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ABSTRACT FOR THE CHAPTER

JEL Classfication Codes:

O4  Economic growth and aggregate productivity

04.7 Measurement of economic growth; aggregate productivity

This chepter surveys the theory and methods of the measurement of aggregae
productivity as characterized by totd factor productivity (TFP) and tota factor productivity
growth (TFPG). Index number methods are the mainday methodology for estimating nationa
productivity. Different conceptuad meanings have been proposed for a TFPG index. The
dternative concepts are easest to understand for the case in which the index number problem is
absent: a production process with one input and one output (a £1 process). We show that four
common concepts of TFPG dl lead to the same measure in this 21 case. However, with only 1
input and one output it is not possible to introduce aggregation issues. To do that, we move on to
a production process with two inputs (a 2-1 process). After that we present severd of the
commonly used index number formulas for a generd N input, M output production scenario.
One result demondtrated is that a Paasche, Laspeyres or Fisher index number formula provides a
measure for al of the four concepts of TFPG introduced for the 1-1 case. Nevertheless, with
multiple inputs and outputs, different formula choices lead to different TFPG messures. This
raises the issue of choice among aternative TFPG formulas.

One gpproach to this problem is to use adgebra and economic theory redtrictions to
edablish that certain index number formulas correspond, by Diewert's “exact” index number
goproach, to linearly homogeneous producer behaviord relationships that are “flexible’ in the
sense defined by Diewert that they provide a second order gpproximation to an arbitrary twice
continuoudy  differentisble  linearly  homogeneous  function. Diewert coined the term
“superlative’ for an index number functiond form that is exact for a behaviord reationship with
a functiond form tha is flexible When the exact index number gpproach and Diewet's
numericad andyds agpproximation results for superlative index numbers are gpplied, the a priori
information reguirements for choosing an index number formula are reduced to a list of generd
characteristics of the production scenario.

Additional topics discussed in this chapter include an dterndive family of theoreticd
productivity growth indexes proposed by Diewert and Morrison, the Divisa method, and growth
acocounting.



1. INTRODUCTION

“Implementing a strategy to achieve a higher standard of living for all Canadians

always comes back to dealing squarely with the same deeply-rooted challenge:
enhancing Canada’s long-term productivity.”

(The Honourable Jean Chrétien

Prime Minister of Canada

Confederation Dinner, October 26, 1998)

“The two main sources of economic growth in output are increases in the factors

of production (the labour and capital devoted to production) and efficiency or

productivity gains that enable an economy to produce more for the same amount
of inputs.”

(Baldwin, Harchaoui, Hosein and Maynard, 2000

“Productivity: Concepts and Trends”

Statistics Canada)

“Productivity is commonly defined as a ratio of a volume measure of output to a

volume measure of input use. While there is no disagreement on this general

notion, a look at the productivity literature and its various applications reveals

very quickly that there is neither a unique purpose for nor a single measure of
productivity.”

(Paul Schreyer

OECD Statistics Directorate

OECD PRODUCTIVITY MANUAL, 2001)

Productivity is like love. Much is sad about the benefits of having more of it, but
disagreement reigns on how best to achieve this. One reason for this is a lack of consensus on
what “it"” redly is Many economiss are dso unfamiliar with the methods tha are used for
measuring aggregate productivity, by which we mean the productivity of unique entities such as
nations or entire indudtries. Nationd productivity estimates are of specid importance because
they are an input into many aspects of public policy meking.! At this level of aggregation, the
data available are limited to fairly short time series, putting bounds on the scope for econometric
edimation. As a consequence, index number methods (including growth accounting) are the
maingay methodology. This chapter surveys the index number theory and methods for the

! For instance, the national monetary authorities for countries such as Canada routinely consider national TFPG
estimates in making decisions about acceptable amounts of price inflation. National productivity estimates and inter-
country comparisons of these are cited in debates concerning a wide range of public policy issues. The release of
productivity figures by national statistical agencies is often front page news. National public policy issues are given
as one motivation for many of the studies of productivity including Aschauer (1989), Baily (1981), Bak (1996),
Basu and Fernald (1997), Bernard and Jones (1996), Berndt and Khaled (1979), Black and Lynch (1996), Boskin
(1997), Bruno and Sachs (1982), Crawford (1993), Denison (1979), Diewert (2001), Diewert and Fox (1999),
Diewert and Lawrence (1995), Griliches (1997), Hulten (1986, 2001), Jorgensen and Lee (2001), Maddison (1987),
Muellbauer (1986), Nadiri (1980), Nordhaus (1982), Odagiri (1985), Power (1998), Prescott (1998), and Wolff
(1985, 1996, 1997).



measurement of aggregate productivity as characterized by total factor productivity (TFP) and
total factor productivity growth (TFPG).

The traditiond index number measures of TFPG are defined as ratios of output and input
quantity indexes. A TFP growth estimate does not, by itsdf, tell us anything about what caused
this growth just as the annud vaues for the nomind or the red revenue/codt ratio for a business
do not, by themsdves tdl us why profitability has been risng or fdling. Nevertheless, just as
many aspects of busness planning are affected by information about whether revenues have
been risng faster or more dowly than codts, likewise, esimates of national productivity growth
affect nationa economic policies. It is important for these edtimates to be accurate and
understood. Also, in order to explore explanations for TFP growth, it is first necessary to
measureit.?

For economigts there are other reasons as wel why it is important to have a good
understanding of index numbers. The quantity and price index components of the traditiond
TFPG indexes are used for a wide range of purposes in applied econometric studies. For
example, monetary variables in dudies making use of observatlions over time ae typicdly
deflated using price indexes. In this chapter, we review the definitions of the Laspeyres, Paasche,
Fisher, Torngvig, and implicit Térngvist quantity and price indexes and the corresponding TFPG
indexes.

Severd different conceptua meanings have been proposed for a TFPG index. The
dternative concepts are easest to understand for a one period production process that uses a
sngle input factor to make a single output good (what we refer to as a 1-1 process). In section 2
we show that four common concepts of TFPG dl lead D the same measure in the 1 case. Of
course, the aggregation chdlenges that must be confronted in the condruction of index numbers
cannot be introduced in a }1 case context because they do not arise. Thus, in section 2 we aso
use a hypothetical two nput, one output production scenario (that is, a 21 process) as a context
for briefly introducing and motivating some of the choices faced in forming quantity aggregates,
quantity indexes and TFPG indexes when there are multiple inputs or outputs.

For a generd N input, M output production scenario, the inputs and the outputs must be
aggregated. If price weights are used for this purpose, then issues of price change must be dedlt
with too. In section 3, we define aggregates and quantity and price indexes that are components
of the TFPG indexes. One important result demondrated in this section is that, for severd of the
commonly used functiond forms, the resulting TFPG formula can be viewed as a measure for dl

2 For gaining a causal understanding of the ups and downs of national productivity, data at lower levels of
aggregation are of great value. While beyond the scope of this survey, studies based on micro level evidence that
represent important advances in understanding productivity growth include Bartelsman and Doms (2000); Blundell,
Griffith and Van Reenen (1999); Cockburn, Henderson and Stern (2000); Foster, Krizan and Haltiwanger (1998);
Levinsohn and Petrin (1999); Olley and Pakes (1996); and Pavcnik (2001).



of the four digtinct concepts of TFPG introduced in section 2. Nevertheless, with multiple inputs
and outputs, different formula choices lead to different TFPG measures. This raises the issue of
choice among dternative TFPG formulas.

The two main gpproaches to choosing among the different index umber functiond forms
are the axiomatic (or test) gpproach and the exact gpproach also referred to as an economic
approach.

The axiomatic approach is taken up in section 4. It was used extensvely by the founding
contributors to index number theory, including Fisher (1911, 1922). This approach makes use of
lists of desired properties for price, quantity, or productivity indexes. These properties are
referred to as axioms or tests. They are ether formdizations of common sense properties of good
index numbers or generdizations of properties that hold for virtudly al proposed index number
formulasin the smplidtic 1-1 case.

The axiomatic approach to index number choice focuses on properties of the index
number formula itself. In contrast, the exact approach transforms the index number choice
problem into a problem of choosng the correct functiond form for a behaviora aggregator
function of some sort. In order to use the exact gpproach to derive the functiona form for a
TFPG index, it is fird necessary to decide on the perspective for the productivity andysis. When
a producer perspective is adopted, as is usudly the case, then the aggregator function for the
economic approach can be the production function, or it can be the corresponding cost, profit, or
other dua representation of the production process. Once the functiond form of the designated
producer behaviord aggregator has been determined, then Diewert’'s exact index number method
can be gpplied to determine the corresponding functiond form for the TFPG index. Section 5
explains the basics of the exact index number method.

The question of how the functiond form can be determined for the designated producer
behaviora eguetion is left unanswered by the exact index number gpproach. Econometric
edimation and testing might seem to be the obvious solution to this problem. However, in
section 5, we dso note that for one of a kind productive entities like nations, the avalable
degrees of freedom place severe limitations on the use of econometric methods.

