Transitioning to Linked Swing-Contract
Wholesale Power Markets for Net-Zero 2050

Leigh Tesfatsion

Research Professor & Professor Emerita of Economics
Courtesy Research Professor of Electrical & Computer Engineering
Iowa State University, Ames, IA 50011-1054
https://www2.econ.iastate.edu/tesfatsi/
tesfatsi@iastate.edu

Presentation Slide-Set (Longer Form for Posting)

Session W2, Wednesday, June 22, 12:30pm EDT
FERC Technical Conference (Virtual)
Increasing Real-Time and Day-Ahead Market
Efficiency through Improved Software
21-23 June 2022
Growing reliance of U.S. RTO/ISO-managed wholesale power markets on renewable power resources and demand-side participation have led to greater uncertainty and volatility of net load.

RTOs/ISOs are finding it harder to secure reserve with sufficient flexibility and dependability to permit the continual balancing of net load, a basic requirement for power system reliability.

SC Book [1] reconsiders the design of these markets, stressing four market design principles:

[MD1] Wholesale power markets must necessarily be forward markets due to the speed of real-time operations;

[MD2] Only one type of product can effectively be offered: reserve, an insurance product offering the availability of net-load balancing services for future real-time operations;

[MD3] Net load balancing services primarily take the form of power-paths that can be RTO/ISO-dispatched at specific grid locations over time;

[MD4] All dispatchable power resources should be permitted to compete for the provision of power-paths without regard for irrelevant underlying technological differences.

If principles [MD1] – [MD4] are accepted, trade and settlement arrangements in U.S. RTO/ISO managed wholesale power markets will need to be fundamentally altered.

Presentation Outline

1. **U.S. RTO/ISO-managed markets: Net-Zero 2050 Concerns** [1, Chapters 2-3]

2. **A linked swing-contract market design** [1, Chapters 1, 4-11]
 - 2.1 Design overview
 - 2.2 Swing contract: General formulation and examples
 - 2.3 Swing-contract market: Key features
 - 2.4 Swing-contract day-ahead market: 30-bus test case
 - 2.5 Linked swing-contract markets

3. **Comparisons with current U.S. RTO/ISO-managed markets** [1, Chapters 12-16]
 - 3.1 Comparison of basic features
 - 3.2 Comparison of optimization formulations

4. **Support for integrated T&D system operations** [1, Chapters 1, 17-18]

5. Conclusion

6. References

Appendix: *Ptolemaic Epicycle Conundrum for Market Design* (“Onion Problem”)

- **U.S. RTO/ISO-managed wholesale power markets**

 - **Basic Purpose:** Ensure production & transmission of bulk power efficiently and reliably over time, for ultimate distribution to end-use customers.

 - **Reliability Requirement:** Continual net-load balancing across the grid

 \[
 \text{net load} = [\text{Power withdrawals/losses}] - [\text{non-dispatched power injections}]
 \]

 \[
 \approx [\text{dispatched power injections}]
 \]

 U.S. RTOs/ISOs are finding it harder to maintain continual net-load balancing as the electric power industry increasingly moves towards power-grid decarbonization, consistent with **UN Net-Zero 2050 Goal:** Net-zero greenhouse gas emissions by 2050.

- **Key Concern:** Increasingly volatile and uncertain net load due to

 - increased reliance on intermittent non-dispatchable renewable power resources connected to the **transmission grid** (wind farms, large solar PV panel arrays, ...);

 - more active power trading among entities connected to the **distribution grid** (producers, prosumers, & consumers).
Three Potential Remedies

• **Hybrid Power Resources**
 Firm up *non*-dispatchable power resources with jointly-operated *storage*.

• **Increased Power-Supply Flexibility**
 Provide more opportunities/incentives for diverse RTO/ISO-dispatchable wholesale power resources able to provide *just-in-time power supply* to service *just-in-time net-load demand*.

• **FERC Order No. 2222 Initiatives**
 Permit T&D linkage entities to participate in wholesale power markets as suppliers of RTO/ISO-dispatchable power and/or ancillary services harnessed from *diverse* collections of *distribution-level power resources* voluntarily participating in distribution-level Transactive Energy System (TES) designs.

➢ **Difficulty**
 Conceptually problematic aspects of current U.S. RTO/ISO-managed wholesale power markets are impeding the implementation of these remedies.
1. Artificial Distinction Between “Energy” and “Reserve”

A wholesale power market $M(T)$ for a future operating period T is a forward market for which only one type of product can effectively be offered: namely, net-load balancing services for T.

Examples: Day-Ahead Market DAM(D+1) held during day D for operating day $D+1$; Real-Time Market RTM(H) held during hour $H-1$ for operating hour H.

2. “Product” Proliferation

Problematic treatment of highly correlated attributes of a resource’s power output over time as independent products that can be separately transacted at separately determined prices.

Example: Max energy capacity (MWh), power cap range (MW), feasible ramp-rate range (MW/min) of a single generator G treated as independent products: ENERGY (MWh); CAPACITY (MW); RAMP (MW/min).

