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Introductory Notes on Rational Expectations

1 Overview

The theory of rational expectations (RE) is a collection of assumptions regarding the manner

in which economic agents exploit available information to form their expectations. In its

stronger forms, RE operates as a coordination device that permits the construction of a

“representative agent” having “representative expectations.”

Section 2 of these introductory notes on RE provides several alternative RE definitions

(collections of assumptions), both weak and strong.1 Section 3 uses two illustrative examples

to demonstrate standard solution techniques for the determination of strong-form RE solu-

tions. The statistical implications of RE are discussed in Section 4, followed by a discussion

in Section 5 of RE solutions as fixed-point solutions. A brief but rigorous discussion of prob-

ability spaces and the meaning of conditional expectation, which are essential theoretical

underpinnings for RE, can be found in a series of appendices.

1For simplicity, these RE definitions focus solely on first moments, i.e., on mean (expected) values.
However, once these basic definitions are grasped, it is rather straightforward to modify these definitions to
cover the more general case of “rational expectations” regarding the entire probability distribution governing
a stochastic variable.

1



2 Defining Rational Expectations

Since the publication of the seminal article on rational expectations (RE) by John Muth

(1961), a variety of definitions have been proposed for this concept. Although a definition

cannot be wrong, some ways of defining things can be more fruitful than others.

Listed below are two possible definitions for RE, one weak and one strong, together with

some assessments regarding the usefulness of these definitions for economic purposes. The

first definition of RE is independent of the content of agents’ information sets.

WEAK-FORM RE:

Suppose It−1,i denotes the information set available to an agent i at the beginning

of period t = [t, t + 1). Let Et−1,ivt+k denote agent i’s subjective (personal)

expectation formed at the beginning of period t regarding the value that a variable

v will take on in some period t+ k with k ≥ 0. Also, let E[vt+k|It−1,i] denote the

objectively-true expectation for vt+k conditional on It−1,i.
2 Then agent i is said

to have a weak-form rational expectation for vt+k at the beginning of period t if

the following condition holds:

Et−1,ivt+k = E[vt+k|It−1,i] + µt,i, (1)

where µt,i is a time-t forecasting error satisfying E[µt,i|It−1,i] = 0. It follows from

(1) that

Et−1,ivt+k = vt+k + (E[vt+k|It−1,i]−vt+k +µt,i) ≡ vt+k + εt,i , (2)

where E[εt,i|It−1,i] = 0.

It is critically important to observe that the definition given above for a weak-form rational

expectation assumes the existence of objectively-true probability assessments for the possible

2See the appendix at the end of these notes for a discussion of the distinction between conditional and
unconditional expectations, and for a more careful discussion of the meaning of conditional expectations.
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values that the variable vt+k can take on.3 Moreover, as discussed more carefully in Appendix

A.6, the conditioning information set It−1 must be a collection of assertions that are true

for a (possibly empty) subset A of possible worlds to which an objectively true probability

P (A) can be assigned.

How restrictive is the requirement that objectively true probabilities can be assigned to

the possible future realizations of vt+k? A difficulty is that this requirement typically rules

out considerations of behavioral uncertainty.4

Consider, for example, a situation in which Et−1,ivt+k represents the expectation of agent

i at the beginning of period t regarding the future price vt+k that a rival agent j will set

for a competing good in period t + k as the result of a strategic calculation. Agent i might

at most be able to form a crude subjective expectation regarding this price because agent

j in period t has not yet determined a price-setting strategy but rather is in the process

of learning by trial and error (along with agent i) how to set his price in the context of a

sequential market game.

Under the weak-form definition of RE, the concept of RE essentially reduces to an as-

sumption that agents make optimal use of whatever information they have to form their

expectations. This is viewed by many economists as a natural extension of the usual pos-

tulate in economic theory that – unless there is good empirical evidence to the contrary –

one should presume that agents will always strive to bring their expectations into consis-

tency with their information.5 Weak-form RE is also in accordance with John Taylor’s idea

3An objectively-true probability assessment for a system variable at a given time t is a probability assess-
ment that is a valid attribute of this variable at time t, independently of agent beliefs. An example would
be the probability that a particular weather event will occur at time t.

4An economy is said to be characterized by behavioral (or strategic) uncertainty if decision-making agents
are uncertain about the behavior or other agents whose actions affect their own outcomes. Contrast this
case with the case in which all uncertainty in the economy arises from exogenous stochastic shock terms
governed by objectively-true probability distributions that can in principle be learned. The latter situation
is the usual presumption of rational expectations theorists.

5Note, however, that weak-form RE is stronger than this relatively uncontroversial postulate in that it
assumes agent expectations always are perfectly consistent with their information. That is, further use of
their information cannot improve their forecasts; and what they observe does not contradict their information.
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of an economically rational expectation in which agents’ information sets are the result of

cost-benefit calculations by the agents regarding how much information to obtain.

One can also define a stronger form of RE in the sense of John Muth (1961) that places

a strong restriction on the content of an agent’s information sets. This definition of RE

guarantees the existence of “objectively-true” conditional expectations but at the cost of

transforming RE into an incredibly strong concept when compared to the form of expecta-

tions that real economic agents could reasonably be supposed to have.