When dgebra and economic theory redtrictions dlow us to establish that some particular
index number formula corresponds, by Diewert's “exact” index number approach, to a linearly
homogeneous producer behaviord relationship that is “flexible’ meaning that it provides a
second order gpproximation to an  abitrary twice continuoudy differentidble linearly
homogeneous function, then the index number is sad to be “superlative” Diewert established
thaa dl of the commonly used supeldive index number formulas (including the Fsher,
Torngvigt, and implicit Térngvist formulas introduced in section 3) gpproximate each other to the
second order when evaluated at an equa price and quantity point. Diewert established as wdll



that the two most commonly used index number formulas that are not superlative -- the
Laspeyres and the Paasche indexes, dso introduced in section 3 -- gpproximate the superlative
indexesto the first order at an equa price and quantity point.

The exact index number agpproach together with Diewet's numericad andyss
goproximation results for superlative index numbers reduce the a priori information requirements
for choosng an index number formula to a lig of generd characteridics of the production
scenario. So long as there is agreement on those characteristics (some of which are
problematicd, as noted in the text), then any one of the superlative TFPG index number formulas
should provide a reasonable estimate to the theoreticd Mamaquis TFPG index introduced in
section 6.

The exact and the axiomaic approaches single out some of the same index number
formulas as egpecidly desrable. The exact gpproach can be viewed as a methodology for
exploring the meaning of the proposed measures of TFPG and aso of the intuitions on which the
axiomatic gpproach is based. This gpproach helps us interpret TFPG indexes in the language of
neoclasscd theory. Tha the index number formulas which have been in use dnce the ealy
1900's have solid interpretations in the language of modern micro theory suggedts that the
intuitions which guided the axiomaic approach to index number theory and the axioms of
microeconomic theory may have more in common than is readily apparent.

An dternative family of theoretical productivity growth indexes proposed by Diewert and
Morrison (1986) is the topic of section 8.

The Divisa method reviewed in section 9 is yet another gpproach that has been used to
link specific index number formulas to particular production functions, thereby providing a basis
for attributing changes in TFPG to specific factors of production. Section 9 presents the Divisa
method. On a conceptud leve, the Divisa method treats time as continuous. Discrete
goproximations must be developed in order to implement this method empiricdly, and this raises
the index number formula choice problem once again. The Divisa method has been usd
extensvely in growth accounting studies for nations, the subject of section 10. Section 10 dso
raises additiona THPG conceptua issues of public policy as wel as measurement importance.

Section 11 concludes.



2.  ALTERNATIVE CONCEPTS AND PERSPECTIVES FOR
PRODUCTIVITY MEASUREMENT

“Productivity
A ratio of output to input.”
(Atkinson, Banker, Kaplan and Young 1995, Management
Accounting, p. 514)

“While, for example, we look at the cost of power as a number of ‘analysed’ items
such as coal, water-rate, ash removal, drivers’ and stokers’ wages, etc., it will
probably be a long time before it dawns upon us that all this expenditure can be
reduced to a horse-power-hour rate, and that such a factor, once known, may
turn out to be a standing reproach. The burning of 200 tons of coal per week
may mean anything or nothing, but the cost of a horse-power hour can be
compared at once with standard data . . .. the publication of figures based on
them would reveal amazing inefficiencies that under present conditions are
unsuspected and unknown because no means of comparison exists.”

(A. Hamilton Church 1909, p.190)

The basic definition of tota factor productivity (TFP) is the rate of trandformation of tota
input into total output. The output-over-input index approach to the measurement of total factor
productivity (TFP) has ealy origins. In his Smon Kuznets Memorid Lecture, Griliches
remarked that “the fird mention of what might be cadled an output-over-input index that | can
find gppears in Copeland(1937).” However, in an endnote to the written verson of the lecture
Griliches(1997) writes:

“Nothing is really new. Kuznets(1930) used the ‘cost of capital and labor per

pound of cotton yarn,” the inverse of what would later become a total factor

productivity index (if the cost is computed in constant prices) ... as a ‘(reflection

of) the economic effects of technical improvement’ and a few sentences later as

a measure of ‘the effect of technical progress’ (p. 14). More thorough research is
likely to unearth even earlier references.”

Indeed, the early engineering and cost accounting literature contains numerous references to unit
costs used as efficiency measures (e.g., Church 1909). For a one output production process, the
unit cost isthe reciproca of the TFP index.

All red production processes meke use of multiple inputs and most yiedd multiple
outputs. Nevertheless, it is convenient to introduce basc concepts, terms and notation in the
amplified context of a production process with a sngle homogeneous input factor and a single
homogeneous output good. In a 1-1 context, the concepts of total factor productivity and total



factor productivity growth (TFPG) are easy to think about because the measures are not
complicated by choices about how different types of inputs and different types of outputs should
be aggregated. By the same token, of course, the aggregation difficulties that arise when there are
multiple inputs or outputs cannot be introduced in a :1 case context because they do not arise.
Thus we aso briefly condgder a two input, one output process, a 2-1 case, in the last part of
section 2.

21 The 1-1 Case

For each time period t=0,1...,T, the quantity of the one input used in period t is given
by xi, its unit price is W{, the quantity of the one output produced in period t is y{, and its unit
price is ptl. TFP can be defined conceptudly as the rate of transformation of tota input into total
output. Thus, for the 1-1 case, the ratio of output produced to input used in period t is our
measure for TFP for period t; that is, we define:

(2.1-1) TFPo (v} /x})° a'.

The parameter a! that is defined aswell in (2.1-1) is aconventiona output-input coefficient.®

Totd factor productivity growth, or TFPG, can be defined in severd ways, four of which
are conddered in this chapter. Our first concept of TFPG is the rate of growth over time for TFP,
defined for the 1-1 case in (2.1-1) above.* This concept of TFPG, denoted here by TFPG(1), can
be measured in the 1-1 case as: ®

t6 S0
@i/@—ii:at /a®.

eX1géX1 g

(2.1-2) TFPG(1) ©

Three other concepts of tota factor productivity growth are dso in common use:

the ratio of the output and the input growth rates, denoted by TFPG(2);

the rate of growth in the red revenue/codt ratio; i.e., the rate of growth in the revenue/cost
ratio controlling for price change, denoted by TFPG(3); and

the rate of growth in the margin after controlling for price change, denoted by TFPG(4).

3 An output-input coefficient always involves just one output and one input. However, these coefficients can be
defined and used in multiple input, multiple output situationstoo asis done in Diewert and Nakamura (1999).

“ Some authors also use TFP to refer to total factor productivity growth. In line with Bernstein (1999), we use TFPG
rather than TFP for total factor productivity growth so asto avoid the inevitable confusion that otherwise results.

® Here we refer to t and s as time periods. However, the ‘period s' comparison situation could be for some other unit
of production in the same time period.



For a 1-1 production process, the obvious measure for the second concept of TFPG is:
(2.1-3) TFPG(2) © 198 -/9
&yip gx

The third and fourth concepts of TFPG are financid in nature. Expressons for actud
revenue and cost are needed to form measures for these. For the 1-1 case, tota revenue and total
cost are given by

(2.1-4) Rtoplyl and Cto wixi, t=1...T.

The third concept of TFPG can be measured by

é sU ext ;s to
(2.1-5) TFPG(S)OeR /R /eC/C 3Pl

Spllpl v} 3"’1/W1u gylﬂg 1;;

where

(2.1-6) (RY/R®)/(p'/ p°) = (piyi/piyD) /(P /PT) = Y1/ V3

and

(2.1-7) (CtrcS)iwt/w®) = (wixd/wxd) (wi/ws) = xt/ xS

Busness managers are usudly interested in ensuring that revenues exceed codts, and this
leads to an interest in margins. The period t margin, !, isdefined by

(2.1-8) 1+mte RY/CY t=01...,T.

Using this définition, in the 1- 1 case TFPG(4) can be measured by
(2.1-9) TFPG(4) © [(1+m") /(L+m®)] [(w] /w3) /(p} / p)]-

That is, TFPG(4) is equa to the rate of margin growth times the rate of growth of input prices
divided by the rate of growth of output prices. If we interpret the margin as a reward for
managerid or entrepreneuriad input, then TFPG(4) can be interpreted as the rate of growth of
input prices, broadly defined so as to include managerid and entrepreneurid input, divided by



the rate of growth of output prices. Note that if the margins are zero, then TFPG(4) reduces to
(wi/w)/(pi/pf) .

Usng (2.1-8) to diminate the margin growth rate on the right-hand side of (2.1-9), and
comparing the resulting expression and those in (2.1-2), (2.1-3) and (2.1-5), it can readily be seen
that the four concepts of total factor productivity growth introduced here dl lead to the same
pure quantity measure. That is for the 1-1 case the measures for dl four of the concepts for
TFPG reduce to

SESE:

Cx s+
&1 g &1 o

(2.1-10) TFPG ©

2.2 The 2-1 Case

We next use a dightly more complex production process as the context for introducing
key choices that must be faced in order to specify multiple input, multiple output measures of
TFP and TFPG. This hypothetical 21 production process uses the labour hours of one man and
logs as inputs and yidds firewood as the output. The man buys the loads of logs, splits them with
an axe, and then sdls the split logs as firewood. The axe was inherited and has no resale or renta
vaue. The man's time, measured in hours, is denoted by x{, and the number of truckloads of
logs purchased is denoted by x;. The firewood output is measured in kilograms and denoted by
i

The labour productivity in eech period is given by (y;/x}), and the materias utilization
productivity is given by (y{/ xtz). These are the two output-input coefficient measures that can
be defined for this production scenario, and their values tend to move in opposite directions from
period to period. When the man splits logs at a faster pace, unless he pays extra atention, he uses
the raw resource input more wastefully. The fact that the single factor productivity measures do
not necessarily move together (or even in the same direction) is a key reason why TFP and TFPG
messures are needed.

