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From Factors to Actors:

Computational Sociology and Agent-Based Modeling

Introduction: Agent-Based Models and Self-Organizing Group Processes

Consider a flock of geese flying in tight formation. Collectively, they form the image of a

giant delta-shaped bird that moves as purposively as if it were a single organism. Yet the flock

has no “group mind” nor is there a “leader bird” choreographing the formation (Resnick 1994).

Rather, each bird reacts to the movement of its immediate neighbors who in turn react to it. The

result is the graceful dance-like movement of the flock whose hypnotic rhythm is clearly

patterned yet also highly non-linear.

If we tried to model the global elegance of the flock, the task would be immensely difficult

because of the extreme complexity in its movement. Yet the task turns out to be remarkably easy

if instead we model the dynamics of local interaction. This was demonstrated by Craig Reynolds

(1987) when he modeled the movement of a population of artificial “boids” based on three

simple rules:

• Separation: Don't get too close to any object, including other boids.

• Alignment: Try to match the speed and direction of nearby boids.

• Cohesion: Head for the perceived center of mass of the boids in your immediate

neighborhood.

Reynold’s computational method is called “agent-based modeling.” Had Reynolds chosen

instead to write a “top down” program for the global behavior of the flock, he might still be

working on it. By choosing instead to model the flock from the bottom up, based on agent-level
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interaction, he was able to produce highly realistic flight formations using very simple rules that

imposed relatively small computational demands.2 Note that Reynolds did not model the flock,

nor did he model isolated birds. He modeled theirinteraction, at the relational level.

Agent-based models (hereafter ABMs) of human social interaction are based on this same

theory-building strategy. Like flocks of birds, human group processes are highly complex, non-

linear, path dependent, and self-organizing. We may be able to understand these dynamics much

better not by trying to model them at the global level but instead as emergent properties of local

interaction among adaptive agents who influence one another in response to the influence they

receive.

Despite growing interest in relational modeling and computational methods, sociologists

have not fully appreciated the potential for ABMs as tools for theoretical research. This review

of recent developments is intended to demonstrate how this technique can provide sociologists

with a more rigorous method for specifying the microfoundations of global patterns at the

relational level. We begin with a brief historical sketch of the shift from factors to actors in

computational sociology that shows how agent-based modeling differs fundamentally from

earlier sociological uses of computer simulation. We then review recent contributions focused on

two problems, the emergence of social structure and social order out of local interaction. We

conclude with a set of recommendations, including a criticism of the microsociological bias in

agent-based modeling and identification of a research strategy that can bring “factors” back in to

agent-based computational sociology.

2 Reynold’s “boids” were so realistic that they provided the starting point for bat swarms in the moviesBatman Returnsand
Cliffhanger. You can see the “boids” in action at www.discovery.com/area/life/life1.3.html.
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Historical Development of Agent Based Models

Computer simulation is more tractable (but less generalizable) than mathematical modeling

and more rigorous (but less nuanced) than natural language. Gilbert and Troitzsch (1999)

identify three periods in the development of social simulation over the past half-century:

dynamical systems, microsimulation, and adaptive agent models. In the 1960’s, the first wave of

innovation used computers to simulate control and feedback processes in organizations,

industries, cities, and even global populations. The models typically consisted of sets of

differential equations that described changes in system attributes as a holistic function of other

systemic changes. Applications included the flow of raw materials in a factory, inventory control

in a warehouse, urban traffic, military supply lines, demographic changes in a world system, and

ecological limits to growth (Forrester 1971; Meadows 1974).

Beginning in the 1970’s, computer modelers introduced the use of individuals as the units of

analysis but retained the earlier emphasis on empirically based macro-level forecasting. In

striking contrast to the holistic approach in models of dynamical systems, “microsimulation is a

‘bottom-up’ strategy for modeling the interacting behavior of decision makers (such as

individuals, families and firms) within a larger system. This modeling strategy utilizes data on

representative samples of decision makers, along with equations and algorithms representing

behavioral processes, to simulate the evolution through time of each decision maker, and hence

of the entire population of decision makers” (Caldwell 1997). However, the models do not

permit individuals to directly interact or to adapt. Nor are the models designed or used for basic

theoretical research; the primary orientation is toward applied research, mainly forecasting macro
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effects of public policies that alter individual behavior. In that sense, these models remain

equation-based, like the earlier dynamical systems models.

The third wave in social simulation, agent-based modeling, coincided with the advent of the

personal computer in the 1980’s. Like microsimulation, these “bottom-up” models explored the

micro-foundations of global patterns. The difference is that, unlike the socially isolated actors in

microanalytical simulation, the agents now interact. More precisely, ABMs impose four key

assumptions:

1. Agents interact with little or no central authority or direction.Global patterns emerge from

the bottom up, determined not by a centralized authority but by local interactions among

autonomous decision-makers. This process is known as “self-organization” (Kaufman 1996).

2. Agents are interdependent.All ABMs assume that agents influence others (directly or

indirectly) in response to influence that they receive. Some models go further to assume that

agents are also strategically interdependent. This means that the consequences of each

agent’s decisions depend in part on the choices of others.

3. Agents follow simple rules.Global complexity does not necessarily reflect the cognitive

complexity of individuals. “Human beings,” Simon contends (1998, p. 53), “viewed as

behaving systems, are quite simple.” We follow rules, in the form of norms, conventions,

protocols, moral and social habits, and heuristics. Although the rules may be quite simple,

they can produce global patterns that may not be at all obvious and are very difficult to

understand. Hence, Simon continues, “the apparent complexity of our behavior is largely a

reflection of the complexity of the environment.” ABMs are designed to explore the minimal

conditions, the simplest set of assumptions about human behavior, required for a given social

phenomenon to emerge at a higher level of organization.
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4. Agents are adaptive and backward-looking.When interdependent agents are also adaptive,

their interaction can generate a “complex adaptive system” (Holland 1995, p. 10). Agents

adapt by moving, imitating, replicating, or learning, but not by calculating the most efficient

action (Holland 1995, p. 43). They adapt at two levels, the individual and the population.