STRONG-FORM RE:

An agent i in a model of an economy is said to have strong-form RE if agent i

has weak-form RE and if, in addition, for each time t of his existence, agent i’s

information set It−1,i at the beginning of period t contains all the information

known to the modeler at the beginning of period t. This information includes:

(a) Equations, variable classification, and admissibility conditions for the model,

including the actual decision rules used by any other agent (private or pub-

lic) appearing in the model to generate their actions and/or expectations;

(b) The true values for all deterministic exogenous variables for the model;

(c) All properties of the probability distributions governing stochastic exogenous

variables that are known by the modeler at the beginning of period t;

(d) Realized values for all endogenous variables and stochastic exogenous vari-

ables as observed by the modeler through the beginning of period t.

Strong-form RE has intuitive appeal in that it requires economists who construct the-

oretical models to assume that the agents they are attempting to model are as smart and

as well informed about the economy as they are. Although the presumption that agents

know a priori the actual decision rules used by each other agent is totally incredible, this
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type of assumption is familiar to economists from the definition of a Nash equilibrium: A

configuration of decision rules currently adhered to by a collection of agents is a Nash equi-

librium if, given the decision rules of all other agents, no individual agent has any incentive

to deviate from his own decision rule. Strong-form RE can therefore be interpreted as an

idealized Nash equilibrium benchmark for agents’ expectations that agents may (or may not)

eventually arrive at through some process of reasoning and/or learning.

In practice, theorists modeling economic systems generally assume that they have an ex-

traordinary amount of information about the true workings of the economy. In consequence,

under strong-form RE, economic agents are generally presumed to have a great deal more

information than would actually be available to any econometrician who attempted to test

these models against data. This point is stressed by Sargent (1993, Chapter 1).

Many economists are willing to assume that agents have weak-form RE, as a useful bench-

mark assumption consistent with the idea that agents are arbitrageurs who make optimal

use of information. In contrast, many economists are uncomfortable with the more common

assumption in the RE literature that agents have strong-form RE. Nevertheless, strong-form

RE becomes more acceptable if it is viewed as a possible ideal limit point for the expectations

of boundedly rational agents with limited information who engage in learning in successive

time periods. Whether convergence to strong-form RE actually takes place can then be

tested under alternative learning hypotheses. This is the approach taken by Sargent (1993).

Finally, it is interesting to consider the special case of perfect foresight RE.

PERFECT FORESIGHT RE:

An agent i is said to have perfect foresight RE if:

(a) Agent i has strong-form RE;

(b) No exogenous shock terms impinge on agent i’s world, hence his expectations

in each period t are correct. That is, Et−1,ivt+k = vt+k for all variables v.
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It is important to point out here that perfect-foresight RE differs from the perfect foresight

assumption often encountered in studies making use of “Walrasian general equilibrium”

models. In the latter type of models, the decision problems of households and firms are

linked only by prices and by dividend (profit) distributions from the firms to the households.

Given prices and dividend distributions, each household perceives that it faces a budget-

constrained utility maximization problem that is independent of the actions of any other

household or firm; and, given prices, each firm perceives that it faces a technology-constrained

profit maximization problem that is independent of the actions of any other household or

firm. Perfect foresight in such contexts is the assumption that households and firms correctly

foresee the market-clearing levels for these conditioning variables and solve their optimization

problems conditional on these levels. However, since households and firms do not understand

the true structure of the economy in which they reside – in particular, the fact that their

quantity choices actually have an effect on market prices and dividend distributions – they

do not have strong-form RE.

3 Illustrative Examples of Strong-Form RE

FIRST EXAMPLE:

Consider the following model of an economy over times t ≥ 1:

Model Equations:

(1)∗ yt = y∗t + apt + bEt−1pt ; (3)

(2)∗ pt = mt + εt ; (4)

(3)∗ Etpt+1 = E[pt+1|It] , (5)

where:

• y∗t notes the log of potential real GDP in period t.
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• yt denotes the log of actual real GDP in period t.

• pt denotes the log of the general price level in period t.

• Etpt+1 denotes the subjective forward-looking expectation of a representative agent in

period t regarding the price level in period t+ 1.

• mt denotes the log of the nominal money supply in period t.

• It denotes a period-t information set that is available to the representative agent at the

end of period t (i.e., at the beginning of period t+1) and whose contents are consistent

with strong-form RE. (Note: It is assumed the modeler is able to observe all past

realized values for yt, pt, and εt.)

Classification of Variables and Admissibility Conditions:

The three period-t endogenous variables are yt, pt, and Etpt+1. The only

period-t predetermined variable is Et−1pt for t > 1. The deterministic exogenous

variables are: the exogenous constants a, b, {y∗t | t = 1, 2, . . .}, the monetary

policy settings {mt | t = 1, 2, . . .}, and E0p1 = m1. The stochastic exogenous

variables are the random error terms {εt | t = 1, 2, . . .}, which are assumed to

constitute a serially independent process satisfying E[εt | It−1] = 0 for all t ≥ 1.

The model is incomplete as it stands. First, the “true conditional expectation” on the

right hand side of equation (3)* needs to be determined in a manner consistent with strong-

form RE. Second, this true conditional expectation — backdated to period t− 1 — needs to

be substituted in for the subjective expectation Et−1pt appearing in equation (1)*.

Once this true conditional expectation is substituted into model equation (1)*, the sub-

sequent way in which the price level pt for period t is actually determined by the model

equations must, by construction, conform to this true conditional expectation in the sense
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that its objectively-true It−1-conditioned expectation must coincide with the expectation

assumed for this price level in model equation (1)*. Similar arguments apply for the true

conditional expectation of yt given It−1. Roughly speaking, then, to complete this model

with strong-form RE, we must solve a fixed point problem of the form xt = M(xt) in each

period t with xt = (E[yt|It−1], E[pt|It−1]).6

For the simple linear model at hand, we can determine this strong-form RE in four steps,

as follows.