In order to measure TFP for our log splitting process, a measure for total input is needed.
That is, we need a way of adding hours of labour and truckloads of logs. Different perspectives
could be adopted for forming this aggregate. We might take a pure quantity measurement
perspective, or a producer profit maximizing perspective, or a consumer or household utility

® This formula was suggested by Jorgenson and Griliches (1967, p. 252). One set of conditions under which the
marginswill be zero is perfect competition and a constant returns to scale technology.



maximizing perspective’ It is only the first two of these perspectives that have been widdy
adopted in the productivity measurement literature.

The pure quantity perspective is what those who view TFP as a rate of transformation of
inputs into outputs usudly have in mind.

From a pure quantity measurement perspective, an aggregate quantity measure should be
uniquely determined by the quantities of the component quantities, and any changes in the index
should be determined by changes in the magnitudes of the component quantities These
properties will be saisfied, for example, if a linear sum of the quantities with any sort of fixed
weights is adopted as the quantity aggregate.

In the economic approach to index number theory, the goa of producer profit
maximization provides a different bass for determining how the quantities of the inputs and
outputs should be combined to form total input and total output aggregates. In this case, the unit
codts or unit revenues of the producer are used as the weights for the quantities of the different
inputs and outputs.

In our firewood production example, if the unit cost for an hour of labour is Wi and the
unit cost of a load of logs is Wt2, then the input quantity aggregate could be defined as the
following price weighted sum:

(2.2-1) W{xt1 +Wt2Xt2.

If the totd input is measured as in (2.2-1), then for this firewood production example
totd factor productivity, defined as the rate of transformation of total input into total output, can
be measured as

(2.2-2) TFP =y} [(wix! +wixb).

Now, suppose we want to measure TFPG. That is, suppose we want to compare the ratio
of output to input in period t (the period t input to output transforméation rate) with the ratio of
output to input for some comparison period s. Should period t price weights be used in forming
both the period t and period s aggregates? Or, should period s price weights be used in forming
both of the aggregates? Or, should some sort of combination of the period s and t prices be used
as weights? Also, are there other functional forms besides the linear one that might be preferable
for combining the quantities of the different inputs? These are the sorts of aggregation related
issues that are faced in the theory of index numbers.

" Thisissue of perspectiveistaken up in the report of the Panel on Conceptual, Measurement, and Other Statistical
Issues in Devel oping Cost-of-Living Indexes edited by Schultze and Mackie (2002).



3. FOUR TFPG MEASURES FOR THE N-M CASE

“But even if we confine our attention to what is ordinarily called a commodity,
such as ‘wheat,” we find ourselves dealing with a composite commodity made up
of winter wheat, spring wheat, of varying grades.”

(Paul A. Samuelson, 1983 edition, Foundations of Economic Analysis, p. 130)

Multiple input, multiple output processes are the rule for real businesses even at the leve
of individua plants, divisons or production lines. How can we measure the four concepts of
TFPG introduced in section 2 in generd multiple input, multiple output production Stuations?
Thisis the question explored in this section.

We begin by defining quantity aggregates that are components of the Paasche, Laspeyres,
and Fisher Ided quantity, price and TFPG indexes, and then give the formulas for these indexes.
Tornquig and implicit Térnqvist index numbers are dso defined.

3.1 Price Weghted Quantity Aggregates

For a generd N-input, M-output production process, the period t input and output price
vectors are denoted by wto [W{,...,Wh] and pt ° [p{,ptz,...,pﬁ/l] , while xt©° [xtl,...,xf\,] and
yt ° [ytl,...,yf\/l] denote the period t input and output quantity vectors.

Nomina totd cost C! and revenue R! can be viewed as price weighted quantity
aggregates of the micro leve data for the individud transactions, and are defined as follows for
periodst and s:

(3.1-1) c' o &Ngwhxp . R &M ipmym,

(3.1-2) c%o aN wixs and R0 4M_ ph v,

We dso define four hypotheticd quantity aggregates® The first two result from
evauating period t quantities using period s price weights:
(31-3) &L whxn and & NPy

® Formally, the first two of these can be shown to result from deflating the period t nomina cost and
revenue by a Paasche price index. The second two result from deflating the period t nomina cost and
revenue by a Laspeyres price index. See Horngren and Foster (1987, Chapter 24, Part One) or Kaplan and
Atkinson (1989, Chapter 9) for examples of this accounting practice of controlling for price level change
without explicit use of price indexes.

10



These aggregates are what the cost and revenue would have been if the period t inputs had been
purchased and the period t outputs had been sold a period s prices. In contrast, the third and
fourth aggregates are sums of period s quantities evaluated using period t prices:

(31-4) &aWnxn ad AN-1Pmym-

These are what the cost and revenue would have been if the period s inputs hed been purchased
and the period s outputs had been sold at period t prices.

The eight aggregates given in (3.1-1) through (3.1-4) are dl that are needed to define the
Paasche, Laspeyres and Fisher quantity, price, and TFPG indexes.’

3.2  ThePaasche, Laspeyresand Fisher Quantity and Price Indexes

The Paasche (1874), Laspeyres (1871), and Fisher (1922, p. 234) output quantity indexes
can be defined as follows using the quantity aggregates given in (3.1-1)-(3.1-4):
321 Qpoalpyi/alpjyi

(3.2-2) Qu° &4y /&L pjy;, ad

(3.2-3) Qr ° (QpQ)™2.
Smilarly, the Paasche, Lagpeyres, and Fisher input quantity indexes can be defined as:

(3.2-4) Qp° é’li:lwitxit /éj’\ilW}X?’
(3.2-5) QL ° AR wix! 18 MLwxs, and
(3.2-6) Qr ° (QpQL) M.

Output and input quantity indexes are dl that are needed to define measures of the firs
and second concepts of TFPG. However, in order to specify measures of the third and fourth

concepts for the multiple input, multiple output case, price indexes are needed too.

® Traditionally these were defined as weighted averages of quantity and price relatives. A quantity (price)
relative for a good is the ratio of the quantity (price) for that good in a specified period t to the quantity
(price) for that good in some comparison period s. One advantage of defining a quantity (or price) index
as a weighted average of quantity (price) relatives is that the relatives are unit free, making it clear that
this is an acceptable way of incorporating even goods (prices) for which there is no generally accepted
unit of measure. The equivaent definitions presented here are more convenient for establishing that each
of these TFPG indexes is a measure of all four of the different concepts of TFPG introduced in section 2.
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Price indexes can be congructed using any of the functiona forms that can be used for
quantity indexes smply by reversng the roles of the prices and quantities in the quantity index.
Thus the Paasche, Laspeyres and Fisher output and input price indexes can be defined as.

(3:2-7) Pp © a| 1p|y| psyt,

t
(3.2-9) Ppo &N wix /a]_lwij,
(3.2-9) P ° a, 1p|Y| 1§ 1p]y]’
(3.2-10) PLoaN;wix /aj_lwf it
(3.2-11) P © (PoR)®?), and
(32-12) Pr° (R )Y

A price index is the implicit counterpart of a quantity index if the product rule is satisfied.
This rule requires that the product of the quantity and price indexes must equa the tota cost ratio
for input side indexes or the total revenue ratio for output side indexes® Usudly the implicit
price index will not have the same functionad form as the quantity index it is associated with. For
example, the Paasche price index is the implicit counterpart of a Laspeyres quantity index, and
the Laspeyres price index is the implicit counterpart of a Paasche quantity index. The Fisher
indexes are unusud in that the Fisher price index satisfies the product test rule when paired with
aFisher quantity index.

In defining and proving equdities for the measures of the four concepts of TFPG for a
generd multiple input, multiple output production Stuation, we use the following implications of
the product rule. In particular, for the Paasche, Lagpeyres and Fisher indexes, on the input sde
we have

(3.2-133) Qp Pl =QL Pp=Qf Pr=C'/C°,
and on the output Sde we have
(32-13b) Qp’ PL :QL, PP:QF, PF:Rt/RS.

% The implicit price (quantity) index corresponding to a given quantity (price) index can aways be
derived by imposing the product test and solving for the price (quantity) index that satisfies this rule. The
product test is part of the axiomatic approach to the choice of an index number functional form that is
reviewed in section 4.
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33 TFPG Measuresfor theN-M Case

The traditiona definition of a totd factor productivity growth index in the index number
literature isas aratio of output and input quantity indexes:
(3.3-1) TFPG° Q/Q".

Thus the Paasche, Lagpeyres, and Fisher TFPG indexes can be defined usng the Paasche,
Laspeyres, and Fisher quantity indexes. Given a choice of any one of these three functiond
forms, we will prove that the corresponding multiple input, multiple output case measures are dl
equal for the four concepts of TFPG introduced in section 1.

