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We study a very simple model of leveraged asset purchases with margin
calls. Investment funds use what is perhaps the most basic financial
strategy, called “value investing”, i.e. systematically attempting to buy
underpriced assets. When funds do not borrow, the price fluctuations of
the asset are normally distributed and uncorrelated across time. All this
changes when the funds are allowed to leverage, i.e. borrow from a bank,
to purchase more assets than their wealth would otherwise permit. When
funds use leverage, price fluctuations become heavy tailed and display
clustered volatility, similar to what is observed in real markets. Previous
explanations of fat tails and clustered volatility depended on “irrational
behavior”, such as trend following. We show that the immediate cause
of the increase in extreme risks in our model is the risk control policy of
the banks: A prudent bank makes itself locally safer by putting a limit
to leverage, so when a fund exceeds its leverage limit, it must partially
repay its loan by selling the asset. Unfortunately this sometimes happens
to all the funds simultaneously when the price is already falling. The
resulting nonlinear feedback amplifies downward price movements. At
the extreme this causes crashes, but the effect is seen at every time scale,
producing a power law of price disturbances. A standard (supposedly
more sophisticated) risk control policy by individual banks makes these
extreme fluctuations even worse. Thus it is the very effort to control risk
at the local level that creates excessive risk at the aggregate level, which
shows up as fat tails and clustered volatility.
JEL: E32, E37, G01, G12, G14
Keywords: systemic risk, clustered volatility, fat tails, crash, margin
calls, leverage

Recent events in financial markets have underscored the dangerous consequences of the
use of excessive credit. At the most basic level the problem is obvious: If a firm buys
assets with borrowed money, then under extreme market conditions it may owe more
money than it has and default. If this happens on a sufficiently wide scale then it can
severely stress creditors and cause them to fail as well.
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We show here that a special but extremely widespread kind of credit called collater-
alized loans with margin calls has a more pervasive effect: when used excessively it can
cause default and crashes, but it also leaves a signature even when there is no default or
crash. These kinds of loans have already been identified as a major culprit in the recent
crisis, and in previous near crises as well1. But we show here that they create a dynamic
in asset price fluctuations that manifests itself at all time scales and to all degrees. The
extraordinary crisis of the last couple years is just one extreme (but not extremal) point
on a continuum.

By taking out a collateralized loan a buyer of stocks or mortgage backed securities
can put together a portfolio that is worth a multiple of the cash he has available for
their purchase. In 2006 this multiple or ”leverage” reached 60 to 1 for AAA rated mort-
gage securities, and 16 to 1 for what are now called the toxic mortgage securities. The
outstanding volume of these leveraged asset purchases reached many trillions of dollars.
Leverage has fluctuated up and down in long cycles over the last 30 years.

Conventional credit is for a fixed amount and a fixed maturity, extending over the
period the borrower needs the money. In a collateralized loan with margin calls, the
debt is guaranteed not by the reputation (or punishment) of the borrower, but by an
asset which is confiscated if the loan is not repaid. Typically the loan maturity is very
short, say a day, much shorter than the length of time the borrower anticipates needing
the money. The contract usually specifies that after the daily interest is paid, as long
as the loan to value ratio remains below a specified threshold, the debt is rolled over
another day (up to some final maturity, when the threshold ratio might be changed). If,
however, the collateral asset value falls, the lender makes a margin call and the borrower
is expected to repay part of the debt and so roll over a smaller loan to maintain the
old loan to value threshold. Quite often the borrower will obtain the cash for this extra
downpayment by selling some of the collateral. The nature of the collateralized loan
contract thus sometimes turns buyers of the collateral into sellers, even when they might
think it is the best time to buy.

Needless to say, the higher the loan to value, or equivalently, the higher the leverage
ratio of asset value to cash downpayment, the more severe will be the feedback mechanism.
A buyer who is at his threshold of λ times leveraged loses λ% of his investment for every
1% drop in the asset price, and on top of that will have to come up with $(λ − 1)/λ
of new cash for every $1 drop in the price of the asset. When there is no leverage, and
λ = 1, there is no feedback, but as the leverage increases, so does the feedback.

