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Abstract.  This paper extends the literature on the evolution of norms with an

agent-based model capturing a phenomenon that has been essentially ignored,

namely that individual thought--or computing--is often inversely related to the

strength of a social norm.  Once a norm is entrenched, we conform thoughtlessly.

In this model, agents learn how to behave (what norm to adopt), but--under a

strategy I term Best Reply to Adaptive Sample Evidence--they also learn how

much to think about how to behave.  How much theyÕre thinking affects how they

behave, which--given how others behave--affects how much they think.  In short,

there is feedback between the social (inter-agent) and internal (intra-agent)

dynamics.  In addition, we generate the stylized facts regarding the spatio-

temporal evolution of norms: local conformity, global diversity, and punctuated

equilibria.
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TWO FEATURES OF NORMS

When IÕd had my coffee this morning and went upstairs to get dressed for

work, I never considered being a nudist for the day.  When I got in my car to drive

to work, it never crossed my mind to drive on the left.  And when I joined my

colleagues at lunch, I did not consider eating my salad barehanded; without a

thought, I used a fork.

The point here is that many social conventions have two features of

interest.  First, they are self-enforcing behavioral regularities (Lewis 1969; Axelrod

1986; Young 1993a and 1995).  But second, once entrenched, we conform without

thinking about it.  Indeed, this is one reason why social norms are useful;  they

obviate the need for a lot of individual computing.  After all, if we had to go out

and sample people on the street to see if nudism or dress were the norm, and then

had to sample other drivers to see if left or right were the norm, and so on, weÕd

spend most of the day figuring out how to operate, and we wouldnÕt get much

accomplished.  Thoughtless conformity, while useful in such contexts, is

frightening in others--as when norms of discrimination become entrenched.  It

seems to me that the literature on the evolution of norms and conventions has

focused almost exclusively on the first feature of norms--that they are self-

enforcing behavioral regularities, often represented elegantly as equilibria of n-
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person coordination games possessing multiple pure-strategy Nash equilibria

(Young 1993a and 1995; Kandori, Mailith, and Rob 1991).

Goals

My aim here is to extend this literature with a simple agent-based model

capturing the second feature noted above, that individual thought--or computing--

is inversely related to the strength of a social norm.  In this model, then, agents

learn how to behave (what norm to adopt), but they also learn how much to think

about how to behave.  How much theyÕre thinking affects how they behave,

which--given how others behave--affects how much they think.  In short, there is

feedback between the social (inter-agent) and internal (intra-agent) dynamics.  In

addition, we are looking for the stylized facts regarding the spatio-temporal

evolution of norms: local conformity, global diversity, and punctuated equilibria

(Young, 1998).

AN AGENT-BASED COMPUTATIONAL MODEL

This model posits a ring of interacting agents.  Each agent occupies  a fixed

position on the ring and is an object characterized by two attributes.  One

attribute is the agentÕs Ònorm,Ó which in this model is binary.  We may think of
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these as Òdrive on the right (R) vs. drive on the left (L)."  Initially, agents are

assigned norms.  Then, of course, agents update their norms based on observation

of agents within some sampling radius.  This radius is the second attribute and is

typically heterogeneous across agents.  An agent with a sampling radius of 5 takes

data on the five agents to his left and the five agents to his right.  Agents do not

sample outside their current radius.  Agents update, or Òadapt,Ó their sampling

radii incrementally according to the following simple rule:

Radius Update Rule

 Imagine being an agent with current sampling radius of r.  First, survey all r

agents to the left and all r agents to the right.  Some have L (drive on the left) as

their norm and some have R (drive on the right).  Compute the relative frequency

of Rs at radius r; call the result F(r).  Now, make the same computation for radius

r+1.  If F(r+1) does not equal F(r), then increase your search radius to r+1.1

Otherwise, compute F(r-1).  If F(r-1) does equal F(r), then reduce your search

radius to r-1.  If neither condition obtains (i.e., if F(r+1)=F(r)≠F(r-1)), leave your

search radius unchanged at r.