Individual learning alters the probability distribution of rules competing for attention,

through processes like reinforcement, Bayesian updating, or the back-propagation of error in

artificial neural networks. Population learning alters the frequency distribution of agents

competing for reproduction through processes of selection, imitation, and social influence.

From Forecasts To Thought Experiments

Unlike dynamical systems and microsimulation models, whose value depends largely on

predictive accuracy, adaptive agent models are “much more concerned with theoretical

development and explanation than with prediction” (Gilbert 1997:2.1). They are used to perform

highly abstract thought experiments that explore possible (if not always plausible) mechanisms

that may underlie observed patterns. As such, these models do not necessarily “aim to provide an

accurate representation of a particular empirical application. Instead, the goal of agent-based

modeling is to enrich our understanding of fundamental processes that may appear in a variety of

applications” (Axelrod 1997:25). When simulation is used to make predictions or for training

personnel (e.g., flight simulators), the assumptions need to be highly realistic, which usually

means they will also be highly complicated. “But if the goal is to deepen our understanding of

some fundamental process,” Axelrod continues, “then simplicity of the assumptions is important

and realistic representation of all the details of a particular setting is not.” On the contrary,
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making these models more “realistic” might add complexity that could undermine their

usefulness as tools for theoretical research.

Nevertheless, many sociologists remain highly skeptical about the validity of simulation

results when computational models are used for theoretical exploration rather than empirical

prediction. As noted (and lamented) by Sawyer (2001), recent survey articles on sociological

simulation neglect agent-based modeling and focus primarily on the earlier equation-based

method of macrosimulation and social forecasting (Halpin 1999; Hanneman, Collins, and Mordt

1995; Meeker and Leik 1997).

It is ironic that sociological interest in ABMs has lagged behind that of the other social

sciences, for sociology may be the discipline best equipped to develop a methodology that

bridges Schumpeter’s (1909) methodological individualism and Durkheim’s rules of a non-

reductionist method. Durkheim anticipated the concept of emergence: “The hardness of bronze

lies neither in the copper, nor the tin, nor in the lead which have been used to form it, which are

all soft or malleable bodies. The hardness arises from the mixing of them” (Durkheim

1901/1982, pp. 39-40). The principle applies as well to sociology, he continued. “(Social) facts

reside in the society itself that produces them and not in its parts− namely its members.”

Here Durkheim oversteps. While the principles of emergence and self-organization imply

that properties of the larger system are not properties of the components− and may not resemble

nor be intended by any of the constituent actors− these principles also incorporate an essential

insight of methodological individualism, the idea that societal patterns emerge from motivated

choices and not from “social facts” external to individuals. Global properties aresui genericbut

they also emerge from the bottom up, through local interactions. Without a model of the

microfoundations of emergent properties, path-dependent self-organizing processes (such as
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informal social control) are likely to be mistaken for institutions that are globally coordinated

(such as bureaucratic controls in formal organizations). In short, ABMs defy classification as

either micro or macro but instead provide a theoretical bridge between them (Saam 1999).

Clearly, not all problems can be usefully viewed from the bottom up. Agent based models are

most appropriate for studying processes that lack central coordination, including the emergence

of institutions that, once established, impose order from the top down. The models focus on how

simple and predictable local interactions generate familiar but highly intricate and enigmatic

global patterns, such as the diffusion of information, emergence of norms, coordination of

conventions, or participation in collective action. Emergent social patterns can also appear

unexpectedly and then just as dramatically transform or disappear, as happens in revolutions,

market crashes, fads, and feeding frenzies. ABMs provide theoretical leverage where the global

patterns of interest are more than the aggregation of individual attributes, but at the same time,

the emergent pattern cannot be understood without a “bottom up” dynamical model.

In surveying recent applications, we found that most were congregated around two problems,

the self-organization of social structure and the emergence of social order. The two problems are

highly complementary. In one case, the clustering of social ties is the explanandum and in the

other it is the explanans.

1. Emergent structure. In these models, agents change location or behavior in response to

social influences or selection pressures. Agents may start out undifferentiated and then

change location or behavior so as to avoid becoming different or isolated (or in some

cases, overcrowded). Rather than producing homogeneity, however, these conformist

decisions aggregate to produce global patterns of cultural differentiation, stratification,

and homophilic clustering in local networks. Other studies reverse the process, starting
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with a heterogenous population and ending in convergence: the coordination, diffusion,

and sudden collapse of norms, conventions, innovations, and technological standards.

2. Emergent social order. These studies show how egoistic adaptation can lead to successful

collective action without either altruism or global (top down) imposition of control. A

key finding across numerous studies is that the viability of trust, cooperation, and

collective action depends decisively on the embeddedness of interaction.

Despite a common focus on two central problems, there has been little effort to provide a

meta-analysis of how results differ depending on the model designs. To that end, we have

grouped studies by substantive application in order to highlight methodological differences that

may explain conflicting results. These differences emerge through a series of interrogations

about model design:

1. Is interaction global or local, that is, is the population fully connected or is interaction

constrained by the structure of social ties?

2. If interaction is local, is the network spatial or social?

3. Is tie formation elective (through movement, exit, or assortative mating) or is

interaction forced?

4. Is adaptation based onlearning(which modifes the probability distribution of

strategies in each agent’s repertoire) orevolution(which modifies the frequency

distribution of strategies across the population of agents)?

5. If evolution, does reproduction involve competition for survival or social influence?

6. If influence, is this limited to external states of the agent (e.g., behavior) or do agents

copy other agents’ internal programming, even though this cannot be directly

observed?
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7. Is influence based on attainment (success, fitness, payoffs, status) or familiarity

(proximity, frequency)?

8. Is the model used as anexperiment(parameters are manipulated to test for predicted

differences) or ademonstration(parameters are manipulated only to test for

robustness)?

9. If used experimentally, are the manipulations mainly of agent-level parameters (to test

a micro theory) or population-level parameters (to test a macro theory)?