The feedback from falling asset prices to margin calls to the transformation of buyers
into sellers back to falling asset prices creates a nonlinear dynamic to the system. The
nonlinearity rises as the leverage rises. This nonlinear feedback would be present in the
most sophisticated rational expectations models or in the most simple minded behavioral
models: it is a mechanical effect that stems directly from the nonlinear dynamics caused
by the use of leverage and margin calls. We therefore build the simplest model possible
and then simulate it over tens of thousands of periods, measuring and quantifying the
effect of leverage on asset price fluctuations.

Our model provides a new explanation for the fat tails and clustered volatility that
are commonly observed in price fluctuations (Mandelbrot 1963, Engle 1982). Clustered
volatility and fat tails emerge in the model on a broad range of time scales, including very
rapid ones and very slow ones. Mandelbrot and Engle found that actual price fluctuations
did not display the independent and normally distributed properties assumed by the
pioneers of classical finance (Bachelier and Black-Scholes). Though their work has been
properly celebrated, no consensus has formed on the mechanism which creates fat tails

1For previous equilibrium-based analyses of leverage, which show that prices crash before default
actually occurs, see Geanakoplos (Geanakoplos 1997, Geanakoplos 2003, Fostel 2008, Geanakoplos 2009).
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and clustered volatility. Common sense suggests there must be some endogenous dynamic
at work, since it is unlikely that information itself (which moves markets) is heavy tailed
and clustered.

Previous endogenous explanations assume that market traders are of at least two types:
value investors, who make investments based on fundamentals, and trend followers, who
make investments in the direction of recent price movements2. Trend followers are in-
herently destabilizing, and many would dispute whether such behavior is rational. Value
investors, in contrast, are essential to maintain a reasonably efficient market: They gather
information about valuations, and incorporate it into prices. Thus in this sense value in-
vesting is rational. In typical models of this type, investors move their money back and
forth between trend strategies and value strategies, depending on who has recently been
more successful, and fat tails and clustered volatility are generated by temporary in-
creases in destabilizing trend strategies. The mechanism that we propose here for fat
tails and clustered volatility only involves value investors, who leverage their investments
by borrowing from a bank. Clustered volatility and fat tails emerge on a broad range
of time scales, including very rapid ones; our explanation has the advantage that it can
operate on such time scales (whereas it is not obviously plausible that real agents switch
from value investing to trend following at rapid speed).

An important aspect of our model is that even though the risk control policies used
by the individual bank lenders are reasonable from a narrow, bank-centric point of view,
when a group of banks inadvertently acts together, they can dramatically affect prices,
inducing nonlinear behavior at a systemic level that gives rise to excessive volatility and
even crashes. Attempts to regulate risk without taking into account systemic effects can
backfire, accentuating risks or even creating new ones.3

In our model traders have a choice between owning a single asset, such as a stock or
a commodity, or owning cash. There are two types of traders, noise traders and funds.
The noise traders buy and sell nearly at random, with a slight bias that makes the price
weakly mean-revert around a perceived fundamental value V . The funds use a strategy
that exploits mispricings by taking a long position (holding a net positive quantity of the
asset) when the price is below V , and otherwise staying out of the market. The funds
can augment the size of their long position by borrowing from a bank at an interest rate
that for simplicity we fix at zero, using the asset as collateral. This borrowing is called
leverage. The bank will of course be careful to limit its lending so that the value of what
is owed is less than the current price of the assets held as collateral. Default occurs if the
asset price falls sufficiently far before the loan comes due in the next period.

In addition to the two types of traders there is a representative investor who either
invests in a fund or holds cash. The amount she invests in a given fund depends on its
recent historical performance relative to a benchmark return rb. Thus successful funds
attract additional capital above and beyond what they gain in the market and similarly
unsuccessful funds lose additional capital.