Step 1: First, determine the specific types of information that must be included in the infor-

mation set It−1. In accordance with the definition of strong-form RE, this information

includes:

• Equations (1)*, (2)*, and (3)* plus classification of variables and admissibility

conditions;

• True values for all of the deterministic exogenous variables: namely,

a, b, {y∗t | t = 1, 2, . . .}, {mt | t = 1, 2, . . .}, and E0p1 = m1;

• All properties of the probability distribution governing the stochastic exogenous

shock terms {εt | t = 1, 2, . . .} that are known to the modeler at the beginning of

period t;

• Values for all realized variables observed by the modeler through the beginning

of period t, i.e. {pt−1, pt−2, . . . , p1; yt−1, . . . , y1; εt−1, . . . , ε1}.

Step 2: Second, replace Et−1pt in model equation (1)* by the as-yet undetermined expres-

sion for the strong-form RE: namely, E[pt|It−1].

Step 3: Third, take the It−1-conditional expectation of each side of the model equations (1)*

and (2)* and use the specific information assumed to be contained in It−1 to simplify

6See Section 5, below, for a more careful discussion of this point.
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the form of these expressions.7 These operations yield the following two equations in

the two unknown strong-form RE terms E[pt|It−1] and E[yt|It−1].

E[yt|It−1] = y∗t + (a+ b)E[pt|It−1] ; (6)

E[pt|It−1] = mt + E[εt|It−1] = mt + 0 . (7)

Step 4: Fourth, solve for these two unknowns, obtaining

E[pt|It−1] = mt (8)

and

E[yt|It−1] = y∗t + [a+ b]mt . (9)

The strong-form RE solution (8) for expected price, together with model equations (1)*

and (2)*, imply that the real GDP level yt in each period t is given by

yt = y∗t + apt + bmt (10)

and the price level pt in each period t is given by

pt = mt + εt . (11)

Equations (10) and (11) together imply that government can systematically affect the period-

t real GDP level yt by choice of its monetary policy instrument mt if a is not equal to −b in

model equation (1)*. What happens when a = −b?
7More precisely, for model equation (3), use the linearity of the conditional expectations operator (see

Appendix A.3) to argue that the conditional expectation of the right-hand side of (3) can be represented as
the sum of three conditional expectations. Then use the fact that the exogenous variables y∗t , a, and b in
model equation (3) are assumed to be in the information set It−1, implying E[y∗t |It−1] = y∗t , E[apt|It−1] =
aE[pt|It−1], and E[bE[pt|It−1]|It−1] = bE[E[pt|It−1]|It−1] = bE[pt|It−1]. Apply similar reasoning to reduce
down the conditional expectation for the right-hand side of model equation (4). Specifically, use the linearity
of the conditional expectations operator and the fact that mt and all of the modeler’s presumptions about
the distribution of the random shock term εt are assumed to be in the information set It−1.
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When a = −b, model equation (1)* reduces to what is referred to as a Lucas-Rapping

supply curve:

yt = y∗t + a[pt − Et−1pt] . (12)

Equation (12) asserts that actual real GDP yt deviates from potential real GDP y∗t if and

only if the expectation of the representative agent for the price pt, formed at the end of

period t-1, is not correct. Under strong-form RE, it follows from equations (11) and (12),

together with the derived strong-form RE (8) for pt, that

yt = y∗t + aεt . (13)

Consequently, given both the Lucas-Rapping supply curve (12) and strong-form RE, yt will

deviate from y∗t only by an unsystematic error term aεt that is independent of the government

monetary policy variable mt.

More generally, it follows directly from the form of the Lucas-Rapping supply curve (12)

that government will not be able to systematically control yt through the settings of its

monetary policy variable mt as long as the representative agent’s subjective expectation

Et−1pt for the period-t price level pt takes the form Et−1pt = pt - θt where the error term

θt is independent of mt. In this case, yt = y∗ + aθt, regardless of mt. Consequently, weaker

expectational assumptions than strong-form RE produce monetary policy ineffectiveness in

the presence of a Lucas-Rapping supply curve.

SECOND EXAMPLE:8

The following example illustrates a methodology called the method of undetermined coeffi-

cients that can sometimes be effectively used to solve for strong-form RE solutions. The

basic idea is to postulate a parameterized form for the solution of the endogenous variables

under strong-form RE and then try to determine what particular values the parameters must

8This example is adapted from Caplan (2000).
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take on in order for strong-form RE to hold.9

Suppose an economy is described by the following six equations and classification of

variables for a dynamic flexible-price IS-LM model with constant potential real GDP over

periods t ≥ 1.

Model Equations:

(1)* (IS) yt = − art + ut ;

(2)* (LM) mt − pt = byt − cit + vt ;

(3)* (Nominal and Real Interest Rates) it = rt + Etpt+1 − pt ;

(4)* (Lucas-Rapping Supply Curve) yt = y∗ + α · [pt − Et−1pt];

(5)* (Monetary Policy Rule) mt+1 = mt + φt+1 ;

(6)* (Strong-Form RE) Etpt+1 = E[pt+1|It] ,

where It denotes a period-(t+ 1) predetermined information set that is avail-

able to the representative agent at the end of period t (i.e., at the beginning of

time period t+1). The contents of It are assumed to be consistent with strong-

form RE.