3. “Participation Model” Proliferation

Growing taxonomy of power-resource types based in part on irrelevant distinctions, each type with special market eligibility rules & performance requirements.

Example: “Energy” participant vs. “Reserve” participant

4. Revenue Insufficiency (Avoidable Cost > Market-Based Revenue)

Incorrect presumption that compensation of power resources for scheduled “energy deliveries” (MWh) at grid locations b during standardized operating periods T solely by locational marginal prices $LMP(b,T)$ ($/MWh$) will necessarily result in revenue that fully covers all incurred Avoidable Cost

$$\text{Avoidable Cost} = \text{Avoidable Fixed Cost} + \text{Variable Cost}$$

(See appendix for cost definitions)
Fundamental Issue Underlying Conceptual Concerns 1. – 4.

➢ The **Standard Market Design** (DAM/RTM two-settlement system) at the core of all seven current U.S. RTO/ISO-managed wholesale power markets *incorrectly presumes these markets are “commodity” markets.*

Review of Four Important Economic Definitions [1, Appendix, Table A.3]:

Asset: Anything in physical or financial form that can function as a store of value over time.

Commodity: Asset with a *standard unit of measurement* for which units at any given time and location can be *substituted* for each other *with no change in valuation.*

Spot Market for an Asset: Delivery and payment for the asset are determined *at the same time* (“on the spot”).

Forward Market for an Asset: The asset payment method is contractually decided *in advance* of the asset delivery date.
Energy (MWh) as a Commodity: *Spot Market Example*

- Suppose energy (MWh) is produced and sold in the form of *uniformly packaged batteries*.
- At any given time and retail location, each battery sells at a *common retail price* $\pi_{\text{Ret}} (\$/battery)$ that covers wholesale production cost (“W”) plus transport/damage cost (“Trans”).

Fig. 1: *Energy (MWh) in uniform battery form can be transacted as a commodity.*

Note: The decomposition of the spot price π_{Ret} into “W” and “Trans” components is analogous to the decomposition of a locational marginal price LMP(b,T) into “energy,” “congestion,” & “loss” components.
Key Point (i): *Energy (MWh)* typically is *not* a commodity in U.S. RTO/ISO-managed wholesale power markets

Why Not?

- *Exact way* that power (MW) injected at a grid-location b *during* an operating period T *accumulates up* into energy (MWh) can matter greatly to producers, customers, and/or RTOs/ISOs.

- That is, the “*power-path*” *typically matters*, not simply the static amount of delivered energy (MWh).

Examples:

- Producers care about depreciation costs from ramping wear & tear *during T*;
- Customers benefit from flexible just-in-time power availability *during T*;
- RTOs/ISOs care about flexible voltage control support *during T*.
Key Definition from Swing-Contract Book [1]

Power-path \(p(T) \) for an operating period \(T \):

Sequence of injections and/or withdrawals of power (MW) that take place at a *single* grid location *during* operating period \(T \).

Important: a *power-path* is a *path through time* taking place at a *fixed location*.

Fig. 2: *Illustrative depiction of a power-path \(p(T) \) in a time-power plane.*
Key Point (ii): U.S. RTO/ISO-managed wholesale power markets are **forward power-path markets**

Fig. 3: An RTO/ISO-managed wholesale power market is a collection of forward markets for ensuring balanced power-path production and deliveries for the transmission component of a T&D System.

Grid-Edge Resource (GER) = Any entity capable of power usage and/or power output that has a direct electrical point-of-connection to the distribution grid.
Key Point (iii): *Power-paths* are *not* a commodity in current U.S. RTO/ISO-managed wholesale power markets

Why Not?

- **Power-paths** do *not* have a *standard unit of measurement* such that power-path “units” available for delivery at a grid-location b during an operating period T can be substituted for each other with *no* change in valuation.

- To the contrary, power-paths can have *diverse attributes* that result in *diverse valuations* by producers, customers, and/or RTOs/ISOs.

Examples:

- Down/up ramping *profile* during T can affect producer cost (wear & tear) during T;
- Active power *profile* during T can affect customer benefit during T;
- Reactive power *profile* during T can affect power system reliability during T,

where:

 profile during T =: *Form that some attribute takes during operating period T.*
Key Point (iv): Swing contracts are well-suited for the support of power-path transactions in RTO/ISO-managed wholesale power markets.

Why?

The general swing-contract formulation defined in SC Book [1] permits a dispatchable power resource to:

— offer availability of power-paths with diverse attributes for possible RTO/ISO-dispatched delivery during a future operating period T;

— ensure receipt of full compensation ex ante (i.e., in advance of T) for the systemic risk reduction provided by this period-T availability;

— ensure receipt of full compensation ex post (i.e., after T) for any verified period-T delivery of one of these offered power-paths in response to dispatch set-points received from the RTO/ISO.
2. Linked Swing-Contract Market Design

2.1 Design Overview

- **Purpose**: The intended purpose of the **Linked Swing-Contract Market Design** developed in **SC Book [1]** is to facilitate the flexible dependable availability of reserve in RTO/ISO-managed wholesale power markets.