The funds in our model are value investors who base their demand on a mispricing
signal m(t) = V − p(t), where p(t) is the price of the asset at time t. The perceived
fundamental value V is held constant and is the same for the noise traders and for all
funds. As shown in Figure 1, each fund h computes its demand Dh(t) based on the
mispricing. As the mispricing increases, the dollar value of the asset the fund wishes
to hold increases linearly, but the position size is capped when the fund reaches the

2See (Palmer 1994, Arthur 1997, Brock 1997, Brock 1998, Lux 1999, Lux 1999, Caldarelli 1997,
Giardina 2003). See also (Friedman 2007), who induce bubbles and crashes via myopic learning dynamics.

3Another good example from the recent meltdown illustrating how individual risk regulation can
create systemic risk is the use of derivatives.
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Figure 1: Demand function Dh(t)p(t) of a fund (measured in dollars) vs. the mispricing signal

m(t) = V − p(t).

maximum leverage. This can be written:

m < 0 : Dh = 0(1)
0 < m < mcrit : Dhp = βhmWh(2)

m ≥ mcrit : Dhp = λMAX
h Wh.(3)

In (1) the asset is over-priced and the fund holds nothing. In (2) the asset is underpriced
but the mispricing is not too large. The fund takes a position whose monetary value is
proportional to the mispricing m, the fund’s wealth W , and the aggression parameter
βh, which can vary from fund to fund. In (3) the asset is even more underpriced so
that the fund has reached its maximum leverage λh(t) = λMAX

h . This occurs when
m ≥ mcrit = λMAX

h /βh. The leverage λh is the ratio of the dollar value of the fund’s
asset holdings to its wealth, i.e. λh(t) = Dhp/Wh = Dhp/(Dhp+ Ct), where Ct is cash.
When the fund is borrowing money, Ct is negative and represents the loan amount. The
percent change in wealth from a loss or gain in the asset price is λh times the percent
change in the value of the asset, hence the name “leverage”. If λh = λMAX

h > 1 and then
in the next period the price decreases, staying under the maximum leverage will then
require the fund to sell the asset. This is called meeting a margin call.

At the beginning of the simulation the funds are all given the same wealth W (0) = 2.
Their wealth automatically grows or shrinks according to the success or failure of their
trading. In addition it changes due to additions or withdrawals of funds by investors.
The size of the addition or withdrawal is determined by the difference between a trailing
exponential average of the fund’s recent performance and the benchmark return rb. If a
fund’s wealth goes below a critical threshold, here set to W (0)/10, the fund goes out of
business4, and after a period of time has passed it is replaced by a new fund with wealth
W (0) and the same parameters βh and λMAX. If W (t) < 0 then the fund defaults. Prices
are set by equating the demand of the funds plus the noise traders to the fixed supply of
the asset. The details of the simulation and the fixed parameter values are given in the

4Using a positive survival threshold for removing funds avoids the creation of “zombie funds” that
persist for long periods of time with almost no wealth.
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Figure 2: Wealth timeseries Wh(t) for 10 funds with βh = 5, 10, . . . , 50 and λmax
h = 20 for all

funds. Times at which (at least) one fund collapses are marked by triangles.

Supplementary Material5.
The benchmark return rb plays an important role. If the benchmark return is set

very low then funds will become very wealthy and will buy a large quantity of the asset
under even small mispricings, preventing the mispricing from ever growing large. This
effectively induces a hard floor on prices. If the benchmark return is set very high, funds
accumulate little wealth and play a negligible role in price formation. The interesting
behavior is observed at intermediate values of rb where the funds’ demand is comparable
to that of the noise traders.

In Fig. 2 we illustrate the wealth dynamics for a simulation with 10 funds whose
aggression parameters are βh = 5, 10, . . . , 50. They all begin with the same low wealth
W (0) = 2; at the outset they make good returns and their wealth grows quickly. This
is particularly true for the most aggressive funds; with higher leverage they make higher
returns so long as the asset price is increasing. As their wealth grows the funds have more
impact, i.e. they themselves affect prices, driving them up when they are buying and
down when they are selling. This limits their profit-making opportunities and imposes
a ceiling of wealth at about W = 40. There is a series of crashes which cause defaults,
particularly for the most highly leveraged funds. Twice during the simulation, at around
t = 10, 000 and 25, 000, crashes wipe out all but the two least aggressive funds with
βh = 5, 10. While funds β3 − β10 wait to get reintroduced, fund β2 manages to become
dominant for extended periods of time.