Figure 1 classifies the papers we review in a typology based on answers to these nine

questions. The articles we included are not intended to be exhaustive. The field of social

simulation is now too large to survey in a single article. We have therefore narrowed the focus to

agent-based models of emergent structure (differentiation and diffusion) and emergent order

(cooperation and collective action), written by sociologists or published in sociological journals3

in the past five years.4

[Figure 1 about here]

Although sociology has lagged behind other social sciences in appreciating this new

methodology, a distinctive sociological contribution is evident in the papers we review. They

show how ABMs can be used to perform “virtual experiments” that test macrosociological

theories by manipulating structural factors like network topology, social stratification, or spatial

mobility. Used in this way, ABMs can close the circle by moving back again, from actors to

factors.

3 Reviewed articles were published inAmerican Sociological Review(6), Computational and Mathematical Organization
Theory (5), Journal of Artificial Societies and Social Simulation(5), American Journal of Sociology(3), Rationality and
Society(3), andJournal of Mathematical Sociology(2). In addition, referenced articles on simulation were published in
American Sociological Review(3) andComputational and Mathematical Organization Theory(2).
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Emergent Structure: Models of Convergence and Differentiation

In models of structural differentiation, interest centers on the global self-organization of the

population into local networks or clusters based on simple rules of local interaction. Applications

include residential segregation, density-dependent organizational survival, group formation, and

cultural differentiation.

These models often study clustering within spatial networks, using “cellular automata” (CA),

a technique first proposed by Stanislaw Ulam (Coveney and Highfield 1995:94-96). Hegselmann

and Flache (1998) provide a lucid introduction to and history of CA in the social sciences. The

agents usually live on a checkerboard (either flat, or a donut-like torus), and the state of each

agent depends on the states of its neighbors. Simple rules of local influence or spatial movement

sometimes generate surprising results and lead to unexpected insights. They illustrate a key

advantage of the CA approach: two-dimensional visual representation of diffusion and clustering

across a spatial network.

Schelling’s (1971) model of neighborhood segregation is one of the earliest and best known

ABMs based on movement in a spatial network. Red and green agents are randomly distributed

on a lattice and move to empty locations if the number of in-group neighbors falls below a

certain threshold. The model shows how extreme segregation tends to arise even in a population

that prefers diversity, as agents relocate to avoid being in the minority.

Another classic model is Conway’s “Game of Life” in which the survival of each agent

depends on the density of its neighborhood.5 Although Conway was not a sociologist, his design

4 For anAnnual Reviewof related papers published more than five years ago, see Bainbridge et al. 1994.
5 Like Schelling’s, Conway’s model was originally created without a computer, using a game board. The model is now

implemented in Java and interested readers can experiment on-line at www.math.com/students/wonders/life/life.html.
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has immediate application to problems in organizational ecology, in which the agents are supra-

individual. For example, Lomi and Larsen (1998) study the interaction between network

structure and the lagged effects of population density on organizational survival. They use a

cellular network in which the survival of each cell depends on the number of occupied cells in its

“Moore neighborhood” (the eight adjacent cells). The model is very simple; agents do not make

decisions or interact strategically or differ in success, they merely live, replicate, and die, based

on local density. Lomi and Larsen then explore the implications for organizational survival of

alternative hypotheses about the effects of density delay based on simple rules that regulate the

appearance, survival and demise of individual organizations. Using event history analysis, they

identify structural features that can generate organizational life histories that are qualitatively

consistent with those observed in empirical organizational populations.

Another prominent contemporary example is Epstein and Axtell’s (1996) “Sugarscape” in

which a spatially distributed population of simple rule-based agents develops a culture, an

economy, and a class structure. Agents move around on a grid and exchange with others to gain

access to valued resources on which their survival and reproduction depend.

One criticism of spatial networks is that they preclude both structural equivalence (no two

nodes can have identical sets of interactants) and relational heterogeneity (every node has an

isomorphic relational pattern). Flache and Hegselmann (2001) relaxed the latter constraint by

using “irregular grids” that allow the number and strength of social ties to vary randomly over

the population. However, the models still permits the population to self-organize into clusters

through spatial movement.
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Another criticism of ecological models6 is the assumption that adaptation occurs through the

death (by starvation in Sugarscape) and reproduction of agents, based on relative fitness. This

assumption is appropriate if the agents are organizations competing for resources or members. If

the agents are individuals in a modern welfare state, however, a more broadly applicable

assumption is that replication occurs through “imitation of the fittest.” Agents are not replaced

by the top performers, they simply copy their observed behavior.

Social Influence and the Paradox of Mimetic Divergence

Several recent studies depart from the ecological metaphor of death and reproduction and

instead assume that adaptation operates via social influence. This in turn relaxes the assumption

that selection pressures are performance driven. Although some influence models continue to

posit selection of role models based on relative success, others assume that influence is density

dependent, based on familiarity, popularity, or spatial proximity. For example, Latané’s (1996)

“social impact model” uses a rule to mimic one’s neighbors in a two-dimensional lattice. From a

random start, a population of mimics might be expected to converge inexorably on a single

profile, leading to the conclusion that cultural diversity is imposed by factors that counteract the

effects of conformist tendencies. However, the surprising result was that “the system achieved

stable diversity. The minority was able to survive, contrary to the belief that social influence

inexorably leads to uniformity” (Latané 1996, p. 294).

Following an earlier study by Carley (1991), Axelrod (1997; see also Axtell et al. 1996)

makes the paradox of mimetic divergence even more compelling. Carley’s and Axelrod’s models

6 Ecological models are those in which the spatial or frequency distribution of agents depends on rules that govern survival and
reproduction. These models are often characterized as “evolutionary,” but strictly speaking, the latter requires the possibility
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couple local influence (the tendency for people who interact frequently to become more similar

over time) and homophily (the tendency to interact more frequently with similar agents). This

closes the loop: the more agents interact, the more similar they become, and the more similar

they become, the more likely they are to interact. More precisely, neighboring agents on a two-

dimensional lattice interact with a likelihood determined by the similarity of their cultural traits

(given by a simple, randomly-assigned string of numbers). Interaction, in turn, reduces remaining

differences. Axelrod expected this self-reinforcing dynamic would lead inexorably to cultural

convergence and homogeneity. Again the result was surprising. He found that “local

convergence can lead to global polarization” and that unique subcultures can survive in the face

of a seemingly relentless march towards cultural conformity. Stable minority subcultures persist

because of the protection of structural holes created by cultural differences that preclude

interaction, thereby insulating agents from homogenizing tendencies.