- A swing-contract market $M(T)$ for a future operating period T is an RTO/ISO-managed forward reserve market for T.

- Reserve for T consists of RTO/ISO-dispatchable power-paths for T.

- A power-path for T is a sequence of injections and/or withdrawals of power (MW) at a single grid location during T.

A reserve offer submitted by a dispatchable power resource m to a swing-contract market $M(T)$ for a future operating period T is an offer to ensure availability of power-paths for possible RTO/ISO-dispatched delivery during T.

- A reserve offer is thus a physically-covered insurance product.
- Each reserve offer is a portfolio of one or more swing contracts in firm or option form.
- Swing-contract portfolios permit dispatchable power resources to express the swing (flexibility) in the attributes of their offered power-paths in a clear and comprehensive manner.

A reserve bid submitted to a swing-contract market $M(T)$ for a future operating period T is a demand for power-path delivery during T.

- Reserve bids can take a price-sensitive and/or fixed (must-service) form.
Design Overview: Swing Contracts

- A swing contract SC_m submitted by a dispatchable power resource m to an RTO/ISO-managed swing-contract market $M(T)$ for a future operating period T is a two-part pricing contract.

 - The offer price that m includes in SC_m permits m to ensure full compensation in advance of T for any avoidable fixed cost that m must incur to guarantee the availability of power-paths for possible RTO/ISO dispatch during T.

 - The performance payment method that m includes in SC_m permits m to ensure full compensation after T for any variable cost that m incurs for verified delivery of a power-path during T in accordance with dispatch set-points received from the RTO/ISO.
Design Overview: RTO/ISO Management

☐ RTO/ISO goal for a swing-contract market M(T) for a future operating period T

Maximize Expected Total Net Benefit of M(T) participants, \textit{conditional on} initial state conditions \textit{and subject to} system constraints.

☐ RTO/ISO cost allocation rules to ensure \textit{RTO/ISO independence}, i.e., no ownership/financial stake in market participants or power system operations

➢ Allocate M(T) net reserve procurement cost across M(T) participants in accordance with \textit{anticipated volatility/size} and \textit{ex-post realization} of their \textit{net fixed load during T}, where:

\[
\text{NetReserveCost}(M(T)) =: \text{RTO/ISO net reserve procurement cost from M(T) operations} =: \text{[Offer cost] plus [performance cost] minus [revenues from price-sensitive demand]}
\]

\[
\text{NetFixedLoad}(j, M(T)) =: \text{Period-T net fixed load of an M(T)-participant } j =: \text{[Fixed (\textit{must-service}) power demand by } j \text{ during T] minus [non-dispatched power injection by } j \text{ during T]}
\]

➢ Allocate M(T) transmission service cost across M(T) participants in accordance with:

— \textit{relative power imbalance \textit{RPI}(b,T)} recorded at each grid location \textit{b} during \textit{T}; and

— \textit{relative contribution of each M(T)-participant } j \text{ to \textit{RPI}(b(j),T), where } b(j) =: j’s grid location.
Swing contract

![Swing contract formula](image)

submitted by a dispatchable resource \(m \) to an RTO/ISO-managed SC market \(M(T) \) for a future operating-period \(T \) consists of:

1) offer price \(\alpha_m \);

2) exercise set \(T_{m}^{ex} \) of possible contract exercise times;

3) power-path set \(PP_m \) providing a “digital twin” representation of an offered collection of power-paths that \(m \) is physically capable of delivering at some designated grid location during the future operating period \(T \) in response to received RTO/ISO dispatch set-points;

4) performance payment method \(\phi_m \).
Swing Contract: General Formulation ... Continued

Swing contract

\[SC_m = (\alpha_m, T_{m}^{ex}, PP_m, \phi_m) \]

submitted by a dispatchable resource \(m \) to a swing-contract market \(M(T) \) for a future operating period \(T \) permits \(m \):

- to offer the RTO/ISO a choice set \(PP_m \) of reserve (power-paths) \(p \) for possible RTO/ISO-dispatched delivery during operating period \(T \);

- to specify with care the *swing (flexibility)* in the offered power-paths \(p \) in terms of both physical attributes and exercise times.

The *physical attributes* of each power-path \(p \) can include:

static attributes: delivery time/place; delivered energy (MWh) ...

dynamic attributes: power profile; power-factor profile; ramp-rate profile; power mileage; down-time/up-time profile; ...
In addition, swing contract SC\(_m\) permits \(m\):

- to request an **offer price** \(\alpha_m\) ($) that covers *ex ante* (i.e., *in advance of* \(T\)) any *avoidable fixed cost* that \(m\) would have to incur in order to ensure the *availability* of the power-paths in PP\(_m\) for *possible* RTO/ISO dispatch during \(T\).

Avoidable fixed cost examples: Capital investment cost; transaction cost (insurance, licensing, ...); unit commitment cost; opportunity cost; ...