The presence of the funds dramatically alters the statistical properties of price returns.
This is illustrated in Fig. 3, where we compare the distribution of logarithmic price
returns r(t) = log p(t) − log p(t − 1), for three cases: (1) Noise traders only. (2) Hedge
funds with no leverage (λMAX = 1). (3) Substantial leverage, i.e. λMAX = 10. With
only noise traders the log returns are (by construction) nearly normally distributed.
When funds are added without leverage the volatility of prices drops slightly, but the
log returns remain approximately normally distributed. When we increase leverage to
λMAX = 10, however, the distribution becomes much more concentrated in the center
and the negative returns develop fat tails. (Recall that since the funds are long-only,
they are only active when the asset is undervalued, i.e. when the mispricing m > 0. This

5The Supplementary Material can be found at http://www.santafe.edu/ jdf/SFI%20Template/PubsEconomics.html.
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Figure 3: The distribution of log returns r. (a) plots the density of log returns p(r|m > 0)

on semi-log scale. The results are conditioned on positive mispricing, i.e. only when the

funds are active. The unleveraged case (red circles) closely matches the noise trader only

case (red curve). When the maximum leverage is raised to ten (blue squares) the body of the

distribution becomes thinner but the tails become heavy on the negative side. This is seen

from a different point of view in (b), which plots the cumulative distribution for negative

returns, P (r > R|m > 0), in log-log scale. For λMAX = 10 we fit a power law to the data

across the indicated region and show a line for comparison. In (c) we vary λMAX and plot

fitted values of γ, illustrating how the tails become heavier as the leverage increases. We

use the parameter settings described in the Supplementary material with the same β values

as in Figure 1.
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Figure 4: Log-return timeseries (a) λMAX = 1; (b) λMAX = 10. Triangles mark margin calls in

the simulation, indicating a direct connection between large price moves and margin calls.

(c) Autocorrelation function of the absolute values of log-returns for (a-b) obtained from

a single run with 100, 000 timesteps. This is plotted on log-log scale in order to illustrate

the power law tails. (The autocorrelation function is computed only when the mispricing is

positive.) Same β values as in Figure 1.
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Figure 5: Comparison of the default rate with constant maximum leverage (red circles) vs.

adjustable leverage based on recent historical volatility (blue squares). For details of how

leverage is adjusted see Supplementary Material. 10 funds were considered with the same β

values as in Figure 1.

creates an asymmetry between positive and negative returns.) As shown in Fig. 3(b), for
λMAX = 10 the cumulative distribution for the largest negative returns roughly follows a
straight line in a double logarithmic scale, suggesting that it is reasonable to approximate
the tails of the distribution as a power law, of the form P (r > R|m > 0) ∼ R−γ .

The exponent γ may be regarded as a measure of the concentration of extreme risks.
The transition from normality to fat tails occurs more or less continuously as λMAX varies.
This is in contrast to the conjecture of Plerou et al.(Plerou 1999, Gabaix 2003, Gabaix
2006, Plerou 2008) that γ has a universal value γ ≈ 3. In Figure 3(c) we measure γ as a
function of λMAX. As λMAX increases γ decreases, corresponding to heavier tails6. This
trend continues until λMAX ≈ 10, where γ reaches a floor at γ ≈ 2.5. A typical value
measured for financial time series, such as American stocks (Plerou 1999, Cont 2000), is
γ ≈ 3. In our model this corresponds to a maximum leverage λMAX ≈ 7.5. It is perhaps
a coincidence that 7.5 is the maximum leverage allowed for equity trading in the United
States, but in any case this demonstrates that the numbers produced by this model are
reasonable.