Classification of Variables and Admissibility Conditions:

All endogenous variables are in natural logarithms of their level values. The six

period-t endogenous variables are as follows:

• yt, which denotes the log of real GDP for period t;

• pt, which denotes the log of the general price level for period t;

• mt+1, which denotes the log of the nominal money supply for period t+ 1;

9Three problems can arise with this method. First, strong-form RE solutions taking the postulated
parameterized form might not exist. Second, multiple solutions having the postulated parameterized form
could exist. Third, strong-form RE solutions could exist that have a different form than postulated.
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• rt, which denotes the real interest rate for period t;

• it, which denotes the nominal interest rate for period t;

• Etpt+1, which denotes the subjective forward-looking expectation of a rep-

resentative agent at time t regarding the log of the price level in period

t+ 1.

The period-t predetermined variables are mt and Et−1pt for t > 1. The exogenous

variables are: y∗, which denotes the log of potential real GDP; the random error

terms ut, vt, and φt; the positive exogenous constants a, b, c, and α; an initial

value m1 = m0 + φ1 for the period-1 money supply m1, where m0 is exogenously

given, and an initial value for E0p1. The random error terms are assumed to

satisfy E[ut|It−1] = 0, E[vt|It−1] = 0, and E[φt|It−1] = 0 for all t ≥ 1.

The model equation (6)* is incomplete as it stands, in that the “true conditional expecta-

tion” on the right hand side needs to be determined in a manner consistent with strong-form

RE. That is, given this expectation, the subsequent way in which the price level for period

t+ 1 is actually determined by the model equations must conform to this expectation in the

sense that the objectively-true It-conditioned expectation of the model-generated solution for

the price level in period t+ 1 must coincide with the expectation assumed for this price level

in model equation (6)*. Roughly speaking, then, to complete this model with strong-form

RE, we must solve a fixed point problem of the form f(x) = x, where x = E[pt+1|It].

One possible approach to determining the needed expectational form on the right hand

side of model equation (6)* is the method of undetermined coefficients . Conjecture a possible

solution form for pt as a parameterized function of other variables, where the parameter values

are unknown. Then, determine values for these unknown parameters that ensure strong-form

RE.

For example, assume for simplicity that y∗ = 0. Combine model equations (1)* through
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(4)* plus (6)* to obtain

pt =
1

1 + c
mt +

c

1 + c
E[pt+1|It]− β [pt − E[pt|It−1]] + wt , (14)

where

β = α

[
b+ c/a

1 + c

]
; wt =

1

1 + c

[
c

a
ut − vt

]
. (15)

To obtain equation (14), start with model equation (2)*, then use model equation (3)* to

substitute out for it, model equation (1)* to substitute out for rt, model equation (4)* to

substitute out for yt, and model equation (6)* to substitute out for the subjective price

expectations.

Suppose it is conjectured that the solution for pt takes the form

pt = q1mt + q2wt + q3φt , t ≥ 1 , (16)

where the coefficients q1, q2, and q3 remain to be determined. Now apply the It-conditional

expectations operator to each side of equation (16) bumped up one period to period t + 1

and use the mean-zero property assumed for the random error terms together with the

assumption that It is consistent with strong-form RE, to obtain

E[pt+1|It] = q1E[mt+1|It] , t ≥ 0 . (17)

Use model equation (5)*, together with the assumption that the contents of the infor-

mation set It are consistent with the definition of strong-form RE (hence, in particular,

E[φt+1|It] = 0, and the value of the period-t predetermined variable mt is in It), to conclude

that E[mt+1|It] = mt, hence

E[pt+1|It] = q1mt , t ≥ 0 . (18)

Now consider equation (18) bumped down one period and use model equation (5)*

bumped down one period to substitute mt − φt in for mt−1, thus obtaining

E[pt|It−1] = q1 [mt − φt] , t ≥ 1 . (19)
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Combining equations (16) and (19), one then has

pt − E[pt|It−1] = [q1 + q3]φt + q2wt , t ≥ 1 . (20)

Now use equations (18) and (20) to substitute out for the expectations in the price equation

(14) and combine terms. This gives

pt =
[

1

1 + c
+

c

1 + c
q1

]
mt + [1− βq2]wt − β [q1 + q3]φt , t ≥ 1 . (21)

Notice that we now have two distinct equations — equations (16) and (21) — that express

pt as a linear function of mt, wt, and φt. To make these equations consistent, set the three

coefficients in (16) equal to the three coefficients in (21). This yields three equations in the

three unknowns q1, q2, and q3. Solving for these q-values gives

q1 = 1 ; (22)

q2 =
1

1 + β
; (23)

q3 = − β

1 + β
; (24)

It follows that one possible solution for pt consistent with strong-form RE is

pt = mt +
1

1 + β
wt −

β

1 + β
φt . (25)

The corresponding strong-form RE for pt, to be substituted in on the right hand side of

model equation (6)*, is then found by taking the It-conditional expectation of each side of

equation (25) bumped up one period. Using (5)*, and the information contained in It, this

yields

E[pt+1|It] = E[mt+1|It] = mt , t ≥ 1 . (26)

Note, in particular, that the last equality in (26) follows from the fact that mt is in the

information set It available to a representative agent at the end of period t. Combining
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model equation (4)* (with y∗ = 0) with (25) and (26), it follows that the solution for period-

t real GDP consistent with strong-form RE is given by

yt = α

[(
1

1 + β

)
φt +

(
1

1 + β

)
wt

]
. (27)

Consequently, recalling that potential real GDP y∗ equals 0 by assumption in this il-

lustration, it follows from equation (27) that any deviations of actual real GDP yt from

potential real GDP y∗ = 0 are entirely due to the random shocks φt to the money supply

as well as to the random shocks ut and vt to the IS and LM curves. In particular, then,

under strong-form RE, and assuming the “natural rate” form for aggregate supply in model

equation (4)*, government has no ability through its monetary policy to systematically move

actual real GDP away from potential real GDP.

