functions received from households            
in Step 2 to determine retail price signals in Steps 3–4.  

— The IDSO then signals these retail prices to households at the beginning of Control Step 5.  

RESULT: As in Example 1, the price-controlled actual total household power withdrawal at   
T-D Linkage Node 2 during Day D+1 closely matches the IDSO target load profile for Day D+1.

Example 2: IDSO Load-Matching Results for Operating Day D+1  =  1440 min. 
Source:  [L. Tesfatsion et al. (2021), PSERC Final Report, Project #M-40, 2021, Fig. 1.32]



Study [2] ITD Household Test Case:  IDSO Load-Matching Example 2 … Continued
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— As in Example 1, during most of Day D+1 the IDSO signals strictly positive retail prices to households 
in a power usage state, indicating the IDSO is selling power to these households.

— However, in contrast to Example 1, during some hours of Day D+1 the IDSO now finds it must 
signal strictly negative retail prices to households in an ancillary service state to enable achievement 
of its load-matching goal.

— These strictly negative retail prices indicate the IDSO is buying ancillary service (power absorption) 
from households in an ancillary service state.

Example 2: Retail Prices Set by IDSO for Operating Day D+1  =  1440 min.  
Source: [L. Tesfatsion et al. (2021), PSERC Final Report, Project #M-40, 2021, Fig. 1.33]
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4.  Bridging the “Valley of Death” 
Between Concept and Practice

4.1 c-ABM facilitates comprehensive empirical validation

4.2 c-ABM enables progression from small-scale conceptual
modeling to large-scale field/pilot studies

4.3 c-ABM supports Iterative Participatory Modeling (IPM)

4.4 c-ABM aids development of standardized presentation protocols

for social design research 



4.1  c-ABM facilitates comprehensive 
empirical validation:  EV1 – EV4

https://www2.econ.iastate.edu/tesfatsi/EmpValid.htm
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EV1. Input Validation  
Are the exogenous inputs for a model empirically meaningful and 
appropriate for the purpose at hand?

Exogenous Input Examples: Initial state conditions, functional forms, 
shock realizations, data-based parameter estimates, &/or parameter
values imported from other studies

EV2. Process Validation  
— Do modeled physical, biological, institutional, & social  processes

reflect real-world aspects important for purpose at hand? 

— Are all process specifications consistent with essential scaffolding  
constraints, such as physical laws, stock-flow relationships, and 
accounting identities?

http://www2.econ.iastate.edu/tesfatsi/EmpValid.htm


No title
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EV3. Descriptive Output Validation: 

How well are model-generated outputs able to capture salient 
features of the sample data that was used for model identification?              
(in-sample fitting)  

EV4. Predictive Output Validation: 

How well are model-generated outputs able to forecast distributions 
or distribution moments either for sample data that have been 
withheld from model identification, or for new data acquired later?      
(out-of-sample forecasting) 



4.2  c-ABM enables progression from small-scale conceptual       
modeling to large-scale field/pilot studies
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▪ Implementation of social designs should proceed only 
after careful empirically-based testing.

Examples: Institutions, programs, policies, …

▪ Ensuring that a design is ready for implementation will 
typically require a series of modeling efforts at different 
scales, and with different degrees of empirical validation.

▪ Moving too soon to design implementation entails a 
major risk of adverse unintended consequences.



DRL-1: Conceptual design idea

DRL-2:  Analytic formulation

DRL-3:  Low-fidelity small-scale modeling  

DRL-4:  Moderate-fidelity small-scale modeling

DRL-5: High-fidelity small-scale modeling 

DRL-6:  Prototype small-scale modeling (reflects expected
field conditions apart from scale)

DRL-7:  Prototype large-scale modeling (reflects expected
field conditions)

DRL-8:  Field study 

DRL-9:  Real-world implementation

Standardized Design Readiness Levels (DRLs)

40

Basic research 
carried out at 
universities...

Government, 
business, 
regulatory 
agencies …

Valley of
Death



Valley of Death:  DRLs 4-6
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▪ Infrequency of studies at DRLs 4-6 hinders development 
of social designs from

Concept Implementation

▪ c-ABM is well suited for bridging this “Valley of Death”

— c-ABM computational platforms enable systematic 
testing of design performance at DRLs 4-6.



4.3  c-ABM Supports Iterative Participatory Modeling (IPM) 
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IPM for Complex Social Design Problems:

— Researchers & stakeholders repeatedly cycle through 
Design Readiness Levels (DRLs) 1-9 in an ongoing 
open-ended learning process

— In each cycle, c-ABM platforms can help ensure 
progression through the Valley of Death (DRLs 4-6).

— Goal: Continual improvement rather than the  
attempted delivery of a “definitive solution”



4.4  c-ABM aids development of standardized 
presentation protocols for social design research
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❑ How can c-ABM-supported studies of social designs 
at successively higher DRLs be clearly presented to 
stakeholders, regulators, and other researchers?

➢ Proposal: Develop a standardized sequence of  
DRL-conditioned presentation protocols.

Example: Extend “one size fits all” ODD protocol for ABM to
a sequence ODD-1, ODD-2, … of ODD protocols in parallel with
the design readiness levels DRL-1, DRL-2, …   

ODD = Overview, Design concepts, and Detail

(Volker Grimm et al., 2006, Ecological Modelling, v. 198, 115–126)



5.  A Spectrum of Experimental Methods for Social Science Research

100% human
Humans with 

computer access

Human-controlled 
computer avatars 

Human-calibrated
computer agents

100% computer agents
evolved from initial 

conditions (c-ABM)

Computer agents with
real-world data 

streaming

Tethered  

Not Tethered

x

Mix of humans
and computer agents
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http://www.graphicsfactory.com/Clip_Art/Cartoon/robot-v3_380802.html


6.  Conclusion  
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❑ The seven modeling principles characterizing c-ABM are designed to mimic 
biological experimentation with cultures in Petri dishes. 

— c-ABM permits societal processes to be modeled and studied as dynamically unfolding 
events, starting from modeler-specified initial conditions.  

— Agents (physical, biological, social, institutional,…) can be closely tailored to actual empirical 
referents.  

— The c-ABM completeness requirement  -- dynamics must be entirely driven by interactions 
among agents that actually “reside within the modeled world” -- should help discourage 
modelers from relying on ad hoc exogenous “shock terms” as the sources of dynamic 
persistence and/or the drivers of dynamic interactions. 

❑ c-ABM facilitates comprehensive bottom-to-top empirical validation
— Input Validation
— Process Validation
— Descriptive Output Validation (in-sample fitting)
— Predictive Output Validation (out-of-sample forecasting) 

Analytical tractability is no longer a valid justification for simplifications that distort 
reality in ways important for the purpose at hand.

❑ Prediction: As real-world processes become more automated, hence more dependent on 

computer bots (agents) for implementation, this will profoundly impact empirical validation:    

Validation of Process Representation Exact Process Replication
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6.  Conclusion … Continued

❑ c-ABM can help to bridge the “Valley of Death.” 

c-ABM platforms, especially in co-simulated form, can help bridge the gap 
between 

— the relatively small-scale conceptual modeling typically carried out at 
universities, and 

— the much larger-scale field/pilot studies typically required by businesses 
and governments as a prerequisite for real-world implementation. 

❑ Last but not least, c-ABM can break down artificial disciplinary boundaries.  

As illustrated for watersheds and electric power systems:

— Co-simulated c-ABM platforms permit teams of researchers from 
traditionally separated social science and physical science disciplines        
to address critical societal issues involving complex interactions among 
social and physical processes.
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