To egtablish these equalities, we use the product rule results to define Paasche, Laspeyres
and Fisher TFPG(3) measures. Then we use the definitions of the components of the TFPG(3)
measures to define and edtablish equdities with the TFPG(2) and TFPG(1) messures. The
definitions and equdities for these measures are asfollows:

TFPG = Q*p _ (RI /RS)/PL_
Qp (C/C)IP

° TFPG(3)p usng (3.3-1) and (3.2-13)

o M t o} M

(3.3-2) an L wixt7aN 1wtx

wing (3.1-1), (3.1- 2) and dso (3.2- 9) and (3.2 - 10)

o M t t o N t t
QA m— la n=1WnX

T m_lp{nyrsn o r|l| - t 2 ° TFPGMp
a m=1PmYm/a n=1WnXn
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t )5S
TrrG, = 2L =R RIIPe o 1eps (e tsing (3.3-1) and (32-13)
Q. (C'/cY)Ips

M t a2 M
_ 8 m=1PmYm/ & moPmYm TFPG(2),
(33-3) & NoaWaxh/ & N Whx3
usng (3.1-1), (3.1-2) and dso (3.2-7) and (3.2-8)

y
y

/
° TFPG(1)
/

Qo
:’Z 32

'—\
3(/) DU)

x
SO |S—

s ,,t
mJym
S ,,S
mym

Qo

(3.2-4)

t S
rpo, = O - RURI/R:

Qr (C'/C%)IRE

° TFPG(3)r  udng (3.3-1)and (32-13)

o M Pamto M7 egM oyt f2eam st 2
<A m= S XA m=
R0 e mu  Emning Bmabning
éR g H R B _Bam=1PmYmH Eam=1PmYmH o
= TFPG(2)r
eaq;to o2 eaq;t u1/2 6a N tot i 2as st 2
. €& N=1WnXp, U Wi Xh

S‘PLu &~ P50 ga”:l‘l ey ean =1 n7nyg

éC g H éC g H BN WnXnH  BA NS WhxnH

wsing (3.2-3), (3.2-13), (3.1-1), (3.1- 2), and (3.2-7) - (3.2-10)

1/2 1/2

%0 M t t ~ %0 M S t ~

€ m=1PmYm o 24 m=1PmYm ¢

2a N ottt 7 as N ,Sut 1
_E2n=aWnXn B EAn=tWnXnb _, prpg gy

és M t,,S Ullzéo M t,s 01/2 F

2 m=1PmYm 0 ~a mzlmemu

Y tyS Ao N [

gan=WnXn  Ean=1WnXn H

TFPG(4) is the rate of growth in the margin after controlling for price change. In the
generd N-M casg, just asin the 1-1 one, the margin ! isgivenfor t =04,..., T by
(3.3-5) 1+mto RY/Ct,
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Depending on whether Laspeyres, Paasche or Fisher price indexes are used to deflate the cost
and revenue components of the margin, the expressions for TFPG(3) given in (3.3-2), (3.3-3) and
(3.3-4) can be rewritten as:

(3.3-6) TFPG(4)p © [(L+mY) [+ mS)|[PF /R ],
(3.3-7) TFPG(4) ° [1+m')/(1+m®)][Ps / Pp], and
(3.3-9) TEPG(4) g © [(1+mY) /(1+ m®)][ P / PE].

Notice thet if the margins ! are zero, regardless of the reasons, then each of these expressions

for TFPG(4) reduces to the ratio of the input price index to the output price index.*

34  Other Index Number Formulas
Many other index number formulas have been proposed besides the Paasche, Laspeyres and
Fisher.*? Here we will use Qg and Pg and Qg and Pg to denote any given output and input
quantity and price indexes that satisfy the product rule so that QgPgs :(Rt/RS) and
QEP& :(Ct/CS). From these product rule results and (3.3-5), it is essly seen that the
following measures of concepts 2, 3 and 4 of TFPG are equd:
t, s

(Rt/R )/PE ° TFPG(3 g

(Cc'i1c®/pg
(34-2) =Qc / Qg ° TFPG(2)g

=[@+m")/L+m®)[P /P|° TPFG(4).

But what about TFPG(1)g? A measure of the growth in the rate of transformation of
totd input into tota output idedly should be defined usng measures of totd output and totd
input that are comparable for periods s and t in the sense that the micro level quantities for both
periods are aggregated using the same price weights®® The quantity aggregates that are the
components of the Paasche, Lagpeyres and Fisher TFPG(1) measures defined in the firgt line of
(3.3-2), (3.3-3) and (3.3-4) satisfy this comparability over time ided.'* However, there are many

1 Jorgenson and Griliches (1967, p. 252) suggested this formula. One set of conditions under which the
margins will be zero is perfect competition and a constant returns to scale technology.

12 See Diewert (1987, 1993c) and Fisher (1911, 1922).

'3 This criterion is developed more fully in a different context by Emi Nakamura (2002).

“ The period t cost and revenue and the hypothetical aggregates d period s output and input quantities
defined in expressions (3.1-1) and (3.1-4) are comparable in this sense because the quantities for periods s
and t are evauated using the same period t price vectors. Similarly, the period s cost and revenue and the
hypothetical aggregates of period t output and input quantities defined in expressions (3.1-2) and (3.1-3)
are comparable in this sense because the quantities of the output and input goods are evauated using the
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other index number formulas for which it is not possble to define this sort of an ided TFPG(1)
measure that also equals the corresponding measures for the other three concepts of TFPG.

For any pair of quantity and price indexes satisfying the product test, from (3.4-1) and the
product rule implications we see that the following expressons equa those defined in (3.4-1) for
TFPG(2)g , TFPG(3)g and TFPG(4)g :

Qs _ (RY/R%)/P _&my(Pin/Ps)Ym /& magPinYim
Qz (CU/CH/IP" BRL(WHIFE)Xh/&RaWAxR

(3.4-2)

In the last of these expressons, the price vectors (pt/PG) and (wt /Pé)appearing in the
period t output and input quantity aggregates are the period t prices expressed in period s dollars.
If we choose this expresson as the measure of TFPG(1) g, then for any index number formulas
other than the Paasche, Laspeyres or Fisher, this measure will not be ided in the sense of using
the same price weights to compare the period t and period s quantities. However, there is an
goproximate solution to this problem for indexes that satisfy the product rule and are dso what is
teemed “superlative” This gpproximate solution mekes use of the Fsher functiond form: a
functiond form for which we have an ided TFPG(1) measure, defined in (3.3-4).

Diewert coined the term superlative for an index number functiond form that is “exact”
in that it can be derived dgebraicdly from a producer or consumer behaviord equation that
satisfies the Diewert flexibility criterion. According to this criterion, an equation is flexible if it
can provide a second order gpproximation to an abitrary twice continuoudy differentigble
linearly homogeneous function. Diewert (1976, 1978) and Hill (2000) established that dl of the
commonly used superlative index number formulas (including the Fisher, and adso the Torngvist
and implicit Térngvig functiond forms introduced below) approximate each other to the second
order when evduated a an equd price and quantity point. This is a numericd andyss
approximation result that does not rely on any assumptions of economic theory.

Because the Fisher quantity and price indexes dso saidfy the product rule, we have
QcPs =(R'/R®)=QpP and QgPg =(C'/C®%) =QEP:, ad dividing through by Pg and
Pé , respectively, yidds
cey ey
Qc EQFERPF/PcH
From (3.4-3), (3.4-1) and (3.3-4) we see that if we define the measure for the first concept of
TFPG as

same period s price vectors. These aggregates are what are used to define the Paasche, Laspeyres and
Fisher measures given in (3.3-2), (3.3-3) and (3.3-4).
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ép. /Py U
(3.4-4) TPFG(1) g © TPFG(1)r 621
r/PcH

this messure will equd TFPG(2)g, TFPG(3)g and TFPG(4)g as defined in (3.4-1). However,
in this TFPG(1) g measure, the period t price vectors, pt and w!, of the TFPG()g component
are replaced by (p'/(Pe/Pg)) and (w! /(PE/P&)). As a consequence, unless the given price
indexes are Laspeyres or Paasche or Fisher ones, the period t and period s quantities compared
by the measure will not be aggregated usng the same price weights when there have been
changes in reatve prices. Nevertheess, from (3.4-4) and the gpproximation results of Diewert
(1976, 1978) and Hill (2000) for superlative index numbers, it follows that when the chosen
quantity and price indexes ae any of the commonly used superlaive indexes such as the
Torngvig or implicit Tornqvid, then we can use the result that dl of the superlative indexes in
common use gpproximate each other. Hence we have TFPG(1) g @TFPG(1) .

35 TheTérngvist (or Trandog) Indexes®®

Tornquvis  (1936) indexes ae weghted geomelric averages of growth rates for the
microeconomic data (the quantity or price reatives). These indexes have been widey used by
nationd daidicad agencies and in the economics literature. It is the formula for the naturd
logarithm of a Tornquigt index that is usualy shown. For the output quantity index, thisis

(351 mQr = (/2 a —1[(pmym a, 1p| yP) + (pmym/aj _‘]_pjyj)] fn(Ym/Ym)

The Tornquig input quantity index Q*T is defined andogoudy, with input quantities and prices
substituted for the output quantities and pricesin (3.5-1).

Reversng the role of the prices and quantities in the formula for the Torngvist output
quantity index yieIdstheTt')rnqvist output price index, Pr, defined by
(35-2) (PPr = (U 2)8 o[O3y &4 PEYE) + (Pnyin /8 [1jy PIN(Pin / BRy)

Theinput price index P;- is defined in asmilar manner.