- to specify a **performance payment method** \(\varphi_m\) that maps each power-path \(p \in PP_m\) into a required performance payment \(\varphi_m(p)\) ($). This permits \(m\) to ensure *recovery ex post* (i.e., *after* \(T\)) for any *variable cost* that \(m\) incurs for verified delivery of a power-path during \(T\) in accordance with dispatch set-points received from the RTO/ISO.

Variable cost examples: Fuel cost; labor cost; transmission service charges; equipment wear and tear due to fast ramping; ...
Swing Contract: General Formulation ... Continued

The performance payment method ϕ_m should be explicitly expressed in terms of standardized performance metrics.

These performance metrics should permit the RTO/ISO and m:

- to agree ex ante (i.e., in advance of T) on the nature of m's offered period-T power-path delivery;
- to verify ex post (i.e., after T) the extent to which m's actual period-T power-path delivery deviates from admissible dispatch set-points that the RTO/ISO has communicated to m during T (if any).

Example:

Determine performance cost $\phi_m(p)$ of each power-path p in PP_m as a linear combination of metrics that separately assign costs to correlated attributes of p, such as delivered energy (E), power mileage (PM), duration (D), etc.

$$\phi_m(p) = c^E(p) + c^{PM}(p) + c^D(p) + ...$$

Costs assigned to correlated attributes of a single power-path p
Swing Contract: Examples

Example 1: A simple energy-block swing contract in firm form

Remark: As shown in [1, Sect. 5.4], this form of swing contract can easily be modified to represent current RTO/ISO supply-offer forms, such as ERCOT’s three-part supply offer.

\[SC_m = [\alpha, PP, \phi] \]

where:

\[\alpha = \text{Offer price} \]
\[PP = (b, t^s, p^{\text{disp}}, t^e) \]
\[b = \text{Delivery location} \]
\[t^s = \text{Start time for energy block E} \]
\[p^{\text{disp}} = \text{Maintained power injection for energy block E} \]
\[t^e = \text{End-time for energy block E} \]
\[\phi = \text{Pre-specified price } \pi \text{ for delivered energy} \]
Example 1: *A simple energy-block swing contract ... Continued*

\[g(t) - g^{\text{sync}} \text{ (MW)} \]

- **SC\(_m\) Offer Price** \(\alpha \): Permits \(m \) to cover SU, RU, No-Load, RD, & SD energy costs *along with any other avoidable fixed cost* that \(m \) must incur to ensure the *availability* of “Dispatch” for delivery during \(T \).

- **SC Performance Payment Method** \(\varphi \): Permits \(m \) to recover “Dispatch” energy cost *along with any other variable cost* that \(m \) must incur to *deliver* “Dispatch” during \(T \).

Fig. 4: Illustrative depiction of \(m \)’s **energy requirements** for delivery of energy-block “Dispatch” during operating period \(T \): namely, the energy block itself (“Dispatch”); start-up (“SU”); ramp-up (“RU”); no-load (“No-Load”), ramp-down (“RD”), and shut-down (“SD”).
Example 2: *A piecewise-linear swing contract in firm form*

\[
SC_m = [\alpha, PP, \phi]
\]

where:

- \(\alpha\) = Offer price
- \(PP = (b, t^s, p^s, RR(R1), t^{E1}, P(E1), t^{R2}, RR(R2), t^{E2}, P(E2), t^e)\)
 - \(b\) = Delivery location
 - \(t^s\) = Start-time for ramp interval R1
 - \(p^s\) = Power injection level at start-time \(t^s\)
 - \(RR(R1)\) = Set of feasible ramp-rates \(r(p^s, p_i(E1))\) for R1
 - \(t^{E1}\) = Start-time for energy block E1
 - \(P(E1)\) = Set of feasible maintained power-steps \(p_i(E1)\) for E1
 - \(t^{R2}\) = Start-time for ramp interval R2
 - \(RR(R2)\) = Set of feasible ramp-rates \(r(p_i(E1), p_j(E2))\) for R2
 - \(t^{E2}\) = Start-time for energy block E2
 - \(P(E2)\) = Set of feasible maintained power-steps \(p_j(E2)\) for E2
 - \(t^e\) = End-time for E2
- \(\phi\) = Payment for ramp and delivered energy calculated by means of power-path mileage and a pre-specified price \(\pi(p)\) for each \(p \in P(E1) \cup P(E2)\)
Example 2: A piecewise-linear swing contract ... Continued

Fig. 5: One among many possible power-paths p the RTO/ISO could dispatch m to deliver during operating day $D+1$ if the RTO/ISO clears m’s piecewise-linear swing contract SC_m submitted to an SC day-ahead market $M(D+1)$ held on day D.
Example 3: **A swing contract in firm form offering battery charge/discharge as an ancillary service**

$$SC_m = [\alpha, PP, \phi]$$

where:

- $\alpha =$ Offer price
- $PP = (b, ECap^{max}, \eta, t^s, SOC^s, RR, P, t^e, SOC^e)$
 - $b =$ Delivery location
 - $ECap^{max} =$ Maximum energy storage capacity
 - $\eta =$ Round-trip efficiency
 - $t^s =$ Start-time for power discharge/charge
 - $SOC^s =$ Set of feasible state-of-charge percentages at t^s
 - $P = [P^{min}, P^{max}] =$ Range of feasible discharge/charge levels p
 - $RR = [-R^D, R^U] =$ Range of feasible ramp-rates r
 - $t^e =$ End-time for power discharge/charge
 - $SOC^e =$ Set of feasible state-of-charge percentages at t^e
- $\phi =$ Performance payment method for down/up power-path delivery
Example 3: A swing contract in firm form offering battery...Continued

Fig. 6: Suppose $SOC^s = SOC^e = \{100\%\}$, and $P_{\text{min}} = -P_{\text{max}}$. Then the depicted dispatched power-path is one among many possible power-paths p the RTO/ISO could dispatch m to deliver during operating hour $H = [t^s, t^e)$ if the RTO/ISO clears m’s battery service swing contract SC_m submitted to an SC market $M(H)$ held in advance of hour H.
Example 4: Swing contract (firm) with flexible power & ramp

Note: Proposed for Integrated T&D support (FERC Order No. 2222) in SC book [1]

\[
SC_m = [\alpha, PP, \phi]
\]

where:

\(\alpha = \) Offer price

\[PP = (b, t^s, p^s, P, RR, t^e)\]

\(b = \) Delivery location

\(t^s = \) Start-time for power delivery

\(p^s = \) Initial power level at time \(t^s\)

\(P = [p_{min}, p_{max}] = \) Range of feasible down/up power levels \(p\)

\(RR = [-R^D, R^U] = \) Range of feasible down/up ramp-rates \(r\)

\(t^e = \) End-time for power delivery

\(\phi = \) Performance payment method for power-path delivery
Example 4: Swing contract (firm) with flexible power & ramp ... Continued

Fig. 7: One among many possible power-paths p the RTO/ISO could dispatch m to deliver during operating day $D+1$ if the RTO/ISO clears m’s flexible power/ramp SC submitted to an SC day-ahead market $M(D+1)$ held on day D.
2.3 Swing-Contract Market M(T): Key Features

- A swing-contract market \(M(T) \) for a future operating period \(T \) is an RTO/ISO-managed forward reserve market.

- General time-line for \(M(T) \):

 - The Look-Ahead Horizon \(\text{LAH}(T) \) can range from very long (multiple years) to very short (minutes);
 - The operating period \(T \) can range from very long (multiple years) to very short (minutes).
Load-Serving Entities (LSEs)

- Each LSE submits to M(T) a *reserve bid*, i.e., a request for power-path delivery during T in fixed (must-service) and/or price-sensitive form.

Dispatchable power resources $m \in M$

- Each m submits to M(T) a *reserve offer* consisting of a portfolio

$$SC_m = (SC_{m1},...,SC_{mN})$$

of $N \geq 1$ swing contracts SC_{mj}, each offering a physically characterized collection of power-paths for possible RTO/ISO dispatched delivery during T.

Non-dispatchable Variable Energy Resources (VERs)

The RTO/ISO inputs into M(T) a *forecast* for non-dispatchable VER generation at each transmission grid bus during period T.
Swing-Contract Market M(T): Key Features ... Contract-Clearing Optimization

- **Contract-Clearing Optimization Problem for the RTO/ISO that Manages M(T)**
 - Which price-sensitive reserve bids to clear for T?
 - Which reserve offers to clear for T?

- **Objective function:** *Expected Total Net Benefit* of the M(T) participants from period-T operations, where:

 \[\text{Total Net Benefit} = [\text{Reserve Benefit} - \text{Reserve Cost}] \]

 \[\text{Reserve Benefit} = [\text{Customer benefit expressed by their reserve bids}] \]

 \[\text{Reserve Cost} = [\text{Offer Cost (OC)} + \text{Performance Cost (PC)} + \text{Imbalance Cost (IC)}] \]

- **Optimization:** *Select* contract-clearing binary (yes/no) decisions *that* maximize Expected Total Net Benefit

 -- *conditional on* initial conditions plus information automatically extracted from submitted reserve offers and reserve bids

 -- *and subject to* the usual types of SCED system constraints (e.g., power-balance, transmission capacity limits, reserve uncertainty sets, ...)

32
The RTO/ISO’s contract-clearing optimization problem for M(T) is conditioned on the following types of initial conditions:

- Forecasted/calculated *down/up-time status* and *power level* of each dispatchable power resource \(m \) at the *start* of operating period \(T \);
- Bid/forecasted *fixed (must-service) load* at each grid bus during \(T \);
- Forecasted *non-dispatchable VER generation* at each grid bus during \(T \).
The RTO/ISO’s contract-clearing optimization problem for M(T) is subject to the following types of SCED system constraints:

- transmission line constraints;
- power balance constraints (with slack variables);
- dispatchable resource capacity constraints;
- dispatchable resource ramping constraints (start-up, normal, and shut-down);
- dispatchable resource minimum up-time/down-time constraints;
- dispatchable resource hot-start constraints;
- dispatchable resource start-up/shut-down cost constraints;
- system-wide and zonal down/up reserve requirement constraints;
- bus voltage angle constraints.
2.4 Swing-contract day-ahead market (SC DAM): 30-bus test case

Fig. 8: Grid for 30-Bus Test Case. 30 buses B1-B30; 41 transmission lines L1-L41; 6 dispatchable thermal generators G1-G6; 4 non-dispatchable wind farms located at buses B7, B8, B21, and B24; and 20 LSEs servicing fixed load at 20 different buses.
SC DAM 30-Bus Test Case: Contract-clearing optimization in an analytical Mixed Integer Linear Programming (MILP) Form

Note: The operating day D+1 is discretized into time-steps \(k \) in \(K \), and all load is assumed to be fixed.