                                    
1 When we say Ònot equalÓ we mean the difference lies  outside some tolerance, T.  That
is,  F(r+1)-F(r) >T for inequality, and  F(r+1)-F(r)≤ T for equality.  For our basic runs,
T=0.05.
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Agents are Òlazy statisticians,Ó if you will.  If theyÕre getting a different

result at a higher radius (F(r+1)≠F(r)), they increase the  radius--since, as

statisticians, they know larger samples to be more reliable than smaller ones.  But

they are also lazy.  Hence, if thereÕs no difference at the higher radius, they check

a lower one.  If thereÕs no difference between that and their current radius

(F(r-1)=F(r)), they reduce.  This is the agentÕs radius update rule.   Having

updated her radius, the agent then executes the Norm Update Rule.

Norm Update Rule

This is extremely simple:  match the majority within your radius.  If, at the

updated radius, Ls outnumber Rs, then adopt the L norm.  In summary, the rule

is: When in Rome, do as the (majority of) Romans do, with the (adaptive) radius

determining the Òcity limits.Ó This rule is equivalent to Best Reply to sample

evidence with a symmetric payoff matrix such as:

   L    R

L (1,1) (0,0)

R (0,0) (1,1)
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Following Young (1995), we imagine a coachman's decision to drive on the left or

the right.  "Among the encounters he knows about, suppose that more than half

the carriages attempted to take the right side of the road.  Our coachman then

predicts that, when he next meets a carriage on the road, the probability is better

than 50-50 that it will go right.  Given this expectation, it is best for him to go

right also (assuming that the payoffs are symmetric between left and right)."  The

coachman "calculates the observed frequency distribution of left and right, and

uses this to predict the probability that the next carriage he meets will go left or

right.  He then chooses a best reply,Ó which Young terms "best reply to recent

sample evidence."  Best reply maximizes the expected utility (sum of payoffs) in

playing the agent's sample population.2

The departure introduced here is that each individual's sample size is itself

adaptive.3  In particular, as suggested earlier, once a norm of driving on the left is

established (firmly entrenched) real coachmen don't calculate anything--they

(thoughtlessly and efficiently) drive on the left.  So, we want a model in which

"thinking"--individual computing--declines as a norm gains force, and effectively

                                    
2 For arbitrary payoff matrices, Best Reply is not  equivalent to the following rule:
Play the strategy that is optimal against the most likely type of opponent (i.e., the
strategy type most likely to be drawn in a single random draw from your sample).  For
our particular set-up, these are both equivalent to our "match the majority" update
rule.  These three rules part company if payoffs are not symmetric.

3 In best reply models, the sample size is fixed for each agent, and is equal across agents.
See Young (1995).



7

stops once the norm is entrenched.  Of course, we want our coachmen to start

worrying again if suddenly the norm begins to break down.  Of the many adaptive

individual rules one might posit, we will explore the radius update rule set forth

above.

Overall, the individualÕs combined (norm and search radius) updating

procedure might appropriately be dubbed Best Reply to Adaptive Sample Evidence.

Noise

 Finally, there is generally some probability that an agent will adopt a

random norm, a random L or R.   We think of this as a ÒnoiseÓ level in society.

Graphics

With this set-up, there are two things to keep track of:  the evolution of

social norm patterns on the agent ring, and the evolution of individual search radii.

In the runs shown below, there are 191 agents.  They are drawn at random and

updated asynchronously.  Clearly, each agentÕs probability of being drawn k times

per cycle (191 draws with replacement) has the Binomial distribution b(k; n, 1/n),

with n=191.  Agents who are not drawn keep their previous norm.  After 191
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draws--one cycle--the new ring is redrawn below the old one (as a horizontal

series of small contiguous black and white dots), so time is progressing down the

page.  There are two Panels.  The left Panel shows the evolution of norms, with L-

agents colored black and R-agents colored white.  With the exception of Run 4,

each entire Panel displays 300 cycles (each cycle, again, being a sequence of 191

random calls.)  The right window shows the evolution of search radii, using

grayscale.  Agents are colored black if r=1, with progressively higher radii depicted

as progressively lighter shades of gray.