The implicit Térmaquist output quantity index, denoted by Qs is defined implicitly by
(Rt IR®) /Py o Q3, and the implicit Tomqvist input quantity index, Q%, is defined
andogoudy usng the codt ratio and P? The implicit Tornqvist output price index, Ps, is given

* Térnquist indexes are dso known as trandog indexes following Jorgenson and Nishimizu (1978) who

introduced this terminology because Diewert (1976, p. 120) related er to atrandog production function.
The exact index number approach used for relating specific quantity indexes to specific production
functions is the topic of section 5.

'° See Diewert (19923, p. 181).
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by (Rt /RS)/QT °P;, ad the implict Torngvist input price index, P% is defined
andogoudy.

Usng the Tornquig quantity and the implicit Tornqvig price indexes, or the implicit
Torngvist quantity and the Tornquigt price indexes, measurement formulas for concepts 2-4 of
TFPG can be specified as in (34-1) above. As dready noted, when Toérngvist or implicit
Torngvist indexes are used, it is not possble to define a TFPG(1) measure that is ided in the
sense discussed in section 2.4. However, these are superlative indexes for which the section 2.4
agoproximetion  result  gpplies tha is we have TFPG(Q)t @Q@TFPG()g and
TFPG(1)7 QTFPG(D)F.

4. THE AXIOMATIC (OR TEST) APPROACH TO CHOOSING
AMONG ALTERNATIVE INDEX NUMBER FORMULAS

Multiple TFPG index number formulas can dl be viewed as measures of tota factor
productivity growth. This was demondrated in section 3 for the commonly used Laspeyres,
Paasche, Fisher and Toérngvigt indexes, and this result could be established for other proposed
index number formulas as wdl. Snce different formulas will yidd different estimates for TFPG,
which one should be used, and why? Higoricaly, index number theorists have relied on what is
cdled the axiomatic or test gpproach to address this functiond form choice problem. An
overview of this goproach is provided here.

As before, Q denotes an output quantity index and P denotes an output price index. The
corresponding input quantity and price indexes are denoted by the same symbols with a star
superscript added. The axiomatic gpproach to the determination of the functiond form for Q and
P on the output sde, or forQ* and P* on the input Sde, works as follows. The garting point is a
lis of mathematicd properties that a priori reasoning suggests a price index should satidy.
These are the index number theory ‘tests or ‘axioms’ Mathematica reasoning is gpplied to
determine whether the a priori tets ae mutudly condstent and whether they uniquely
determine, or ussfully narrow, the choice of the functiond form for the price index.!” Once the
form of the price index has been decided on, impostion of the product test rule determines the
functiond form of the quantity index aswell.

17 Contributors to this approach include Walsh (1901, 1921), Irving Fisher (1911, 1922), Eichhorn (1976), Eichhorn
and Voeller (1976), Funke and Vodler (1978, 1979), Diewert (1976, 1987, 1988, 19923, 1992b) and Balk (1995).
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The Product Test was aready introduced in subsection 3.2'8 On the autput side, this rule
dates that the product of the output price and output quantity indexes, P and Q, should equa the
nomina revenueratio for periodst and s

(4-1) PQ =R!/RS.

If the functional form for the output price index P is given, then imposing the product rule means
that the functional form for the output quantity index must be given by the expression®®

(4-2) Q= (RY/R%)/P.

Thus, unlike the other tests introduced below that are applied to the dternative price indexes of
interest and that may be passed or falled by each of the index number formulas tested, the
product test isimposed as part of the formula choice process.

We conclude this overview of the axiomatic approach by listing four of the tests that can
be applied for choosng among dternaive functiond forms for the price index. Only the output
sde price indexes are consdered here, but the tests are gpplied in the same manner on the input
sde.

The Identity or Constant Prices Test i

(4-3) P(p.p.y°y") =1.

What this means is tha if dl prices say the same over the current and comparison time periods
so that p°= pt =p=(p1,.-.,Pnm ), then the price index should be one regardiess of the quantity
vauesfor periodssand t.

The Constant Basket Test, dso called the Constant Quantities Test, is*

(4-3) P(PSp"y.y) = & [Lyplyi 18 Npjy;.

This test states that if the quantities produced for al output goods stay the same over the periods
sand t o that y° = yt =y ° (Y1,.-,YMm) » then the level of prices in period t compared to period
s should equd the vaue of the constant basket of quantities evaluated at the period t prices
divided by the vaue of this same basket evaluated at the period s prices.

18 The product test was proposed by Irving Fisher (1911, p. 388) and named by Frisch (1930, p. 399).

19 Quantity or price indexes derived by imposing the product rule and specifying the form of the price or quantity
index are sometimes referred to as implicit indexes. The ~ symbol is sometimes added on top of the symbol for the
index number when it isdesired to call attention to theimplicit nature of theindex, asin (3.8-3) or (3.8-4).

20 This test was proposed by Laspeyres (1871, p. 308), Walsh (1901, p. 308) and Eichhorn and Voeller (1976, p. 24).

21 This test was proposed by many researchersincluding Walsh (1901, p. 540).
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The Proportionality in Period t Prices Test is*2

(4-5) PSPt ys, v =1 P(pS,pt,yS vy for | >0.

According to this tedt, if each of the dements of pt is multiplied by the positive congtant | , then
the level of prices in period t reative to period s should differ by the same multiplicative factor
| .

Our fina example of apriceindex test is the Time Reversal Test:*

(4-6) P, %y y%) = U P(pS,phyS YY) .

If this test is satisfied, then when the prices and quantities for periods s and t are interchanged,
the resulting price index will be the reciproca of the origina price index.

The Paasche and Laspeyres indexes, Po and P, fal the Time Reversd Test (4-6). The
Torngvit index, Py, fals the Congtant Basket Test (4-4), and the implicit Torngvist index, 'F'JT
falls the Congtant Prices Test (4-5). On the other hand, the Fisher price index Pr stidfies al four
of these tests. When a more extensve ligt of tests is compiled, the Fisher price index continues to
saisfy more tests than other leading candidates®® These results favor the Fisher TFPG index.
However, the Paasche, Laspeyres, Torngvist, and implicit Tornqvist indexes al rae reasonably
well according to the axiomatic approach.

5. THE EXACT INDEX NUMBER APPROACH AND SUPERLATIVE
INDEX NUMBERS

“Tinbergen (1942, pp. 190-195) interprets the geometric quantity index of total
factor productivity as a Cobb-Douglas production function. As further examples of
index-number formulas that have been interpreted as production functions, a
fixed-weight Laspeyres quantity index of total factor productivity may be
interpreted as a ‘linear’ production function, that is, as a production function with
infinite elasticity of substitution, as Solow (1957, p. 317) and Clemhout (1963, pp.
358-360) have pointed out. In a sense, output-capital or output-labor ratios
correspond to Leontief-type production functions, that is, to production functions
with zero elasticity of substitution, as Domar (1961, pp. 712-713) points out.”
(Dale W. Jorgenson 1995a, Productivity Vol.1, p. 48)

22 This test was proposed by Walsh (1901, p. 385) and Eichhorn and VVoeller (1976, p. 24).

2 This test was first informally proposed by Pierson (1896, p. 128) and was formalized by Walsh (1901, p. 368;
1921, p. 541) and Fisher (1922, p. 64).

24 See Diewert (1976, p. 131; 1992b) and also Funke and Voeller (1978, p. 180).
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An dternative approach to the determination of the functiona form for a measure of totd
factor productivity growth is to derive the TFPG index from a producer behaviora modd.
Diewert’ (1976) exact index number gpproach is a paradigm for doing this. This approach places
the index number formula choice problem on familiar teritory for economids dlowing the
choice to be based on axioms of economic behavior or empirica evidence about producer
behavior rather than, or in addition to, the traditional tests of the axiomatic approach to index
number theory.

The exact index number gpproach is perhaps most easily explained by outlining the main
geps in an actud application. In this section we sketch the steps involved in deriving a TFPG
index that is exact for atrandog cost function for which certain stated retrictions hold.

The technology of a firm can be summarized by its period t (t =0J1,...,T) production
function f . If we focus on the production of output 1, then the period t production function can
be represented as

(5-1) Y1 = Y2, Y30 YM XL X 20 XN -

This function gives the amount of output 1 the firm can produce using the technology available
in any given period t if it aso produces vy, units of each of the outputs m =2,---,M udng X,
units for eech of theinputs n =1,---, N .

The production function f! can be used to define the period t cogt function, ¢!, as
follows

(5-2 c (YL.Y 20 YM WL W, W)

This function is podulated to give the minimum cost of producing the output quantities
Y1,..-,YM Usng the period t technology and with the given input prices th, n=12...,N.
Under the assumption of cogt minimizing behavior, the observed period t cost of production,
denoted by ct, equas the minimum possible codt, cl. Tha is given cog minimizing behavior,
we have

t o N t ot
(53) C ° an=tWnXn

tot t ot t
=c(Y1s--sYM  W1,...,WpN), t=01...,T.

We need some way of rdating the cost functions for periods t=0,1,...,T to each other.
One dampligic way of doing this is to assume tha the cost function for each period can be
represented as a period specific multiple of some atempord cost function. For example, we
might assume that
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(5-4) Yo YV W W) = @AY (Yg,ee YV W W), =00, T,

where a' >0 denotes a period t reaive eficiency parameter and ¢ denotes an atempora cost
function which does not depend on time. The normdization o1 is usudly imposed. Given (5
4), a natura measure of productivity change for a productive unit in going from period sto t is
theratio

(5-5) al/a

If thisratio is greater than 1, efficiency is sad to have improved.
Taking the naturd logarithm of both Sdes of (5-4), we have

(5-6) /n ct(y{,...,yﬁﬂ ,WR,....W}\,) =-/nal +/n c(y{,...,yﬁﬂ ,WR,....WtN) .