In Fig. 4 we show the log-returns r(t) as a function of time. The case λMAX = 1 is es-
sentially indistinguishable from the pure noise trader case; there are no large fluctuations
and little temporal structure. The case λMAX = 10, in contrast, shows large, temporally
correlated fluctuations. The autocorrelation function shown in panel (c) is similar to that
observed in real price series. This suggests that this model may also explain clustered
volatility (Engle 1982).

The fat tails of price movements in our model are explained by the nonlinear positive
feedback that occurs when leverage hits its maximum value. When leverage is below its
maximum, funds damp volatility. Intuitively this is because they buy when the price
falls, opposing and therefore damping price movements. In comparison to the volatility

6The value of γ when λ = 1 should be infinite, in contrast to the measured value. Large values of γ
are difficult to measure correctly, whereas small values are measured much more accurately.
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for noise traders alone, the expected volatility E[r2t ] is damped by a factor approximately
1/(1 + β

N (Ch + DhV )) < 1, where N is the total number of shares of the asset. This is
shown in the Supplementary Material.

When funds reach their maximum leverage this reverses and funds instead amplify
volatility. To remain below λMAX the fund is forced to sell when the price falls. The
volatility in this case is amplified by a factor approximately 1/(1 − λMAX

N V ) > 1. This
creates a positive feedback loop: Dropping prices cause funds to sell, which causes a
further drop in prices, which causes funds to sell. This is clearly seen in Fig. 4(b), where
we have placed red triangles whenever at least one of the funds is at its maximum leverage.
All the largest negative price changes occur when leverage is at a maximum. Thus we
see that the final cause of the extreme price movements is the margin call, which funds
can meet only by selling and driving prices further down. Of course we are not saying
banks should not maintain leverage at a reasonable level; we are only saying that if they
all maintain leverage at a similar level, many funds may make margin calls at nearly the
same time, inducing an instability in prices.

In an attempt to achieve better risk control, banks often vary the maximum leverage
based on the recent historical volatility of the market, lowering maximum leverage when
volatility is high and raising it when it is low. This is prudent practice when lending
to a single fund. But as shown in Fig. 5 this can be counterproductive when all the
funds might be deleveraged at the same time. The reason for this is simple: Lowering
the maximum leverage across all funds can cause massive selling at just the wrong time,
creating more defaults rather than less. Once again, an attempt to improve risk control
that is sensible if one bank does it for one fund can backfire and create more risk if every
bank does it with every fund.

The use of leverage in the economy is not just an esoteric matter relating to funds:
It is unavoidable. It is the mechanism through which most people are able to own
homes and corporations do business. Credit (and thus leverage) is built into the fabric of
society. The current financial crisis perfectly illustrate the dangers of too much leverage
followed by too little leverage. Like Goldilocks, we are seeking a level that is “just right”
(Peters 2009).

We are not the first to recognize the downward spiral of margin calls. After the Great
Depression the Federal Reserve was empowered to regulate margins and leverage. The
model we have developed here provides a quantifiable framework to explore the conse-
quences of leverage and its regulation. Recent empirical work has found a correlation
betweeen leverage and volatility (Adrian 2008), but our work suggests a more subtle re-
lationship. We make the falsifiable prediction that high leverage limits, such as we had
in reality until very recently, cause increased clustering of volatility and fat tails, and
that these effects should go up and down as leverage goes up and down. We have shown
that when individual lenders seek to control risk through adjusting leverage, they may
collectively amplify risk. Our model can be used to search for a better collective solution,
perhaps coordinated through government regulation.

At a broader level, this work shows how attempts to regulate risk at a local level can
actually generate risks at a systemic level. The key element that creates the risk is the
nonlinear feedack on prices that is created due to repaying loans at a bad time. This
mechanism is actually quite general, and also comes into play with other risk control
mechanisms, such as stop-loss orders and many types of derivatives, whenever they gen-
erate buying or selling in the same direction as price movement. We suspect that this is a
quite general phenomenon, that occurs in many types of systems whenever optimization
for risk reduction is done locally without fully taking collective phenomena into account.
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