Axelrod’s model also reveals a surprising effect of population size. Intuitively, one might

expect larger numbers of stable subcultures to emerge in larger populations. However, Axelrod

found a nonlinear effect, in which the number of minority cultures first increases with population

size but then decreases. This counter-intuitive result illustrates the principle of “gambler’s ruin.”

Large populations allow for larger cultural movements that can survive random fluctuations in

membership better than smaller competitors. As the big get bigger, the number of minority

subcultures diminishes.

Axelrod begins with a heterogeneous population and shows that heterogeneity persists. But

how does the initial heterogeneity arise? Axelrod also assumes spatial networks that restrict

for entirely new types of agents to appear that were not present at the outset.
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interaction to nearby neighbors. Will differentiation persist if the spatial restriction is removed

and interaction is based only on similarity?

Mark (1998) addresses these questions in a paper that explains social differentiation “from

first principles,” starting from homogeneity and without spatial constraints on interaction. Agents

initially interact randomly, with anyone in the population, and then later with a probability

determined by cultural similarity. Mark finds that a self-reinforcing dynamic based on

homophily is sufficient to create an emergent network with local patterns of interaction among

distinctive subcultures. Contrary to Axelrod, Mark also finds that population size decreases

cultural homogeneity, due to the absence of spatial restrictions on interaction in the model.

One limitation in most social influence models is the assumption that influence is only

positive. However, social relations can also have negative valence, such that the state of an agent

tends toward maximal distinctiveness rather than similarity. Contrary to theories of homophily,

dissimilarity does not always weaken the social tie; rather, it may sometimesstrengthenthe

negative relation (or enmity). Structural differentiation based on positive and negative influence

has been studied using “attractor neural networks,” a cognitive modeling technique developed by

Hopfield (1982) and applied to social influence by Nowak and Vallacher (1998; see also Kitts,

Macy, and Flache 1999).

Artificial neural networks are a simple type of self-programmable learning device based on

parallel distributed processing (Rummelhart and McClelland 1988) and modeled after the nerve

systems of living organisms. In elementary form, the device consists of a web of neuron-like

units (or “neurodes”) that fire when triggered by impulses of sufficient strength, and in turn

stimulate or inhibit other units when fired. The effect of an impulse (as stimulus or inhibitor)

depends on the sign and strength of the synaptic connection between the two neurodes. The



From Factors to Actors 15

network learns by modifying these path coefficients. In “feed-forward” networks, learning is

based on environmental feedback that propagates backward through the network. In “attractor”

networks, the path coefficients are updated based on the similarity between the states of

connected nodes.

While feed-forward networks can be used to model agent cognition, attractor networks

provide an intriguing alternative to standard network models of social interaction. Attractor

networks not only allow for both positive and negative influence, they also incorporate basic

principles of structural balance (Cartwright and Harary 1956) and network transitivity. These

models go “beyond the usual depiction of the similarity-attraction relationship” by modeling

“dynamics of any given dyad in the context of other dyads in a larger social structure” (Nowak

and Vallacher 1998:21).

Feed-forward devices have been used to model cognitive social differentiation, based on self-

affirming stereotypes. Vakas-Duong and Reilley (1995; see also Bainbridge 1995) study the

emergence of irrational racial hiring preferences that are less profitable than purely meritocratic

selection. In their model, employers learn to make intuitive hiring decisions based on what

connotations come to be associated with the traits exhibited by job applicants, while applicants

associate traits with relative success. The simulation results showed how irrational beliefs can

easily become self-sustaining following an early accident of association that sows the seeds of

racial preference in an employer’s mind. This in turn makes it difficult for talented members of

the same race to gain employment and this diminishes that race’s access to emerging status

symbols.

Other models of cognitive social differentiation focus on the self-reinforcing dynamics

created by stereotypical beliefs that change the behaviors on which the beliefs are based. Orbell
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et al. (1996) model self-organizing stereotypes in a population of 1000 adaptive agents playing

Prisoner’s Dilemma games with an option to exit. Prisoner’s Dilemma is a two-person game in

which the best move is to “defect” (e.g., cheat), no matter what the partner is expected to do, but

when each defects, the outcome is deficient for both. However, the authors’ interest is focused

not on the problem of cooperation but the formation of groups and group stereotypes. Agents are

assigned a “tag” that indicates their membership in one of two groups. That is the only difference

among the agents. Agents update their tag-specific expectations of cooperative behavior based

on the outcomes of interactions. Agents also become more likely to cooperate with members of

groups they expect to cooperate. In one experiment, each agent cooperates sixty percent of the

time with members of both groups. The two groups are equal in size but one group enjoys a

slightly better (but undeserved) initial reputation. They find that agents from both groups

converge on an increasingly strong preference for interaction with members of the initially

preferred group. In a second experiment, the two groups have identical initial reputations but

differ slightly in size. Again, agents from both groups converge on a preference for interaction

with members of the larger group. In both experiments, the mechanism is straightforward. If you

interact with one group more than the other (either because you expect cooperation from this

group or there are more of them in the population), you update your expectations for this group

more than for the other. Since both groups are relatively cooperative, the updating always causes

expectations of cooperation to increase. Therefore, the more you interact with one group, the

more you expect its members to cooperate, and in turn, the more you cooperate with them. The

more others cooperate with them, the more they cooperate as well, thereby affirming the

expectation on which the preferential interaction is based.
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Diffusion of Innovation

The models considered so far all explore emergent networks based on structural

differentiation. However, social influence models can also be used to study self-reinforcing

dynamics that lead to diffusion of innovations, coordination of conventions, emergent norms,

and cultural convergence. Diffusion models start with some distribution of practices and a rule

by which agents decide whether to abandon current practice in favor of one used by another

agent. In contrast to models of differentiation that typically assume prior interaction as the basis

of influence, diffusion models often assume that influence is based on popularity (either directly

or indirectly) or success or some combination of the two.