An important caution is in order here. We have solved for one particular strong-form

RE solution by conjecturing a solution form for the period-t price. We have by no means

established that this is the only strong-form RE solution for the model at hand. Indeed, it is

not. For example, it is easily seen that additional mean-zero error terms could be added to

the conjectured form for pt and the same type of derivation for the strong-form RE solution

could then be carried out.

Also, as in the first example above, note that the monetary policy ineffectiveness result

derived for this second example depends on more than just strong-form RE. In particular, it

depends heavily on the “natural rate” assumption that aggregate supply in model equation

(4)* takes the form of a Lucas-Rapping supply curve. Indeed, it is clear from equation (4)*

that government will have no ability to systematically control real GDP yt as long as the

representative agent has an unbiased expectation for pt, i.e., as long as Et−1pt = pt + εt

where the error term εt is a mean-zero random variable. Consequently, weaker expectational

assumptions than strong-form RE would produce monetary policy ineffectiveness in the

current model context. On the other hand, considering alternative model contexts, it is easy
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to show that strong-form RE alone is not sufficient in and of itself to ensure monetary policy

ineffectiveness.

4 Statistical Implications of Expectations Modeling

The two examples in the previous section illustrate how the modeling of expectations can

have a substantial effect on the predicted effectiveness of government policy. Using an

extremely simple model for illustration, this section will demonstrate how the modeling of

expectations can also have a substantial effect on the predicted statistical properties of key

macro variables.

Consider the following simple model of an economy:

yt = a+ b · Et−1yt + εt , t ≥ 1 . (28)

The only period-t endogenous variable is period-t real GDP, yt. It will be assumed that the

solution value for yt in each period t is observable at the end of period t. The terms a and

b are assumed to be exogenously given constants satisfying 0 < a and 0 < b < 1. The term

εt is assumed to be an exogenous serially-independent stochastic shock term satisfying

E[εt|It−1] = 0 , t ≥ 1. (29)

The period-t predetermined variable Et−1yt is a “place-holder” for some specific modeling

of the representative agent’s subjective expectation for yt based on the information set It−1

available to the representative agent at the end of period t-1 (beginning of period t). It will

be assumed that It−1 contains all the information consistent with strong-form RE, which the

representative agent might or might not optimally exploit. Consequently, It−1 contains the

model equation (28), the classification of variables for (28), all observations on past realized

endogenous variables, all values for deterministic exogenous variables, and the nature of the
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probability distribution governing the stochastic shock terms εt, including property (29).

Case 1:

Suppose, first, that the subjective expectation in equation (28) takes the following simple

adaptive expectations form:

Et−1yt = yt−1 . (30)

Substituting (30) into (28), and taking It−1-conditioned expectations of each side, one obtains

E[yt|It−1] = E[a+ byt−1 + εt|It−1] (31)

= a+ byt−1 , (32)

where the final equality in (32) follows from the fact that the values of a, b, and yt−1, as well

as the statistical properties of εt, are assumed to be included in the information set It−1.

Comparing (30) with (32), it is seen that the expectational error made by the represen-

tative agent in each period t is

E[yt|It−1]− Et−1yt = a+ [b− 1]yt−1 . (33)

Since yt−1 is contained in It−1, this error is systematically correlated with the information

contained in the representative agent’s information set It−1. This indicates that the repre-

sentative agent is not optimally exploiting this information to form his expectations.

Finally, substituting (30) back into (28), one obtains

yt = a+ b · yt−1 + εt , t ≥ 1 . (34)

Consequently, given the adaptive expectations form (30) for the representative agent’s sub-

jective expectation of yt in period t − 1, the resulting solution path (34) for real GDP yt

is such that successive yt values are positively correlated – that is, yt depends positively on

yt−1.
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Case 2:

Now suppose, instead, that the representative agent forms his expectation for yt in period

t− 1 in accordance with strong-form RE, that is,

Et−1yt = E[yt|It−1] . (35)

In this case the yt-generating process in (28) takes the form

yt = a+ b · E[yt|It−1] + εt , t ≥ 1. (36)

Taking It−1-conditioned expectations of each side of (36), and using the assumption that

It−1 is a strong-form RE information set, it can be shown that the strong-form RE (35) has

the specific analytic form

E[yt|It−1] = a/[1− b] . (37)

Substituting (37) back into (36), it follows that

yt = a+ b · a/[1− b] + εt , t ≥ 1 . (38)

Consequently, if the representative agent’s subjective expectation for yt in period t − 1 is

given by the strong-form RE (37), the resulting solution path (38) for real GDP yt is such

that successive yt values exhibit serial independence – that is, the realization of yt is entirely

independent of the realization of yt−1.

5 RE Solutions as Fixed Point Solutions

Strong-form rational expectations solutions for linear economic systems can generally be

represented as time-dated sequences of “fixed point problems” of the form x = M(x).