Suppose that a priori information is avaldble indicating that a trandog functiond form is
appropriate for /nc. In this case, the atempora cost function ¢ on the right-hand side of (5-6)
can be represented by

t t t t 0 t
meyq,e-Yms Wer--sWN) =bg +a m:lbm ny m

(5-7) +& NgCo w i + (U 28 M, & M dyjery ey |
+(U2A L8 Ly fryfrw i + 8 N 8 N g 1y il

An advantage of the choice of the trandog functiond form for the atempora cost function part of
(5-6) is that it does not impose a priori redrictions on the admissble patterns of substitution
between inputs and outputs, but this flexihility results from a large number of free parameters®
There are M+1 of the by, parameters, N of the c,, parameters, MN of the g,,, parameters,
M(M+1)/2 independent d;; parameters and N(N +1)/2 independent f; parameters even when
it is deemed reasonable to impose the symmetry conditions that djj =dji for 1£i<j£EM and
foj =fjn for LEn<jE£N. If homogeneity of degree one in the input prices is dso a reasonable
assumption to impose on the cogt function, then the following additiond redtrictions hold for the
parameters of (5-7):

58 ér'}'zlcn:l éj'ilfnj:Ofor n=1...,N,
and §N.igm =0for m=1...,M.

% The translog functional form for a single output technology was introduced by Christensen, Jorgenson and Lau
(1971). The multiple output case was defined by Burgess (1974) and Diewert (19744, p. 139).
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With dl of the above redrictions, the number of independent parameters in (5-6) is dill
T+MM+1)/2+N(N+1)/2+MN which is a lager number then the totd number of
observations over the time periods t=0,1, ... ,T.?® Thus without imposing more restrictions, it is
not possible to estimate the parameters of (5-6) or b evauate a productivity index derived from
this rdationship.

The usud way of proceeding is to assume that the producer is minimizing costs s0 that
the following demand relationships hold:*’

(5-9) xt=qctyl,..yowh o whk)/fw, for n=1...Nad t=01...,T.
Since ¢nc! canaso be regarded as a quadratic function in the variables
Enyl,ﬁnyz,...,ﬁn YM s fnwl,ﬁnwz ..... anN,

then Diewert’ 5(1976, p. 119) logarithmic quadratic identity can be applied. According to that
identity, we have®

et - e = 2" 05 T g why ey T 08wyt 1v5,)
ﬂ m ﬂ m
(5-10) +@2AN I Gt Wt ews T2 s s ungnt ws)
n n
S
+(1/2)[’w—”°(y, wh)+ ’wﬂ—f(ys,wS)lén(at/aS)
o ”é /é
- @2 Myt I wty ey I s sk 1yS)
m ﬂ m
(5-11) + (1208 N_[(Whxh /CY + (wWixs /Con(wh I wi)

+(1/ 2)[- 1+ (- D]¢n(at /ad).

If it is acceptable to impose the additiond assumption of competitive profit maximizing
behavior, we can amplify (5-11) even further. More specificaly, suppose we can assume that the
output quantities y{ y}w solve the following profit maximization problemfor t =0,1,...,T:

28 On the econometric estimation of cost functions using more flexible functional forms that permit theoretically
plausible types of substitution, see for example Berndt (1991) and also Diewert (1969, 1971, 1973, 1974b, 1978a,
19814, 1982) and Diewert and Wales (1992, 1995) and the references therein.

27 Thisfollows by applying atheoretical result dueinitially to Hotelling (1932, p. 594) and Shephard (1953, p. 11).

28 Expression (5-11) follows from (5-10) by applying the Hotelling-Shephard relations (5-9) for periodst and s.
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(5-12) maximize y1,...,y|v|{émz1p£nym - ct(yp,.. Y m ,W{,...,WtN)} .

This leads to the usud price equas margind cost relationships that result when competitive price
taking behavior is assumed; i.e., we now have

(5-13) plo=1ct (vl .y wh o wl) /Ty, m=1..,M

This key step permits the use of observed prices as weights for aggregating the observed quantity
data for the different outputs and inputs. Making use of the definition of totd codts in (5-3),
expresson (5-11) can now be rewritten as.

En(Ct /C%) =124 —1[(pmym /Ct)"' (pmym /CS)]En(Ym /Ym)

(5-14)
+ (L 2A L [wWhixE 1CH + (wixh /Co]en(wh Iwg) - ¢n(@' /a®).

Codts in periods s and t can be observed, as can output and input prices and quantities.
Thus the only unknown in equation (5-14) is the productivity change measure going from period
stot. Solving (5-14) for this measure yields

(5-15) al/as = %(y Iy AP 1+ GRYR CN Y 7
m=1 p

where (3} is the implicit Torngvigt input quantity index thet is defined andogoudy to the implicit

Torngvigt output quantity index given in (3.8-3).

Formula (5-15) can be smplified 4ill further if it is approprigie to assume that the
underlying technology exhibits congtant returns to scde. If costs grow proportionaly with
output, then it can be shown (eg., see Diewert 1974a, pp. 134-137) tha the cost function must be
linearly homogeneous in the output quantities. In that case, with competitive profit maximizing
behavior, revenues must equa costs in each period. In other words, under the additiond
hypothess of congtant returns to scale, for each time period t=0,,...,T we have the following
equdlity:

(5-16) cliyt,wh) =ct =R!,

Using (5-16), we can replace C'and C° in (515) by R'and RS respectivdy, and (5-15)
becomes

(5-17) al/a®=Qr/Q7
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where Qr is the Tornqvig output quantity index and (Sfr is the implicit Torngvig input quantity
index. This means that if we can judify the choice of a trandog cogt function and if the
assumptions underlying the above derivations are true, then we have a bads for choosng
(Qt/ C~2T *) asthe gppropriate functiona form of the TFPG index.

The hypothesis of condant returns to scde tha must be invoked in moving from
expresson (5-15) to (5-17) is very redrictive. However, if the underlying technology is subject
to diminishing returns to scade (or equivdently, to increesng costs), we can convert the
technology into an atificid one Hill subject to condant returns to scade by introducing an extra
fixed input, Xp+1 SaY, and setting this extra fixed input equa to one (thet is, xf\|21° 1 for each
period t). The corresponding period t price for this input, W}\Hl, is s&t equd to the firm's period
t profits, RY- C!. With this extra factor, the firm's period t cost is redefined to be the adjusted
cost given by

(5-18) Ch =C'+ WiaXhaa =& Nwixp =R, t=01...T.

The derivation can now be repeated using the adjusted cost CfA rather than the actual cogt C'.
What reaults is the same productivity change formula except that 6—} is now the implicit trandog
guantity index for N+1 ingead of N inputs. Thus, in the diminishing returns to scde or
increasing costs case, we could use formula (5-15) as our measure of productivity change
between periods s and t, or we could use formula (5-17) with the understanding that the extra
fixed input would then be added into the list of inputs and incorporated into the adjusted costs.

Formulas (5-15) and (5-17) illudrate the exact index number approach to the derivation
of productivity change measures. The method may be summarized as follows (1) a priori or
empirical evidence is used as a bads for choosing a specific functiond form for the firm's cost
function,®® (2) competitive profit maximizing behavior is assumed (or dse cost minimizing plus
competitive revenue maximizing behavior is assumed), and (3) various identities are manipulated
and a productivity change measure emerges that depends only on observable prices and
quantities.

In this section, the use of the exact index number method for deriving this index number
measure has been demondrated for a dtuation where the functiond form for the cost function
was known to be trandog with parameters satisfying symmetry, homogeneity, cost minimization,
profit maximization, and possbly adso congant returns to scde The resulting  productivity

2 1n place of step (1) where a specific functional form is assumed for the firm's cost function, some researchers
have specified functional forms for the firm’s production function (e.g., Diewert 1976, p. 127; 1980, p. 488) or the
firm’s revenue or profit function (e.g., Diewert 1980, p. 493; 1988) or for the firm’s distance function (e.g., Caves,
Christensen and Diewert 1982b, p. 1404). See also Caves, Christensen and Diewert (1982a).
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change term al/a® illusrated by the formula on the right-hand side of (5-15) or of (5-17) can be
used even with thousands of outputs and inputs. In the following three sections, we provide
dternative formats for exploring the meaning of changes over time in the vadues of a
productivity index number in stuations where the true production or cost or other dua producer
behaviorad function is known. Before proceeding, however, the question that must be confronted
is how knowledge of the functiond form or other properties of a producer behaviord equation
might be obtained, and what can be concluded about TFPG measurement when this behaviord
knowledge is not obtainable.

The prospects are poor for being able to rdiably estimate a trandog cost function for the
productive activities of a naion. Even after imposng symmetry and homogeneity assumptions,
the trandog cost function defined by (5-4) and (5-7) Hill has more independent parameters than
the number of observations avalable over any specified period of time, however long. It is only
by dso assuming cost minimizing, profit maximizing behavior s0 that the observed prices can be
subdtituted for the unknown margind products and margind codts that an index number
expression is obtained that can be evaluated from observable data. Of course, once this step has
been taken, it no longer makes sense to edimate the cost function because the time dependent
technicd efficiency term is the only remaining unknown, so it's vaue can be solved for in each
and every time period, much as Solow produced annua vaues for his productivity index for each
year in hisclassic 1957 paper reviewed in section 10 of this chapter.