Rosenkopf and Abrahamson (1999) studied diffusion where influence derives from

popularity, without regard to prior interaction history or relative success. This creates a “positive

feedback loop where adoptions by some actors increase the pressure to adopt for other actors”

Rosenkopf and Abrahamson (1999: 361). However, influence was weighted by reputations

(which were exogenous to the model) and combined with information about the unprofitability

of innovations. The network was fully connected, that is, each agent had access to the decisions

and reputations of all other agents in the population. They found that “bandwagons occur even

when potential adopters receive information about others’ unprofitable experiences with the

innovation” (Rosenkopf and Abrahamson (1999: 361). Their model shows how agents can

converge on inefficient practices but not how conformity collapses.

Bullnheimer and Zeller (1998) studied the diffusion of innovation among firms based on the

assumption that firms evaluate the relative performance of alternative technologies based on their

own experience with a technology as well as the performance of others. They assume that firms

have knowledge of the adoptions and performance of all other firms. They found that firms who
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combine imitation with their own experience outperform “both pure imitators and nonimitators

in production efficiency as well as in profits.” This model also explains stable homogeneity but

not how conformity might then collapse.

Strang and Macy (2001) bridge these studies by showing how a decision rule similar to those

Bullnheimer and Zeller found to be highly efficient can nevertheless trap firms in a fad-like

bandwagon of adoption and abandonment of innovations that are worthless or nearly so. They

assume firms evaluate current practice based on their balance sheets, and if dissatisfied, turn to

“best practices” for new ideas. In a series of computational experiments, they manipulate the

intrinsic value of innovations, the stratification of the market, and the skepticism of managers to

see how these affect the fad-like pattern. Results show that fads are most likely in stratified

markets where innovations have a modest effect on performance and managers are not so

skeptical that they cannot see the performance differences.

Emergent Order: Models of Collective Action, Trust, and Cooperation

In models of structural differentiation, agents influence others in response to the influence

they receive, leading to spatial or social clustering, such as Reynold’s flocks of “boids.” Interest

centers on the self-organization of dynamic structural configurations, and not on their

consequences. Models of emergent order, in contrast, focus attention on the ways in which

network structures affect the viability of prosocial behavior. Four network properties have been

shown to promote cooperation and participation in collective action:

• Relational stability: on-going relationships lengthen the “shadow of the future” (Axelrod

1984).
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• Network degree: the coordination complexity of local norms increases with the number of

social ties (Macy and Skvoretz 1998).

• Homophily: agents tend to interact with partners who use similar strategies (Cohen,

Riolo, and Axelrod 2001).

• Transitivity: an agent’s partners tend to interact with each other. This in turn affects:

• Diffusion of reputations (Takahashi 2000).

• Bandwagons caused by threshold effects (Chwe 1999).

• Monitoring and enforcement of conformity to prosocial norms (Kim and Bearman

1997).

Relational Stability

The classic study of emergent order is Axelrod’s (1984)Evolution of Cooperation.Although

defection is the dominant strategy in a single play of Prisoner’s Dilemma, that is not true when

the game is played repeatedly in an on-going relationship. However, this does not guarantee

cooperation. In fact, there is no dominant strategy in repeated play, and game theory cannot

predict which of countless possible conditionally cooperative strategies will emerge as an

equilibrium. To find out, Axelrod organized a computer tournament in which agents played a

round robin iterated Prisoner’s Dilemma. He invited leading game theorists to submit strategies,

and each submission was assigned to one of the agents. The winner was the simplest contestant,

Anatol Rapaport’s “Tit for Tat,” a strategy that never defects unless provoked and quickly

forgives. However, the success of Tit for Tat depends on the prospect of an on-going interaction,

what Axelrod calls “the shadow of the future.”
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Tit for Tat always cooperates unless provoked, and then always retaliates. Variations on Tit

for Tat use less-strict accounting. De Vos, Smaniotto, and Elsas (2001) compare the evolutionary

viability of two types of reciprocity, based on strict vs. loose accounting. Payoffs determine

whether an agent survives, and strategies reproduce in proportion to the survival rate. Agents ask

for help when it is needed and decide to whom to give it (if anyone), based on past exchanges.

Some agents insist on keeping the books strictly balanced, while others favor commitment to old

partners, even if they are in arrears. In a population that includes non-givers, simulations

demonstrate the importance of committing oneself to an on-going relationship. Ironically, the

results suggest that a looser “commitment strategy,” based on long-term balancing of the books,

is superior to a strategy of strict reciprocity that is less vulnerable to being cheated, a result

similar to that reported by Kollock (1993) based on a similar ecological competition. However,

Kollock’s agents were paired randomly, without the option to select their partners. He also found

that loose accounting is superior, but only if the environment is noisy (with occasional mistakes

and misinformation). Strict reciprocity is then prone to needless recrimination that can be

avoided by looser accounting systems.

One problem with this modeling strategy is that the outcome of an evolutionary tournament

may be an artifact of a theoretically arbitrary set of initial contestants. This led Axelrod to use a

genetic algorithm (GA) to see if Tit for Tat would evolve in an open-ended population in which

strategies could evolve from a random start (1997:14-29). Working with John Holland, Axelrod

found several strategies similar to Tit for Tat that proved to be highly robust.