RTO/ISO Objective: All load fixed \(\rightarrow \) [Max Expected Net Benefit] \(\equiv \) [Min Expected Avoidable Cost]

Select decision variables to minimize forecasted total avoidable cost, subject to system constraints, where forecasted total avoidable cost is given by:

\[
\hat{C}(T) = \sum_{m \in \mathcal{M}} \left[c_m \alpha_m + \phi_m(p_m) \right] + \sum_{b \in \mathcal{B}} \sum_{k \in K} \left[\Lambda^- \beta_b^-(k) + \Lambda^+ \beta_b^+(k) \right] \Delta t
\]

RTO/ISO Binary Decision Variables:
- Contract clearing indicators: \(c_m \in \{0, 1\} \), \(\forall m \in \mathcal{M} \)

RTO/ISO Continuously-Valued Decision Variables:
- Power dispatch levels: \(p_m(k) \), \(\forall m \in \mathcal{M} \), \(k \in K \)
- Bus voltage angles: \(\theta_b(k) \), \(\forall b \in \mathcal{B}/\{1\} \), \(k \in K \)

Variables determined by RTO/ISO Decisions and System Constraints:
- Run-time minimum power levels: \(\underline{p}_m(k) \), \(\forall m \in \mathcal{M} \), \(k \in K \)
- Run-time maximum power levels: \(\overline{p}_m(k) \), \(\forall m \in \mathcal{M} \), \(k \in K \)
- Unit availability indicators: \(\nu_m(k) \in \{0, 1\} \), \(\forall m \in \mathcal{M} \), \(k \in K \)
- Transmission line power flows: \(w_\ell(k) \), \(\forall \ell \in \mathcal{L} \), \(k \in K \)
- Power balance slack variables: \(\beta_b(k), \beta_b^-(k), \beta_b^+(k) \), \(\forall b \in \mathcal{B} \), \(k \in K \)
- Bus voltage angle for reference bus 1: \(\theta_1(k) \), \(\forall k \in K \)
Table 6.6 Thirty-bus SC DAM performance over three successive days for two different reserve zone treatments

<table>
<thead>
<tr>
<th>Day</th>
<th>Treatment</th>
<th>Reserve Zones</th>
<th>Contract Clearing</th>
<th>OC(Z,Dj)</th>
<th>E^(PC(Z,Dj))</th>
<th>E^(IC(Z,Dj))</th>
</tr>
</thead>
<tbody>
<tr>
<td>D₀</td>
<td>Proposed</td>
<td>z₁: Bus 23</td>
<td>[1, 1, 1, 1, 1, 1]</td>
<td>$10,750</td>
<td>$100,555.65</td>
<td>$194.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₂: Bus 27 29 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₃: Bus 1-22 24 25 26 28</td>
<td>[1, 1, 1, 1, 1, 1]</td>
<td>$8,750</td>
<td>$106,420.12</td>
<td>$5,371.73</td>
</tr>
<tr>
<td></td>
<td>Single Zone</td>
<td>z₁: Bus 1-30</td>
<td>[1, 1, 1, 1, 1, 0, 1]</td>
<td>$8,750</td>
<td>$107,670.78</td>
<td>$5,371.73</td>
</tr>
<tr>
<td>D₁</td>
<td>Proposed</td>
<td>z₁: Bus 23</td>
<td>[1, 1, 1, 1, 1, 1]</td>
<td>$10,700</td>
<td>$98,012.73</td>
<td>$10,359.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₂: Bus 21 22 24-27 29 30</td>
<td>[1, 1, 1, 1, 1, 1]</td>
<td>$10,700</td>
<td>$98,012.73</td>
<td>$10,359.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₃: Bus 1-20 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Zone</td>
<td>z₁: Bus 1-30</td>
<td>[1, 1, 1, 1, 1, 0, 1]</td>
<td>$9,100</td>
<td>$99,996.96</td>
<td>$13,990.73</td>
</tr>
<tr>
<td>D₂</td>
<td>Proposed</td>
<td>z₁: Bus 23 24 25 26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₂: Bus 27 29 30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>z₃: Bus 1-22 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Zone</td>
<td>z₁: Bus 1-30</td>
<td>[1, 1, 1, 1, 1, 0, 1]</td>
<td>$7,810</td>
<td>$105,077.11</td>
<td>$13,282.30</td>
</tr>
</tbody>
</table>
2.5 Linked Swing-Contract Markets

Example 1: Intertemporal Linkages for a Given Operating Period T

- Linked SC markets $M(T)$ for a *given* future operating period T with Look-Ahead Horizons $\text{LAH}(T)$ ranging from Long (L) to Short (S) to Very Short (VS).