It is important to bear in mind too that the index number TFPG measures defined in
section 3 can be evauated numericdly for each time period given suitable quantity and price
data. This is true regardiess of whether these indexes can be related to the framework of an
optimizing model of producer behavior. Moreover, any one of the TFPG indexes that has been
introduced has meaning as a measure of the rate of growth for output product saes divided by
the rate of growth of input cogts. This is so whether or not the index can dso be interpreted in the
context of an economic theory modd of producer behavior. However, without some sort of a
behaviord modd framework, there is no way of defining or of empiricaly bresking out a
technicd progress component or components appropriately reflecting the impacts of the
measured input factors on tota factor productivity change.

The remaining sections of this paper are mogily devoted to exploring the ingghts and the
decompositions that are possble provided that certain assumptions can be made about the
properties of the production function or a related dua function for the production scenario of
interest.
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6. PRODUCTION FUNCTION BASED MEASURES OF TFPG

When a TFPG index can be related to a producer behaviord rdationship that is derived
from an optimizing model of producer behavior, this knowledge provides a potentid theoretica
basis for identifying some d the unknown parameters in the chosen TFPG index. It adso provides
aframework for defining various decompositions of TFPG. Thisis the approach adopted here.

We begin in subsection 6.1 by conddering some production function based aternatives
for factoring TFPG into technical progress (TP) and returns to scde (RS) components in the
amplified one input, one output case. As demondrated in section 2, for the 11 case there is a
angle measure of TFPG which can be written equivdently in a variety of ways induding as the
ratio of the observable output and input growth rates in keeping with (2.1-10) or as the ratio of
the period t and period s transformation rates as in expresson (2.1-2). The TP and RS
components of the TFPG index are defined using the true production functions for the two time
periods which are usudly unknown. Neverthdess, these decompostions are helpful for thinking
about the various ways in which TFPG can change over time, and for developing awareness of
the complexity of the problem of choosng a proper counterfactud for evauating observed
productive peformance. Even in the gened multiple input, multiple output case, these
decompositions have no direct implications for the choice of a measurement formula for TFPG
gnce the new parameters introduced in making these decompostions cance out in the
representation of TFPG as a product of the TP and RS components. In other words, TFPG
includes the effects of both technicd progress (a shift in the production function) and
noncongtart returns to scde (a movement dong a noncondtant returns to scae production
function).*°

After defining TP and RS components for the 1-1 case is subsection 6.1, in subsection 6.2
theoreticd Mamquist output growth, input growth and TFPG indexes are defined for a generd
multiple input, multiple output production Stuation.

6.1  Technical Progress(TP) and Returnsto Scale (RS) in the Smple 1-1 Case

The amount of output obtained from the inputs used in period t versus a comparison
period s can differ for two different sorts of reasons (1) the same technology might have been
used, but with a different scde of operation and with non-constant returns to scale, or (2) there

30 Favorable or adverse changes in environmental factors facing the firm going from period s to t are regarded as
shifts in the production function. We are assuming here that producers are on their production frontier in each
period; i.e., that they are technically efficient. In a more complete analysis, we could alow for technical inefficiency
aswell.
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could have been a shift to a new technology. The purpose of the decompostions introduced here
is to provide a conceptua framework for thinking about returns to scde versus technologica
shift changesin TFPG.

In the 1-1 case, TFPG can be equivaently measured as the ratio of the period t and period
S output-input coefficients as in (2.1-2). We assume knowledge of the period s and t quantities
for the single input and the single output as well as of the true period s and t production functions
given by:

(6.1-1) y; =15(x3)
ad
(6.1-2) yi = fH(x]).

Technical progress can be conceptualised as a shift in a production function due to a
switch to a new technology for some given scale of operation for the productive process. Four of
the possible measures of shift for a production function are considered here. For the first two, the
scde is hypotheticdly hed congant by fixing the input levd and then comparing the output
levels for this input with the dterndive technologies. For the second two, the scde is
hypotheticdlly held congant by fixing the output level and then comparing the input leves
needed to produce the given output using the aternative technologies.

Some hypothetical quantities are needed to define the four shift measures given here: two
on the output side and two on the input sde. The output side hypothetica quantities are

(6.1-3) yi © L)
and
(6.1-4) yi © £5(xf).

The firg of these is the output that hypotheticaly could be produced with the scae fixed by the
peiod s input quantity x7 but usng the newer period t technology embodied in f. Given
technica progress rather than regress, y_'f* should be larger than y3. The second quantity, y{*, is
the output that hypotheticaly could be produced with the scale fixed by the period t input
quantity x& but usng the older period s technology. Given technical progress rather than regress,
vyl should be smaller than v} .

Tuming to theinput sdenow, x§ and x{  are defined implicitly by

(6.1-5) y; =15
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and
(6.1-6) yi =f5(x).

The firg of these is the hypotheticd amount of the sngle input factor required to produce the
actual period s output, Y7, using the more recent period t technology. Given technica progress,
x§ should be less than x§. The second quantity X} is the hypothetica amount of the single
input factor required to produce the period t output y{ using the older period s technology, so we
would usudly expect x{* to belarger than th_

The firg two of the four technicd progress indexes to be defined here are the output
based measures given by**

(6.1-7) TP © y§ /y§=f105) 115(x5)
ad
(6.1-8) TP(2)° yi/yf =f'(x)) / F3(x}).

Each of these describes the percentage increase in output resulting solely from switching from
the period s to the period t production technology with the scde of operation fixed by the actud
period s or the period t input levd for TP(1) and TP(2), respectively. The other two indexes of
technical progress defined here are input based:*?

(6.1-9) TP ° x§/ x§
ad
(6.1-10) TP4)° x! /x}.

Each of these gives the reciproca of the percentage decrease in input usage resulting solely from
switching from the period s to the period t production technology with the scde of operaion
fixed by the actud period s or the period t output level for TP(3) and TP(4), respectively. That is,
for TP(3), technical progress is measured with the output level fixed a y; whereas for TP(4) the
output level isfixed at yi.

Each of the technica progress measures defined above isrelated to TFPG as follows:

(6.1-11) TFPG = TP(i) RS(i) fori=1,2,34,

31 TP(1) and TP(2) are the output based ‘ productivity’ indexes proposed by Caves, Christensen, and Diewert (1982b,
E' 1402) for the simplistic case of oneinput and one output.

2 TP(3) and TP(4) are the input based ‘productivity’ indexes proposed by Caves, Christensen, and Diewert (1982b,
p.1407) for the simplistic case of one input and one output.
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where, depending on the sdlected technica progress measure, the corresponding returns to scae

measure is given by

(6.1-12) RS() © [y / i1 /1yf /%3],
(6.1-13) RS(2) ° [y /d1/1y3 /],
(6.1-14) RS(3° [yl /xil/ [yt / xi ], or
(6.1-15) RS(4) ° [yi/ x§ 111yt /).

In the TFPG decompostions given by (6.1-11), the technical progress term, TH(i), can be viewed
as a production function shift>® caused by a change in technology, and the returns to scale term,
RS(i), can be viewed as a movement along a production function with the technology held
fixed. Each returns to scde measure will be greater than one if output divided by input increases
as we move dong the production surface. Obvioudy, if TP(1) = TP(2) =TP(3) = TP(4) =1, then
RS=TFPG and increases in TFPG are due solely to changes of scale.

For two periods, say s=0 and t=1, and with just one input factor and one output good, the
four measures of TP defined in 6.1-7)-(6.1-10) and the four measures of returns to scale defined
in (6.1-12)-(6.1-15) can be illustrated graphicaly, as in Figure 1. (Here the subscript 1 is dropped
for both the sngle input and the single output.)

The lower curved line is the graph of the period O production function; i.e, it is the set of
points (x,y)suchthat x3 Oand y = fO(x). The higher curved line is the graph of the period 1
production function; i.e, it is the set of points (x,y) such that x 3 0 and y= fl(x). The
observed data points are A with coordinates (xo, yo) for period O, and B with coordinates
xL, y1) for period 1.3* Applying formula (2.1-2) from section 2, for this example we have
TFPG = [yl / xl] / [y0 / xo]. In Figure 1, this is the dope of the sraight line OB divided by
the dope of the graight line OA. The reader can use Figure 1 and the definitions provided above
to venify that each of the four decompostions of TFPG given by (6.1-11) corresponds to a

33 This shift can be conceptualized as either a move from one production function to another, or equivalently as a
change in the location and perhaps the shape of the original production function.