Genetic algorithms are strings of computer code that can mate with other strings to produce

entirely new and superior programs by building on partial solutions. Each strategy in a

population consists of a string of symbols that code behavioral instructions. These symbols are
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often binary digits (or “bits”) with values of 0 or 1. A string of symbols is analogous to a

chromosome containing multiple genes. A set of one or more bits that contains a specific

instruction is analogous to a single gene. The values of the bits and bit-combinations are

analogous to the alleles of the gene. A gene’s instructions, when followed, produce an outcome

(or payoff) that affects the agent’s reproductive fitness relative to other players in the

computational ecology. Relative fitness determines the probability that each strategy will

propagate. Propagation occurs when two mated strategies recombine. If two different rules are

both effective, but in different ways, recombination allows them to create an entirely new

strategy that may integrate the best abilities of each “parent,” making the new strategy superior

to either contributor. If so, then the new rule may go on to eventually displace both parent rules

in the population of strategies. In addition, the new strings may contain random copying errors.

These mutations restore the heterogeneity of the population, counteracting selection pressures

that tend to reduce it.

The GA can be used to discover both optimal and likely solutions. Where the aim is to

discover what agents should do to optimize performance, the models typically assume global

search. This means every agent has complete knowledge of the strategies and fitness of every

member of the population and plays against every member of the population with equal

probability. Where the aim is to find what agents are likely to do, models often assume local

rather than global interaction and knowledge (Klos 1999). Local search can be implemented by

embedding the GA in a spatial or social network.
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Network Degree

Macy and Skvoretz (1998) embed the GA in a social network to test Weber’s theory that

Protestant sects in colonial America provided cultural markers needed for trusting strangers in

physically dispersed markets. The problem in Weber’s argument is that the need for economic

growth does not guarantee the evolution of the means for its realization. Macy and Skvoretz’s

simulations show that a system of “telltale signs” is highly fragile, even with unrealistically

generous assumptions about cultural diffusion. However, the robustness can be greatly improved

when exchanges are embedded in social structures comprised of a large number of small

communities, precisely the conditions that Weber identified in colonial America.

Homophily

Smith and Stevens (1999) model the formation of psychological support networks in which

agents seek out relationships with others that will help them manage anxiety. In their model,

agents decide with whom to form relationships through a process of assortative mating. They

find that agents form relationships with partners who are similar to themselves in their ability to

manage stress, creating homophilous clusters. They also discover an exception to Granovetter’s

(1973) theory of the strength of weak ties. In needy populations, support networks form with

stronger attachments but lower transitivity than in populations with less need for social support.

Several other recent studies also suggest that the viability of cooperation is greatly improved

when populations can self-organize into locally homogenous clusters (Lomborg 1996). For

example, Pedone and Parisi (1997) use socially embedded artificial neural networks to show how

altruistic behavior can arise among similar agents and conclude that similarity conveyed by

culture may be what allows altruism to evolve in natural settings.



From Factors to Actors 23

Other studies explore the effects of homophilic clustering in spatial networks. Eshel et. al.

(2000) use spatial clustering on a one-dimensional array where agents play Prisoner’s Dilemma.

Their agents have only two possible strategies, cooperate or defect. Agents interact strategically

with nearest neighbors and imitate those (in a somewhat larger neighborhood) who are most

successful. Because they cannot reciprocate, there is no advantage to cooperating even in an on-

going relationship. Nevertheless, when the game is spatially embedded, they find that

cooperation is “a stable strategy that cannot easily be eliminated from the population.”

Flache and Hegselmann (1999) explore the macro implications of alternative assumptions

about agent cognition in a social support game played on a torus. Rational agents make the

choices prescribed by analytical game theory, while adaptive agents respond to experience

through reinforcement learning. In each case, agents migrate on the grid, selecting neighbors

from whom to request help and deciding whether to service the requests of others in a sequential-

play asymmetric Prisoner’s Dilemma, where payoff asymmetry reflects difference among agents

in the need for and ability to help and sequential play represents the problem of generalized

exchange. The forward-looking model makes strong assumptions about information: Each agent

knows all players' locations, their payoffs, and their level of need. Flache and Hegselmann find

that both forward- and backward-looking agents self-organize into solidary clusters based on

class position. However the stratification structure differs. Rational egoists tend to form an

“onion-shaped structure of solidarity” with the wealthiest at the center of a large heterogenous

cluster, surrounded by rings of increasingly needy agents. In contrast, backward-looking agents

migrate into distinct homogenous clusters with much greater class segregation than found among

rational egoists.
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In sum, numerous studies converge on the conclusion that prosocial strategies thrive on both

spatial and social embeddedness, due to homophilic interaction (the tendency to interact with

similar strategies while avoiding contact with predators). However, Cohen, Riolo, and Axelrod

(2001) point out that what appears to be the effect of homophily may actually be due to the

effects of relational stability and transitivity. Transitivity (or “clustering”) means that “paired

agents have neighbors who are themselves paired” (Cohen et al. 2001: 11). For example, in a

Moore neighborhood, each of an agent’s eight neighbors interacts with two of the other seven.

Relational stability (which they call “context preservation”) means that agents continue to

interact with the same partners across many periods, creating a “shadow of the adaptive future.”

The smaller the neighborhood, the greater the chance of interacting with a previous partner. In

short, the effect of embeddedness may not be due to the tendency for local interactions to be with

partners who aresimilar, as most studies have assumed, but the tendency for partners to be

correlated(due to network transitivity) orfamiliar (due to local pairing).

The authors tease apart these effects by manipulating network structure in a population of

256 agents who play a four-iteration Prisoner’s Dilemma game with each of four different

partners in each period, for 2500 periods. Agents are programmed with three (initially random)

probabilities for cooperating under three conditions: the first move of the game, after the partner

cooperates, and after the partner defects. Between periods, agents adopt the strategy used by the

most successful of their four partners, based on the payoffs accumulated during that period. In

this model, many different strategies can produce identical behavior under given conditions, and

the authors do not explain how agents know which of these was actually responsible for the

behavior they observe, but somehow the agents guess correctly about ninety percent of the time.
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Using controlled computational experiments, the authors observe the independent effects of

homophily, on-going relations, and transitivity (“clustering”). They find that on-going relations

greatly improve the viability of cooperation while clustering alone has little effect. However, the

effect of relational continuity is not due to the prudence of being nice to those one expects to

meet again. Because agents imitate their partners, ongoing relations increase the chances that an

agent will interact with a partner using a similar (if not identical) strategy. They conclude that

“friendly” strategies do well so long as they can generally avoid those that are not.