For example, consider the following system of equations for each time t ≥ 1, a general-

ization of the first illustrative model discussed in Section 3:

yt = a + b · E[yt|It−1] + c · E[pt|It−1] + εt ; (39)

pt = d + e · E[yt|It−1] + f · E[pt|It−1] + φt , (40)
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where the stochastic error terms satisfy E[εt|It−1] = E[φt|It−1] = 0. Let the vectors xt, zt,

µt and the function g(·) be defined as follows:

xt ≡ (E[yt|It−1], E[pt|It−1]) ≡ g(It−1) ; (41)

zt ≡ (yt, pt)
′ ; (42)

µt ≡ (εt, φt)
′ . (43)

Then equations (39) and (40) can be more compactly expressed in the form

zt = M(xt) + µt = M(g(It−1)) + µt , (44)

where the function M :R2 → R2 denotes the deterministic portion of the right-hand sides of

(39) and (40).

Now take the It−1-conditional expectation of each side of (44). The resulting expression

has the form of a fixed point problem:

xt = E[M(g(It−1))|It−1] + 0 = M(g(It−1)) = M(xt) . (45)

Any solution x̄t for (45) by construction gives an explicit rational expectations solution for

the It−1-conditioned expectations for yt and pt in model (39)-(40).

One major problem for RE highlighted by the fixed point representation (45) is the

possible nonuniqueness of solutions to (45). Nonuniqueness occurs for the linear model (39)-

(40) if a = d, b = e, and c = f . More generally, nonuniqueness is a common occurrence

when the model equations M(x) are nonlinear functions of x. Nonuniqueness throws into

question the “rationality” of RE solutions.

Suppose, for example, that the RE solution xt = (E[yt|It−1], E[pt|It−1]) for the real GDP

yt and price level pt of a model economy in period t satisfy a fixed point problem having

the general form (45) and that two distinct solutions x′t and x′′t exist – that is, M(x′t) = x′t

and M(x′′t ) = x′′t . Thus, if all agents in the economy at the end of period t− 1 expect x′t for
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period t, then the objectively-true expectation for (yt, pt) conditional on It−1 will in fact be

x′t. And if, instead, all agents in the economy at the end of period t− 1 expect x′′t , then the

objectively-true expectation for (yt, pt) conditonal on It−1 will in fact be x′′. What, then,

constitutes a rational expectation for (yt, pt) at the end of period t− 1?

This nonuniqueness issue is more carefully taken up in Tesfatsion (2017).

TECHNICAL APPENDIX

A.1 Definition of a Probability Space

A collection F of subsets of a space Ω is said to be a σ-field of Ω if F is closed under

complementation, countable intersections, and countable unions. It follows from closure

under complementation and countable unions that every σ-field of Ω contains both the

entire space Ω and the complement of Ω given by the empty set ∅.

A function P :F → [0,1] defined on a σ-field F of a space Ω is said to be a probability

measure on (Ω, F) that assigns a probability P (A) to each element A in F if P satisfies the

following two properties:

• (unit normalization): P (Ω) = 1 ;

• (countable additivity): Given any finite or countable collection {Ak} of elements in F

such that Ak′′ is disjoint from Ak′ for k′ 6= k′′,

P (
⋃
k

Ak) =
∑
k

P (Ak) (46)

A triplet (Ω,F , P ) is said to be a probability space if:

• Ω is a space of points ω, called the sample space and sample points.

• F is a σ-field of subsets of Ω, called events ;

• P :F → [0,1] is a probability measure on (Ω, F).
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A.2 Definition of a Random Variable and a Stochastic Process

A subset E ⊆ R of the real line R is said to be open if for every y ∈ E there exists some

ε > 0 (depending on y) such that the interval (y−ε, y+ε) is contained in E. A subset B ⊆ R

is said to be a Borel subset of R if it is derivable from the open subsets of R by means of

complementation, countable intersection, and countable union.

Let (Ω,F , P ) be a probability space. A function Y :Ω→ R is said to be a random variable

on (Ω,F , P ) if, for every Borel subset B ⊆ R, the set {ω ∈ Ω | Y (ω) ∈ B} is an element

of the σ-field F . Given any index set T , a collection (Yt) of random variables Yt, t ∈ T ,

is said to be a stochastic process on (Ω,F , P ) if each Yt is a random variable on (Ω,F , P ).

In applications, the index set T is often taken to be a subset of the real line R, and the

parameter t is commonly taken to represent time.

The following implication is noted for later purposes. Suppose Y :Ω → R is a random

variable on (Ω,F , P ). For any y ∈ R, the subset By = {r ∈ R | r < y} is an open subset of

R. Thus, the subset of Ω given by A(y) = {ω ∈ Ω | Y (ω) ∈ By} = {ω ∈ Ω | Y (ω) < y} is

an element of F , and the probability of A(y) is given by P (A(y)).