RUNS OF THE MODEL

We present seven basic runs of this model, and some statistical and

sensitivity analysis.  Once more, we are looking for the stylized facts regarding the

evolution of norms: Local conformity, global diversity, and punctuated equilibria

(Young, 1998).  But we wish also to reflect the rise and fall of individual

computing as social norms dissolve and become locked in.
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Run 1.  Monolithic Social Norm, Individual Computing Dies Out

For this first run, we set all agents to the L norm (coloring them black)

initially and set noise to zero.  We give each agent a random initial search radius

between 1 and 60 (artificially high to show the strength of the result in the

monolithic case).  There is no noise in the decision-making.  The uppermost line

(the initial population state) of the right graph (191 agents across) is multi-shaded,

reflecting the random initial radii.  Let us now apply the radial update rule to an

arbitrary agent with radius r.  First look out further.  We find that F(r+1)=F(r),

since all agents are in the L norm (black).  Hence, try a smaller radius.  Since

F(r-1)=F(r), the agent reduces from r to r-1.  Now, apply the norm update rule.

At this new radius, match the majority.  Clearly, this is L (black), so stay L.  This

is the same logic for all agents.  Hence, on the left panel of figure 1, the L social

norm remains entrenched, and, as shown in the right panel, individual "thinking"

dies out--radii all shrink to the minimum of 1 (colored black).
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Figure 1.  Monolithic Norms Induce Radial Contraction

Norm Radius

Run 2.  Random Initial Norms, Individual Computing At Norm Boundaries

With noise still at zero, we now alter the initial conditions slightly.  In this,

and all subsequent runs, the initial maximum search radius is 10.  Rather than set

all agents in the L norm initially, we give them random norms.  In figure 2, we see

a typical result.
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Figure 2.  Local Conformity, Global Diversity, and Thought at Boundaries

Norm Radius

In the left panel, there is rapid lock-in to a global pattern of alternating local norms

on the ring.  In the right panel, we see that deep in each local norm, agents are

colored black: there is no individual computing, no "thinking,Ó as it were.  By

contrast, agents at the boundary of two norms must worry about how to behave,

and so are bright-shaded.4  (For future reference notice that, since there are two

edges for each local norm--each stripe on the left panel--the average radius will

stabilize around different values from run to run, depending on the number of

different norms that emerge).

                                    
4 For the particular realization shown in Figure 2, the average radius settles (after the
initial transient phase) to around 3.
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Run 3.  Complacency in New Norms

In the 1960Õs, people smoked in airplanes, restaurants, and workplaces,

and no one gave it much thought.  Today, it is equally entrenched that smoking is

prohibited in these circumstances.  The same point applies to other social norms

(e.g., revolutions in styles of dress) and to far more momentous political ones

(e.g., voting rights, segregation of water fountains, lunch counters, and seats on the

bus).  After the "revolution" entirely new norms prevail, but once entrenched,

people become inured to them; they are observed every bit as thoughtlessly (in

our sense) as before.  I often feel that the same point applies to popular beliefs

about the physical world; these represent a procession of conventions rather than

any real advance in the average person's grasp of science.  For example, if you had

asked the average 14th Century European if the earth were round or flat, he'd have

said "flat."  If, today, you ask the average American the same question, you'll

certainly get a different response: "round."  But I doubt that the typical American

could furnish more compelling reasons for his correct belief than our 14th Century

counterpart could have provided for his erroneous one.  Indeed, on this test, the

"modern" person will likely fare worse: at least the 14th Century "norm" accorded

with intuition.  Maybe we're going backward!  In any event, there was no

"thinking" in the old norm, and there's little or no thinking in the new one.  Again,
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the point is that after the "revolution," new conventions prevail, but once

entrenched, they are conformed to as thoughtlessly as their predecessors.  Does

our simple model capture that basic phenomenon?

In Run 3, we begin as before, with randomly distributed initial norms and

zero noise.  We let the system "equilibrate," locking into neighborhood norms (as

before, these appear as vertical stripes over time).  Then, at t=130, we shock the

system, boosting the level of noise to 1.0, and holding it there for ten periods.

Then we turn the noise off and watch the system re-equilibrate.  Figure 3

chronicles the experiment.
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Figure 3. Re-Equilibration After Shock

Norm Radius

After the shock, an entirely new pattern of norms is evident on the left-hand page.

But, looking at the right-hand radius page, we see that many agents who were

thoughtlessly in the L norm (black) before the shock are equally thoughtlessly in

the R norm (white) after.