Diffusion of Reputations

Takahashi (2000) uses an evolutionary model to study the emergence of generalized

exchange, in which agents give and receive help but not to one another directly (as in the Kula

ring). Takahashi challenges previous studies that assumed that these exchange systems require

either altruism or centralized enforcement of the rules of exchange. He then uses an evolutionary

model to show that exchange systems can self-organize based on norms of generalized

reciprocity (giving selectively to those who give to third parties). He programs agents with two

genes that control compliance with norms of generalized exchange and enforcement of

compliance by others. The first gene controls the amount the agent gives to others and the second

gene controls reciprocity, based on the recipient’s reputation for giving to others. Giving and

receiving determines each agent’s relative fitness or chances for reproduction. Reproduction

copies the agent’s genes with a small probability of mutation. However, with only two genes,

there is no need for recombination, so Takahashi does not use a genetic algorithm. Simulations

show that a system of generalized exchange can evolve in a population that is initially non-

generous, assuming agents have perfect information about the past behavior of other agents.
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Takahashi then relaxes this assumption by positioning agents on a two-dimensional grid,

restricting their knowledge, interaction, and reproductive competition to their Moore

neighborhood. Thus, agents continue to have perfect information about all their potential

exchange partners, of whom there are now only eight (instead of 19). Generalized exchange

emerges within each of the overlapping neighborhoods, but Takahashi did not test to see if

generalized exchange could evolve between members of different neighborhoods when

reputational knowledge remains local.

Castlefranchi, Conte, and Paolucci (1998; see also Conte and Castelfranchi 1995) examine

the effect of reputations on deterrence of aggressive behavior on a two-dimensional grid where

agents compete locally for scarce resources and adaptation operates through evolutionary

selection. They find that a pro-social strategy can thrive in a homogenous population but suffers

as contact with aggressors is increased. However, the aggressor’s advantage is diminished if

agents can exchange information on the reputations of others. Saam and Harrer (1999) used the

same model to explore the interaction between normative control and power. They find that

systems of informal social control can tip toward either greater equality or inequality, depending

on the extent of inequality at the outset.

Bandwagons

Network transitivity (clustering) becomes much more important when outcomes depend on

the flow of information through the network. Chwe (1999) proposes a threshold model of

collective action in which agents choose to participate depending on the number of neighbors

expected to participate. Expectations of neighbors’ behavior depends in turn on expectations of

neighbors’ neighbors’ behavior, and so on. In the base condition, 30 agents are randomly
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assigned two partners with whom they remain attached for the duration of the simulation. Chwe

then manipulates transitivity by increasing the number of partners and the bias toward selecting

the partners of one’s partners. High transitivity avoids an endless regress because an agent’s

neighbors and the neighbors’ neighbors are likely to be the same people. Transitivity is

especially important in populations with low thresholds that can be triggered by local knowledge

about the behavior of members of densely tied but relatively small local clusters. This may

explain the importance of overlapping social ties for Freedom Summer participation reported by

McAdam (1988). Conversely, Chwe demonstrates the strength of weak ties in populations with

high thresholds. Low transitivity facilitates the diffusion of information about participation of

distant agents. Watts’ (1999) “small worlds” model suggests that the optimal configuration may

be a highly clustered network with a few ties between each small and densely tied locality.

Social Pressure

Chwe’s thresholds correspond to agents’ concerns about the efficacy of participation in

collective action (see also Marwell and Oliver 1993; Macy 1991). Thresholds can also represent

agents’ responsiveness to social pressures to conform to an emergent norm, as in “bandwagon”

models of self-reinforcing popularity. Kim and Bearman (1997) model collective action among

agents whose interest in the public good is heavily influenced by social pressure from other

participants in their local network. This causes interest in the collective action to spread like a

contagion through network channels. The authors find that participation spreads most effectively

within densely clustered subnetworks comprising a critical mass of highly-interested primary

contributors.
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Kim and Bearman’s study reflects the conventional wisdom that social pressure to participate

is needed to overcome the temptation to “free ride.” It follows that dependence on the group for

social direction promotes compliance with group obligations, as argued by Homans (1974). Yet a

number of ethnographic studies of “deviant cliques” have shown that conformist pressures can

also undermine normative compliance, leading to badly suboptimal outcomes for all group

members, including the deviants (Shibutami 1978; MacLeod 1995; Willis 1977). This led Kitts,

Macy, and Flache (1999) to explore the possibility that dependence on peer approval can

backfire, leading to collective action failure rather than success (see also Flache and Macy 1996).

They modeled self-organizing social relations using an attractor neural network similar to Nowak

and Vallacher’s (1998). In these models, pressure to imitate the behavior of other agents

increases with the strength of the connecting tie. They added the innovation that agents respond

not only to normative pressure but also to the lessons of direct experience (similar to the back-

propagation in feed-forward neural nets). Agents in a group-rewarded task group decided

whether to work or shirk and whether to approve of other group members. The authors then

manipulated agents’ tendency to conform to others’ behavior. Computer simulations revealed a

surprising result− a curvilinear effect of conformity on compliance with prosocial norms.

Moderate doses of conformity reduce the coordination complexity of self-organized collective

action and help the network achieve satisfactory levels of cooperation. High doses, however,

undermine the agent-based learning required to find cooperative solutions. Increasing group size

also diminished compliance due to increased complexity, with larger groups requiring more

conformity to overcome the coordination problem.
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Conclusion

Agent-based modeling is a new tool for theoretical research at the relational level, with

particular relevance for sociologists as a bridge between the micro and macro levels.

Nevertheless, sociology has lagged behind the other social sciences in recognizing and exploiting

this methodology. Computational sociology has traditionally used models that are highly realistic

and macrosociological, but agent-based models are highly abstract and tend to be

microsociological. This has led to confusion about the appropriate standards for constructing and

evaluating agent-based computational models. We conclude our review with a series of

recommendations− to referees as well as authors− for realizing the rich sociological potential of

relational modeling.