A.3 The Expected Value of a Random Variable

Let Y denote a random variable on a probability space (Ω,F , P ). As explained in Section

A.2, for each y ∈ R the set A(y) = {ω ∈ Ω | Y (ω) < y} is an element of F that has probability

P̂ (y) ≡ P (A(y)). The function P̂ :R→ [0, 1] is called the (cumulative) distribution function

for Y . Assuming certain technical regularity conditions regarding the integrability of Y with
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respect to P ,10 the (unconditional) expectation of Y is given by

EY =
∫

Ω
Y (ω)P (dω) =

∫
R
yP̂ (dy) , (47)

where

P̂ (dy) ≡ P ({ω ∈ Ω | Y (ω) ∈ dy}) (48)

Given various additional regularity conditions (see Chung (2000)), the distribution func-

tion P̂ can be expressed in terms of a continuous probability density function f :R → R as

follows:

P̂ (y) =
∫ y

−∞
f(z)dz , for all y ∈ R . (49)

In this case EY in (47) can alternatively be expressed as

EY =
∫
R
yf(y)dy . (50)

One way to think about EY is by means of the following frequency interpretation. Sup-

pose N realizations Y (ωn), n = 1, . . . N , could be obtained for the random variable Y corre-

sponding to N possible sample points ωn ∈ Ω, generated as N independent draws from the

distribution P . Then the average value

Ȳ (N) =

∑N
n=1 Y (ωn)

N
(51)

obtained for Y would “almost surely” approach EY as the number N of sample points

becomes arbitrarily large. Almost surely (a.s.) means that the collection of all sequences

(ωn)∞n=1 for which this convergence does not hold has P -probability zero.

Note from (47) that the expectation operator is a linear operator in the following sense.

For any exogenously given real-valued constants, say 2 and 10, the expectation for 2Y + 10

10See the appendix of Breiman (1992) for a discussion of these regularity conditions. Note that the
“unconditional” expectation of Y is in fact conditional on the underlying probability space; that is, the
expectation is taken with respect to this probability space. This dependence on the probability space is
customarily suppressed.
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is given by

E[2Y + 10] = 2EY + 10. (52)

A.4 Conditional Expectation

The concept of a “conditional expectation” is actually quite subtle, and it is not easy to

give an introductory treatment that is both clear and rigorous. For a rigorous treatment,

see any basic graduate-level text on probability theory, such as Breiman (1992) or Chung

(2000). For a more intuitive introduction limited to random variables with discrete range

spaces, see Fellner (2000).

To give some idea of the form that a rigorous definition for conditional expectation would

take, consider the following definitions expressed for different forms of conditioning events.

Let B denote the σ-field consisting of all Borel sets B ⊆ R. Let Y :Ω → R and X:Ω →

R denote random variables on a probability space (Ω,F , P ), with E |Y | < ∞. Also, let

F(X) ⊆ F denote the σ-field of all sets of the form {ω ∈ Ω | X(ω) ∈ B} for B ∈ B.

Let C ≡ {ω ∈ Ω | X(ω) ∈ B} for some particular B ∈ B for which P (C) > 0. Then,

given certain additional regularity conditions, the expectation of Y conditional on {X ∈ B}

can be expressed as

E[Y |X ∈ B] = E[Y |C] =

∫
C Y (ω)P (dω)

P (C)
. (53)

Note that (53) is a real-valued function of B ∈ B, or equivalently, a real-valued function of

C ∈ F(X), subject to the restriction P (X ∈ B) = P (C) > 0.

One special case of (53) is when B is a singleton set {x}; the conditional expectation (53)

is then typically expressed as E[Y |X = x], a real-valued function of x.11 Another special

11More precisely, E[Y |X = x] is a random variable on (R,B,P̂ ), assuming P (X = x) > 0 for all x ∈ R.
However, many random variables X of interest have the property that P (X = x) = 0 for all x ∈ R, e.g., any
random variable with a non-atomistic distribution function, such as a normally distributed random variable.
Consequently, condition (53) does not provide a sufficiently general definition of conditional expectation for
handling all conditioning events of interest.
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case of (53) is when Y is the 0-1 indicator function for a set A ∈ F . In this case definition

(53) reduces to the well known Bayes’ Rule formula

P (A | C) =
P (A

⋂
C)

P (C)
. (54)

More generally, E[Y |X] is any random variable on (Ω,F(X),P ) that satisfies

∫
A
E[Y |X](ω)P (dω) =

∫
A
Y (ω)P (dω) for each A ∈ F(X) . (55)

Note that Y itself does not typically satisfy property (55) for E[Y |X] because Y is not

necessarily measurable with respect to F(X). That is, for some Borel set B ∈ B, the set

{ω ∈ Ω | Y (ω) ∈ B} could fail to be an element of F(X) ⊆ F even though it is necessarily

an element of F .

Finally, let H denote any σ-field satisfying H ⊆ F . Then the conditional expectation

E[Y |H] is defined to be any random variable on (Ω, H, P ) that satisfies

∫
H
E[Y |H](ω)P (dω) =

∫
H
Y (ω)P (dω) for each H ∈ H . (56)

It can be shown that any two versions of E[Y |H] differ on a set of probability zero.

Finally, given random variables Y and X on a probability space (Ω,F ,P), the following

important properties can be shown to hold [see, e.g., Breiman (1992)]:

• Suppose EY 2 < ∞. Let Zo denote the a.s. unique best predictor of Y among the

collection Z of all random variables Z on (Ω,F(X),P ), in the sense that Zo ∈ Z

minimizes E[Y − Z]2 over Z ∈ Z. Then Zo(ω) = E[Y |X](ω) a.s.

• If F(Y ) ⊆ F(X), then E[Y |X](ω) = Y (ω) a.s.

• If Y and X are independent, then E[Y |X](ω) = EY a.s.

• If D and H are σ-fields, and D ⊆ H ⊆ F , then E
[

E[Y |H] | D
]
(ω) = E[Y |D](ω) a.s.
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• If H is a σ-field, and H ⊆ F , then E
[

E[Y |H]
]

= EY .