A time series plot of average radius over the course of this experiment is

also revealing.  See figure 4.
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Figure 4. Shock Experiment.
Time Series of Average Radius

Following an initial transient phase, the mean radius attains a steady state value of

roughly 2.25.  During the brief "shock" period of maximum noise, the average

radius rises sharply, reflecting the agents' frenetic search for appropriate behavior

in a period of social turmoil.  One might expect that, with noise restored to zero,

the average radius would relax back to its pre-shock value.  In fact--as

foreshadowed above--the post-shock steady state depends on the post-shock

number of local norms.  The lower the diversity, the lower the number of borders

and, as in the present run, the lower the average radius.

Average
Radius

Time
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Run 4. Noise of 0.15  and Endogenous Neighborhood Norms

Now, noise levels of zero and one are not especially plausible.  What norm

patterns, if any, emerge endogenously when initially random agents play our

game, but with a modest level of noise (probability of adopting a random norm)?

The next four runs use the same initial conditions as Run 2, but add increasing

levels of noise.  With noise set at 0.15, we obtain dynamics of the sort recorded in

figure 5.
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Figure 5. Noise of 0.15 and Endogenous Norms

Norm Radius

Again, we see that individual computing is most intense at the norm borders--

regions outlining the norms.  We also see the emergence and disappearance of

norms, the most prominent of which is the white island that comes into being and

then disappears.  One can think of islands as indicating punctuated equilibria.  For
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the realization depicted spatially above, the time series for average radius is given

in figure 6.

Figure 6. Noise of 0.15
Times Series of Average Radius

Following an initial transient phase, the average search radius clearly settles at

roughly 2.0 for this realization.5  Even at zero cost of sampling, in other words, a

"stopping rule" for the individual search radius emerges endogenously through

local agent interactions.  And this obtains at all levels of noise, as we shall see.

Now, in the cases preceding this one, there was zero noise in the agentsÕ

decision-making, and--although there would be run-to-run differences due to initial

                                    
5 For the sake of visibility, the vertical axis ranges from zero to five.   While, at this
resolution, the plot may appear quite variable, the fluctuations around 2.0 are minor,
given that the maximum possible radius is (n-1)/2, or 95 in this case.

Average
Radius

Time
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conditions and random agent call order--the point of interest was qualitative, and

did not call for statistical discussion.  However, in this and subsequent cases, there

is noise, and quantitative matters are of interest.  Hence, data from a single

realization may be misleading and a statistical treatment is appropriate.  The

statistical analysis of simulation output has itself evolved into a large area, and

highly sophisticated methods are possible.  See Law and Kelton (1991) and

Feldman and Valdez-Flores (1996).  Our approach will be simple.

Statistical Results

To estimate the expected value of the long-run average search radius in this

noise=0.15 case, the model was rerun 30 times (so that, by standard appeal to the

central limit theorem, a normal approximation is defensible) with a different

random seed each time (to insure statistical independence across runs).  In each

run, the mean data were sampled at t=300  (long after any initial transient had

damped out).  For a considered discussion of simulation stopping times, and all

the complexities of their selection, see Judd (1999).  The resulting 95 percent

confidence interval6 for the steady state mean search radius is [1.89, 2.03].  We

double the noise level to 0.30 in Run 5.

                                    
6 This is computed as x z

s

n
± 0 025.  as in Freund  (1992; p, 402), with z0 025. =1.96, and x

the average and s the standard deviation over our  n=30 runs.
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Run 5. Noise of 0.30 and Endogenous Neighborhood Norms

The result is a more elaborate spatial patterning than in the previous run.

Again, however, we see regions of local conformity amidst a globally diverse

pattern.

Figure 7. Noise of 0.30 and Endogenous Norms

Norm Radius

In this run, we see the emergence of white and black islands, indicating punctuated

equilibria once more.  For this realization, the mean radius time series is plotted in

Figure 8.
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Figure 8. Noise of 0.30
Time Series of Average Radius

Computed as above, the 95% confidence interval for the steady state mean radius

is [2.89, 3.04].

Run 6.  Noise of 0.50

Pushing the noise to 0.50 results in the patterning shown in figure 9, for

which the average radius is plotted in figure 10.

Average
Radius

Time
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Figure 9. Noise of 0.50

Norm Radius

Figure 10. Noise of 0.5
Time Series of Average Radius

The 95% confidence interval for the long-run average search radius is [3.73, 3.81].