- Linkage is established among the successive markets $M(T)$ for the given T by

 \[\text{ISOPort}(T) := \text{Portfolio of reserve bids and reserve offers cleared for } T \text{ that the RTO/ISO carries forward through time for use during } T. \]

- The RTO/ISO *updates ISOPort(T)* in successive SC markets $M(T)$ held *prior to T* to include any *newly-cleared* contracts for T.

![Diagram showing time periods D-365, D, D+1 with linkages between Long, Short, Very Short Term Forward Markets](image)

<table>
<thead>
<tr>
<th>D-365</th>
<th>D</th>
<th>D+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term</td>
<td>Short-Term</td>
<td>Very Short-Term</td>
</tr>
<tr>
<td>Forward Markets</td>
<td>Forward Markets</td>
<td>Forward Markets</td>
</tr>
</tbody>
</table>

$L-M(T)$ $S-M(T)$ $VS-M(T)$
Example 2: Nested Operating Periods

Linked *day-ahead & hour-ahead* SC markets for a *given* operating hour H during a *given* operating day $D+1$
3. Comparisons with Current U.S. RTO/ISO-Managed Markets

- Key features of the proposed Linked Swing-Contract Market Design are described in previous slides and throughout SC book [1].

- Detailed comparisons with current RTO/ISO-managed wholesale power market designs are given in SC book [1, Chapters 2-3, 12-15].

- The next two tables outline key similarities & differences between the two designs for the special case of a Day-Ahead Market (DAM).

3.1 Illustrative DAM Comparison ... Basic Features

<table>
<thead>
<tr>
<th>Similarities</th>
<th>Current DAM</th>
<th>SC DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conducted day-ahead to plan for next-day operations
• RTO/ISO-managed
• Participants include LSEs, dispatchable resources, & VERs
• Same types of system constraints (line capacity limits; power balance; gen attributes; reserve requirements; ...)</td>
<td>SCUC & SCED</td>
<td>Swing-contract clearing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Differences</th>
<th>Current DAM</th>
<th>SC DAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimization formulation</td>
<td>SCUC & SCED</td>
<td>Swing-contract clearing</td>
</tr>
<tr>
<td>Settlement</td>
<td>Locational marginal prices</td>
<td>Contract-determined prices</td>
</tr>
<tr>
<td>Payment</td>
<td>Payment for next-day energy before energy delivery</td>
<td>Payment for reserve availability now & reserve performance ex post</td>
</tr>
<tr>
<td>Out-of-market payments</td>
<td>Make-whole payments (e.g., for unit commitment)</td>
<td>No out-of-market payments</td>
</tr>
<tr>
<td>Info released to participants</td>
<td>Unit commitments, LMPs, & next-day dispatch schedule</td>
<td>Which swing-contracts have been cleared</td>
</tr>
</tbody>
</table>
3.2 Illustrative DAM Comparison … Optimization

<table>
<thead>
<tr>
<th>Differences</th>
<th>Current DAM SCUC</th>
<th>Current DAM SCED</th>
<th>SC DAM Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarities</td>
<td>Both SCUC and swing-contract (SC) clearing are solved as mixed integer linear programming (MILP) optimization problems subject to system constraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objective</td>
<td>Min [Start-up/shut-down costs + no-load costs + dispatch costs + reserve costs]</td>
<td>Min [Dispatch costs + reserve costs]</td>
<td>Min [Offer cost + expected performance cost + expected imbalance cost]</td>
</tr>
<tr>
<td>Unit commitment</td>
<td>Yes</td>
<td>No</td>
<td>Unit commitment constraints are implicit in submitted swing-contracts</td>
</tr>
<tr>
<td>constraints</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key ISO decision</td>
<td>Unit commitments</td>
<td>Energy dispatch & reserve levels</td>
<td>Which swing-contracts are cleared</td>
</tr>
<tr>
<td>variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settlement</td>
<td>No</td>
<td>LMPs calculated as SCED dual variables</td>
<td>Offer prices paid for cleared swing-contracts</td>
</tr>
</tbody>
</table>

Fig. 9: An ITD System with IDSO linkage agents, implemented by the ITD TES Platform V2.

See: ITD Project Homepage, https://www2.econ.iastate.edu/tesfatsi/ITDProjectHome.htm

Grid-Edge Resource (GER) =: Any entity capable of power usage and/or power output with a *direct* electrical point-of-connection to the *distribution* grid.
SC support for ITD operations ... Continued

- **Swing contracts** can facilitate participation of Independent Distribution System Operators (IDSOs) in RTO/ISO-managed wholesale power markets as providers of ancillary services harnessed from Grid-Edge Resources (GERs), in accordance with FERC Order No. 2222 objectives.

Example: Consider an IDSO that operates at a T-D linkage bus B_L for an Integrated Transmission and Distribution (ITD) system.