1. Keep it simple.Pressure to make agents more cognitively sophisticated is misguided if

models become so complex that they are as difficult to interpret as natural phenomena.

When researchers must resort to higher order statistical models to tease apart the

underlying causal processes, the value of simulation is largely undermined.

2. Avoid reliance on biological metaphors.Chattoe (1998) has raised probing questions

about modeling cultural evolution as a genetic analog. What is the mechanism that

eliminates poor performers from the population and allows others to propagate?

“Imitation of the fittest” may be more applicable than starvation and reproduction, but

this mechanism replicates only observed behavior and does copy the underlying rules.

The distinction between behaviors and the underlying rules has not been given sufficient

attention. For example, in repeated Prisoner’s Dilemma games, it is easy to imagine that

an agent observes and then copies the cooperative behavior of a successful neighbor, but
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how does the agent know that this behavior is based on a rule (or supergame strategy)

like “Tit for Tat” and not “Win-Stay, Lose-Shift” or “Always Cooperate”?

3. Experiment, don’t just “explore.”Agent-based modeling is an experimental tool for

theoretical research. While important discoveries can be made by open-ended exploration

of theoretical possibilities, researchers need to resist the temptation to become

freewheeling adventurers in artificial worlds. Careful, systematic exploration of a

parameter space may be less engaging but it makes for better science. This requires

theoretically motivated manipulation of parameters, based on careful review of current

theoretical and empirical knowledge, and a clear statement of the hypotheses that guided

the experimental design.

4. Test robustness. Although simulation designs should use experimental rather than post-

hoc statistical controls to identify underlying causal processes, that does not mean

researchers should avoid statistical analysis of the results. On the contrary, ABMs,

especially those that include stochastic algorithms, require replications that demonstrate

the stability of the results. Where possible, replications should include variation in

parameters that are theoretically arbitrary or of secondary interest. Authors then need to

be careful to distinguish between experimental manipulations (where results are expected

to change with the parameters) and robustness tests (where they are not).

5. Test external validity.Virtual experiments test the internal validity of a theory, without

which there is no need to test the external validity. However, this does not mean there is

neversuch a need. ABMs are often used to “grow” familiar macro level patterns, as a

way to identify possible causal mechanisms (Epstein and Axtell 1996). When this
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succeeds, researchers need to think about ways these mechanisms can be operationalized

and tested in laboratory or natural conditions.

6. Test domain validity.Axtell et al. (1996) argue that “If computational modeling is to

become a widely used tool in social science research, it is our belief that a process we

will call ‘alignment of computational models’ will be an essential activity. Without such

a process of close comparison, computational modeling will never provide the clear sense

of "domain of validity" that typically can be obtained for mathematized theories. It seems

fundamental to us to be able to determine whether two models claiming to deal with the

same phenomenon can, or cannot, produce the same results” (1996: 123).

7. Avoid micro blinders.The “bottom-up” approach in ABMs might seem to imply that

these models can only be used to test microsociological theories. That is a tragic

misunderstanding because it precludes what is most exciting to sociologists about this

methodology. An artificial world populated by computational agents is a laboratory in

which researchers can manipulate structural conditions to test macrosociological theories.

However, unlike an earlier generation of holistic equation-based models of dynamical

systems, ABMs avoid the reification of causal factors at the macro level. Changes in

population density or network structure can not directly affect the emergence of norms or

the collapse of conventions. However, macro experiments in virtual worlds provide a

rigorous methodology for studying the microfoundations of macro dynamics, in the way

advocated by Coleman (1990: 8). The shift from factors to actors is clearly one of the

most exciting developments in computational social science. Bringing factors back in will

realize the full potential of agent-based modeling, especially in sociology.
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Figure 1: Typology of Agent-Based Models

Article
Substantive
Problem Network1

Elective
Ties2

Number
Agents

Adaptative
Mechanism3

Adaptive
Criteria

Manipula-
tion4

Lomi-Larsen ’98 Differentiatn Spatial N 10000 Reproduction Frequency Macro

Mark ’98 Differentiatn Social Y 6-100 Imitation Familiarity Macro

Axelrod ‘97a Differentiatn Spatial Y 102-104 Imitation Familiarity Macro

Orbell et al. ’96 Differentiatn Social Y 1000 Learning Observation Macro

Bullheimer-Zeller ’98 Diffusion Global N 10 Imitn & learn. Success Micro

Rosenkopf-Abr. ’99 Diffusion Global N 20 Imitation Frequency Macro

Strang-Macy ’01 Diffusion Global N 100 Imitn & learn. Success Both

Eshel et al. ’00 Social Order Spatial N 1000 Imitation Success Both

Flache-Hegs. ’99 Social Order Spatial Y 315 Learning Success Micro

Chwe '99 Social Order Spatial N 30 Imitation Frequency Macro

Saam-Harrer ’99 Social Order Spatial Y 50 Reproduction Success Macro

Cohen et al. ’01 Social Order Spatial Y 256 Imitation Success Macro

Takahashi ’00 Social Order Gl & Sp N 20-100 Reproduction Success Macro

Axelrod ‘97b Social Order Global N 20 Reproduction Success None

Kim-Bearman ’97 Social Order Social N 100 Imitation Success Macro

De Vos et al. ’01 Social Order Social Y 10-50 Reproduction Success Macro

Macy-Skvoretz ‘98 Social Order Social Y 1000 Reproduction Success Macro

Kitts-Macy-Flac. ‘98 Social Order Social Y 3-15 Learning Success Both

1. Spatial: restricted by physical distance; social: restricted by social distance; global: not restricted by distance.
2. Is interaction forced or voluntary, based on an option to move, exit a relationship, or assortative mating?
3. Reproduction: Successful agents replace or convert unsuccessful ones; imitation: agents copy observed behavior

(but not the underlying rule); learning: agents change behavior based on experience.
4. Macro: manipulation of global parameter; micro: manipulation of agent parameter.