In the statement of the above properties, “a.s. (almost surely)” means the property holds

for all ω ∈ Ω except for a set A ∈ F with P (A) = 0.

Finally, it is important to note ways of representing conditional expectations at different

levels of specificity. Let Y :Ω → R and X:Ω → R denote random variables on a probability

space (Ω,F , P ), with E |Y | <∞. The expression E[Y |X = x] ≡ h(x) defined for any x ∈ R

represents a conditional expectation of Y given X = x as a function h:R→ R. In particular,

then, an expression such as E[Y |X = 2] represents a conditional expectation of Y given

X = 2 as a specific numerical value in R. Finally, the expression E[Y |X] represents the

conditional expectation of Y given X as a random variable Z on (Ω,F(X),P ) of the form

Z:Ω→ R with Z(ω) = E[Y |X](ω); cf. (55).

A.5 Unconditional vs. Conditional Expectation: Numerical Example

Consider a system described by the following three equations

y1 = y0 + ε1 ; (57)

y2 = y1 + ε2 ; (58)

y3 = y2 + ε3 , (59)

where the εi terms are shock terms. Suppose the set Ω∗ of all possible states of the world ω

for this system is given by

Ω∗ = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8} , (60)

where:

ω1 = (y0 = 2, ε1 = −1; ε2 = −1; ε3 = −1) ; (61)

ω2 = (y0 = 2, ε1 = +1; ε2 = −1; ε3 = −1) ; (62)
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ω3 = (y0 = 2, ε1 = −1; ε2 = +1; ε3 = −1) ; (63)

ω4 = (y0 = 2, ε1 = +1; ε2 = +1; ε3 = −1) ; (64)

ω5 = (y0 = 2, ε1 = −1; ε2 = −1; ε3 = +1) ; (65)

ω6 = (y0 = 2, ε1 = +1; ε2 = −1; ε3 = +1) ; (66)

ω7 = (y0 = 2, ε1 = −1; ε2 = +1; ε3 = +1) ; (67)

ω8 = (y0 = 2, ε1 = +1; ε2 = +1; ε3 = +1) . (68)

Let F∗ denote the collection of all subsets of Ω∗, including the empty set φ. Also, define a

probability measure P ∗:F∗ → [0,1] by P ∗(ωs) = 1/8, s = 1, . . . 8, and

P ∗(A ∪B) = P ∗(A) + P ∗(B)− P ∗(A ∩B) (69)

for each A and B in F∗.

Given the probability space (Ω∗,F∗, P ∗), marginal probability distributions can be sep-

arately derived for each of the variables (y0, y1, y2, y3, ε1, ε2, ε3). For example, it follows from

(61) through (68) that P ∗(y0 = 2) = P ∗(ω1, . . . , ω8) = P ∗(Ω∗) = 1. Similarly, if follows from

(61) through (68) that P ∗(εi = -1) = P ∗(εi = 1) = 1/2 for i = 1, 2, 3, which implies E[εi] =

0 for i = 1, 2, 3.

Now let A = {ω1, ω5}, B = {ω2, ω3, ω6, ω7}, and C = {ω4, ω8}. Then the following

probability distribution can be deduced for y2:

P ∗(y2 = 0) = P ∗(A) = 1/4; (70)

P ∗(y2 = 2) = P ∗(B) = 1/2; (71)

P ∗(y2 = 4) = P ∗(C) = 1/4; (72)

P ∗(y2 = x) = P ∗(φ) = 0 for x 6= 0, 2, or 4. (73)

Probability distributions can similarly be derived for y1 and y3. Finally, applying formula
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(53) from Section A.1, note for later use that

E[ε3|C] =
(P ∗(ω4) · [−1] + P ∗(ω8) · [+1])

P ∗(C)
(74)

=
−1/8 + 1/8

1/4
(75)

= 0 . (76)

Similar calculations show that E[ε1|C] = E[ε2|C] = 1.

Now consider the following expectations for y3, the first one conditional and the second

one unconditional.

E[y3|y2 = 4] = E[y3|C]

= E[y2 + ε3|C]

= E[y2|C] + E[ε3|C]

= 4 + 0 (77)

= 4 (78)

On the other hand,

E[y3] = E[y0] + E[ε1] + E[ε2] + E[ε3]

= 2 + 0 + 0 + 0 (79)

= 2 . (80)

Clearly (78) differs from (80) in that (78) makes use of the fact, derivable from the condi-

tioning information set C, that y2 = 4.

A.6 Information Sets as Conditioning Subsets of Ω

Suppose the possible states-of-the-world for a decision-making agent at some time t are

described by a probability space (Ω,F ,P ), and suppose It−1 denotes the information available
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to this agent at time t. The information appearing in It−1 could be very meager; for example,

it could consist only of the past realized values for a small number of endogenous variables.

Alternatively, it could be relatively extensive, containing detailed information about the

physical and institutional aspects of the agent’s world in addition to past realized values for

endogenous variables and exogenous shock terms.

Let It−1 be identified with a subset of Ω, as follows:

It−1 ≡ {ω ∈ Ω | It−1 is true for ω} (81)

Assuming It−1 ∈ F , the agent’s rational expectation regarding a period-t random variable

Yt, conditional on the information set It−1, can then be defined as in Appendix A.4 to be

E[Yt|It−1]. As discussed more carefully in Appendix A.4, this means that E[Yt|It−1] is a

“best possible predictor” (in a mean squared error sense) of the value that Yt will take on in

period t, conditional on knowing the information in It−1 and only this information.
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