- Suppose the **IDSO submits** a swing-contract $SC = (\alpha, PP, \phi)$ into an RTO/ISO-managed day-ahead market DAM(D+1) held on day D for real-time operations on D+1.

- Suppose the **RTO/ISO clears** the swing-contract SC. Then the **IDSO receives** its offer price α; and the **RTO/ISO is obligated to select** some power-path $p^* \in PP$ and to communicate suitable dispatch set-points to the IDSO during D+1 to ensure the delivery of p^* at B_L during D+1.

- The **IDSO implements** these dispatch set-points during D+1 by sending suitable retail price signals to distribution-system GERs whose electrical devices have smart (price sensitive) controllers.

- The **IDSO uses** a bid-based Transactive Energy System (TES) design to determine these retail price signals during day D+1: namely, the bid-based **Five-Step TES Design** developed in:

5. Conclusion

Linked Swing-Contract Market Design: Purpose

Facilitate efficient reliable balancing of increasingly volatile and uncertain net load in RTO/ISO-managed wholesale power markets.

Key Novel Design Aspects

- Each swing-contract market is a *forward reserve market*;
- Reserve consists of *RTO/ISO-dispatchable power-paths*;
- Reserve offers take the form of *swing contracts*;
- Each swing contract is a *physically-covered insurance contract with two-part pricing*.
- This two-part pricing permits reserve suppliers to guarantee their *revenue sufficiency*.
Design Features Stressed in This Slide-Set

— swing contract

— swing-contract market

— collection of linked swing-contract markets

— support for integrated T&D operations (FERC Order No. 2222)
Conclusion ... Continued

- Additional Topics Covered in Swing Contract book [1]
 - LSE reserve bids expressed via benefit functions [1, Ch. 9]
 - Gradual transition to swing-contract markets: An illustrative Transitional Day-Ahead Market (DAM) [1, Ch. 16]
 - Potential future research directions [1, Ch. 19]
6. References

https://www2.econ.iastate.edu/tesfatsi/SCBookReview.IEEEPESMag2022.pdf

https://www2.econ.iastate.edu/tesfatsi/MarketDesignSAND2013-2789.LTEtAl.pdf
Appendix: Ptolemaic Epicycle Conundrum for Market Design ("Onion Problem")

(1) "Sunk Cost is Sunk" Dictum: Swing-contract book [1, Sec. 3.2.7]

A Decision-Maker (DM) must decide at some time t whether to commit to undertaking an action A at a future time $t+1$. In making this decision, the DM should ignore sunk cost, where:

$$\text{Sunk Cost} =: \text{Non-Avoidable Fixed Cost}$$

$$=: \text{Cost } C^o \text{ that:}$$

(i) the DM incurs whether or not the DM commits at time t to undertaking action A at time $t+1$;

(ii) does not depend on the specific form of A.

(2) Action Optimization Principle: Swing-contract book [1, Sec. 3.2.7]

A risk-averse Decision-Maker (DM) must decide at some time t whether to commit to undertaking an action A at a future time $t+1$. The DM should make this commitment at time t only if the DM expects to attain a non-negative net benefit from doing so, where:

$$\text{Net Benefit} =: \text{[Benefit]} - \text{[Avoidable Cost]}$$

$$\text{Avoidable Cost} =: \text{[Avoidable Fixed Cost]} + \text{[Variable Cost]}$$

$$\text{Avoidable Fixed Cost} =: \text{Cost } C^o \text{ that:}$$

(i) the DM incurs if and only if the DM commits at time t to undertaking action A at time $t+1$;

(ii) does not depend on the specific form of A.

$$\text{Variable Cost} =: \text{Cost } C(A) \text{ that:}$$

(i) the DM incurs if and only if the DM commits at time t to undertaking action A at time $t+1$;

(ii) does depend on the specific form of A.
Appendix: Ptolemaic Epicycle Conundrum for Market Design ... Continued

(3) Fundamental Product Definition Problem in U.S. RTO/ISO-Managed Markets

— To guarantee net-load balancing during a future operating period T, attention in forward markets for T should be switched

from a deterministic focus on:
scheduling now the energy amounts (MWh) for later RTO/ISO-dispatched delivery at designated grid locations during T

to a risk-aware focus on:
securing now the availability of suitably diverse collections of power-paths for possible later RTO/ISO-dispatched delivery at designated grid locations during T

where:
a power-path for T is a sequence \(p(T) = \{ p(t) \mid t \text{ in } T \} \) of power injections/withdrawals \(p(t) \) (MW) at a single grid location during T.

(4) Ptolemaic Epicycle Conundrum for Market Design (“Onion Problem”)

— A fundamental conceptual problem with an initial core rule-set specified for a market design results in operational problems.

— These operational problems are addressed by instituting a layer of new rules (“epicycle”) around the initial core rule-set, which results in additional operational problems.

— Rule-layer accretion then continues to occur because, ignoring the “Sunk Cost is Sunk” Dictum (1), correction of the initial fundamental conceptual problem always seems to be too costly to undertake.