Average
Radius

Time
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Run 7.  Maximum Noise Does Not Induce Maximum Search

Finally, we fix the noise level at its maximum value of 1.0, meaning that

agents are adopting the Left and Right convention totally at random.  One might

assume that, in this world of maximum randomness, agents would continue to

expand their search to its theoretical maximum of (n-1)/2, or 95 in this case.  But

this is not what happens, as evident in figure 11.  Indeed, as plotted in figure 12, it

rises only to about 4.5.  Computed as above, the 95% confidence interval is [4.53,

4.63].

Figure 11.  Noise of 1.0

Norm Radius
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Figure 12. Noise of 1.0
Time Series of Average Radius

Thinking--individual computing--is minimized in the monolithic world of Run 1.

But, it does not attain its theoretical maximum in the totally random world of this

run.

Figure 13 gives a summary plot of the long-run average radius (middle

curve) and 95% confidence intervals (outer curves) for noise levels ranging from 0

to 1, in increments of 0.05.  Note that, at all noise levels, the confidence intervals

are extremely narrow.

Average
Radius

Time
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Figure 13.  Steady State Average Radius
and Confidence Intervals as Function of Noise

at Tolerance = 0.05.

Sensitivity to the Tolerance Parameter

In all of the runs and statistical analyses given above, the tolerance

parameter (see footnote 1) was set at 0.05, meaning that in applying the radius

update rule, the agent regards F(r) and F(r+1) as equal  if they are within 0.05 of

one another.  The agent's propensity to expand the search radius is inversely

related to the tolerance.  Figure 14 begins to explore the general relationship.  For

tolerances of 0.025 and 0.10, it displays the same triplet of curves as shown in

figure 13 for T=0.05 (which curve is also reproduced).  All confidence intervals are

again very narrow.
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Figure 14.  Steady State Average Radii
and Confidence Intervals as Function of Noise

at Various Tolerances, Sampling at t=300

Even at the lowest tolerance of 0.025,7 the average search radius does not attain

the theoretical maximum even if the noise level does.

Finally, just to ensure that these results on the boundedness of search are

not an artifact of sampling at t=300, we conducted the same analysis again, but

sampling at t=10,000.  The results are compared in figure 15.  The solid curves are

the average search radii from the previous figure, computed at t=300.  The dotted

curves are the corresponding data computed at t=10,000.  Clearly, for noise above

roughly 0.20, there are no discernable differences at any of the three tolerances.

                                    
7 Tolerances much below this are of questionable interest.  First, we detect virtually no
spatial norm patterning.  Second, one is imputing to agents the capacity to discern
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(And for the low noise cases where there is some small difference, it is in fact the

t=10,000 curve that is lower.)8  Search is bounded, even when noise is not.9

Figure 15.  Steady State Average Radii
as Function of Noise at Various Tolerances,

Sampling at t=300 vs t=10,000

                                                                                                   
differences in relative norm frequency finer than 25 parts in a thousand, which begins to
strain credulity.
8 The 95% confidence intervals (not shown) about the t=10,000 curves are extremely
narrow, as in the t=300 cases.
9 This demonstrated stability of the average search radius to t=10,000 does not
preclude mathematically the asymptotic approach to other values; an analytical
treatment would be necessary to do that.  On the other hand, even if established, the
existence of asymptotic values significantly different from those that persist to (at
least) t=10,000 would be of debatable interest.  As Keynes put it, "In the long run, we are
all dead."
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SUMMARY

My aim has been to extend the literature on the evolution of social norms

with a simple agent-based computational model that generates the stylized facts

regarding the evolution of norms--local conformity, global diversity, and

punctuated equilibria--while capturing a central feature of norms that has been

essentially ignored: that individual computing is often inversely related to the

strength of a social norm.  As norms become entrenched, we conform

thoughtlessly.  Obviously, many refinements, further sensitivity analyses,

analytical treatments, and extensions are possible.  But the present exposition

meets these immediate and limited objectives.

Java Implementation

The model has been implemented in C++ and in Java.  The Java

implementation uses ASCAPE, an agent modeling environment developed at

Brookings. Readers interested in running the model under their own assumptions

may do so in Java at http://www.brook.edu/es/dynamics/models/norms/.
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