3 In Figure 1, note that if the production function shifts were measured in absolute terms as differences in the
direction of the Y axis, then these shifts would be given by yo’c - yO (at point A) and y1 - yl* (at point B). If the
shifts were measured in absolute terms as differences in the direction of the x axis, then the shifts would be given by
x0 - x0" (at point A) and el (at point B). An advantage of measuring TP (and TFPG) using ratios rather
than differences is that the relative measures are invariant to changes in the units of measurement whereas the

differences are not.
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different combination of shifts of, and movements dong, a production function that take us from
observed point A to observed point B.>®

Figure 1: Production function based measures of technical progress

y=f()  y=f

Geometrically, each of the specified measures for the returns to scale is the ratio of two
output-input coefficients, say [y! / x/] divided by [y¥ 7 xK] for paints (y!, x)) and (x¥, y¥)
on the same fixed production function with x1 > %X For the ith messure, if the returns to scale
component  RS(i) = [y} / x1]/[y* / xX] is grester than 1, the production function exhibits
increasing returns to scae, while if  RS(i) =1 we have congtant returns o scde, and if RS(i) <1
we have decreasing returns. If the returns to scale are congtant, then RS())=1 and TP=TFPG.*®
However, it is unnecessary to assume condtant returns to scde in order to evaluate the index
number TFPG measures presented in section 3. This is important sSnce we agree with
Lipsey(1999) and others who argue that increasing returns to scale and faling unit costs are to be

35 For firms in a regulated industry, returns to scale will generally be greater than one, since increasing returns to
scalein production is often the reason for regulation in the first place. See Diewert (1981b).

36 Solow’s (1957, p. 313) Chart | is similar in concept, but his figure is for the simpler case of constant returns to
scale.
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expected in many production dtuations when there are increases in output or when new
technologies are introduced.®’

6.2 Malmquist Indexes

If the technology for a multiple input, multiple output production process can be
represented in each time period by some known production function, this function can be used as
a bads for defining theoreticd Mamquis quantity and Mamaquig TFPG indexes. Mamaquist
indexes are introduced here, and then in the following subsection we show conditions under
which these theoreticd Mamquist indexes can be evduated usng the same information needed
in order to evauate the TFHPG index numbersintroduced in section 3.

Here as previoudy, we let y{ denote the amount of output 1 produced in period t for
t=0L...,T. Heewe dso let ¥ © [y}, y&, ..., yi4] denote the vector of other outputs jointly
produced in each period t dong with output 1 using the vector of input quantities
xto[x}, xb, ..., x§]. Using these notational conventions, the production functions for output 1
in period sand in period t can be represented compactly as.

(6.2-1) y: =f5(F° x%) and yj =f'(§', x").

Three dternative Mamauist output quantity indexes will be defined. 38
The first Malmauist output index, a 5, is the number which satisfies

(6.2-2) y; 1a® =37 /a5 x®) .

This index is the number which just deflates the period t vector of outputs,
yto [yi yh . yl4], into an output vector y'/aS that can be produced with the period s
vector of inputs, x°, usng the period s technology. Due to substitution, when the number of
output goods, M, is greater than 1, then the hypothetical output quantity vector yt /a® will not
usualy be equa to the actual period s output vector, y°. However, when there is only one output
good, then we have y{ /a®=15(x%) =y; and this firg Malmauist output index reduces to
as = y{ ly3-
A second Mamaquist output index, a'!, isdefined as the number which satisfies

37 See aso Harberger (1998), Basu and Fernald (1997), Nakajima, Nakamura and Yoshioka (1998) and the
references provided in those papers.

38 These indexes correspond to the two output indexes defined in Caves, Christensen, and Diewert (1982b, p.1400)
and referred to by them as Mamquist indexes because Malmquist (1953) proposed indexes similar to these in
concept, though his were for the consumer rather than the producer context. Indexes of this sort were subsequently
defined as well by Moorsteen (1961) and Hicks (1961; 1981, pp.192 and 256) for the producer context. See aso
Balk (1998, ch. 4).
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(6.2-3) aly? = fl@'ys,x") .

This index is the number that inflates the period s vector of outputs y° into atys, an output
vector that can be produced with the period t vector of inputs xt using the period t technology.
The index atyS will not usly be equd to yt when there are multiple outputs. However, when
M =1, then atyiz flixt) = y{ and al = y; Iy3.

When there is no reason to prefer dther the index aS or a‘, we recommend taking the
geometric mean of these indexes. Thisis the third Mamquist index of output growth, defined as

t

(6.2-4) ac°asaljV?.

When there are only two output goods, the Mamauist output indexes a s and al can be
illustrated as in Figure 2 for time periods t=1 and s=0. The lower curved line represents the set of
outputs {(y1, ¥2,): Y1 :fo(yz, xo)} that can be produced with period O technology and inputs.
The higher curved line represents the set of outputs {(y1, ¥2.): ylzfl(yz, xl)} that can be
produced with period 1 technology and inputs. The period 1 output posshbilities set will generaly
be higher than the period O one for two reasons: (i) technica progress and (ii) input growth.® In
Figure 2, the point alyO is the draght line projection of the period O output vector
y0 = [y?, yg] onto the period 1 output posshilities set, and y1 /a0 = [y% / ao, y% / ao]
is the draght line contraction of the output vector y1 = [y%, ylz] onto the period O output
possibilities set.

3However, if there were technical regress so that production became less efficient in period 1 compared to period 0
or if the utilization of inputs declined, then the period 1 output production possibilities set could lie below the period
Oone.
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Figure 2: Alter native economic output indexesillustrated

Y2

7} S yo=(y1°y2°)
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Y1
(0,0) yi°  yi'/a® a'lys Y1

We now turn to the input side. A first Malmauist input index, bS | is defined as follows:

(6.2-5) y; = £3(F% x" 1 0%) 0 15y, .. vy, X1 1 0%, . x|y 1 5).

This index measures input growth holding fixed the period s technology and output vector. A
second Mamaquist input index, denoted by bt, isthe solution to the following equation

(6.2-6) y; = UL B 0 th(yL, vy, BUXT, L B IXR).

This index measures input growth holding fixed the period t technology and output vector. When
there is no reason to prefer b° to bt , we recommend athird Mamaquigt input index:

(6.2-7) bo [bSht]l/2 .



Figure 3 illustrates the Mamauist indexes b® and bt for the case where there are just
two input goods and for the time periods t=1 and s=0.

Figure 3: Alternative Malmquist input indexesillustrated

X2

b 1X2O

Xl — (Xll,le)

X>2/b Y

(0,0) X1° b x;1/b° X1

The lower curved line in Figure 3 represents the set of inputs that are needed to produce
the vector of outputs yO usng peiod O technology. This is the st
{(xq, X2) : y(l) =f°(‘y°, X1, X2)} . The higher curved line represents the set of inputs that are
needed to produce the period 1 vector of outputs y1 using period 1 technology. This is the set
{0, %2) :y1 =TT xq, x2)} % The paint b'x© =[bx?, b'xJ] is the straight line projection
of the input vector x0 o [xf,xg] onto the period 1 input requirements set. The point

0 1f technical progress were sufficiently positive or if output growth between the two periods were sufficiently
negative, then the period 1 input requirements set could lie below the period 0 input requirements set instead of

above.
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x1/p0 o [x%/bo,x%/bo] is the graight line contraction of the input vector xt o0 [x%, xé] onto
the period O input requirements st.

Once theoreticd Mamquist quantity indexes have been defined that measure the growth
of totd output and the growth of tota input, then a Mamquis TFPG index for the generd N-M
case can be defined too. The definition we recommend for the Mamaquist TFPG index is

(6.2-8) TFPGy ° a /b.

In the 1-1 case, expression (6.2-8) reduces to TFPG(2) as defined in expression (2.1-3), which

equas the sngle measure for TFPG for the 1-1 case.

6.3  Direct Evaluation of Malmquist Indexesfor the N-M Case

Using the exact index number approach, Caves, Chrigensen, and Diewert (1982b,
pp.1395-1401) give conditions under which the Mamaquis output and input quantity indexes
a°[aSal1¥2 and bo[bSb!'1¥ 2 defined in (6.2-4) and (6.2-7) equa Térnquist indexes. More
specificaly, Caves, Chrigtensen, and Diewert give conditions under which

(6.3-1) a=0r
and
(6.3-2) b=Qr,

where Qp is the Térnaguist output quantity index and QT is the Torngvist input quantity index.
The assumptions required to derive (6.3-1) and (6.3-2) ae, roughly spesking: (i) price teking,
revenue maximizing behavior, (ii) price teking, cos minimizing behavior, and (iii) a trandog
technology.** Under these assumptions, we can evduate the Mamquist measure TFPG), by
taking theratio of the Térngvigt output and input quantity indexes sSnce we have

(6.3-3) TFPG )\ =a/b=Qt /QT ° TFPGT.

“1 An intuitive explanation for the remarkable equalities in (6.3-1) and (6.3-2) rests on the following fact: if f(z) isa
quadratic function, then f(zt)- f(zr) = (1/ 2[Nf (zt)+ Nf (zr)]T[zt - zr]. This result follows from applying
Diewert's (1976, p. 118) Quadratic Approximation Lemma. Under the assumption of optimizing behavior on the

part of the producer, the vectors of first order partial derivatives, Nf(zt) and Nf(zr), will be equal to or

proportional to the observed prices. Thus the right-hand side of the above identity becomes observable without
estimation. In actual applications of this identity, we assume that various transformations of f are quadratic and
apply the resulting identity.
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The practical importance of (6.3-3) is that the Mamquist TFPG index can be evauaed from
observable prices and quantities without knowing the true period specific production functions.

Recdl that the “best” productivity index from the axiomatic point of view is the Fisher
productivity index defined in (3.3-4) as

TFPGE ° Q /QF,

with the Fisher output quantity index Qg defined by (3.2-3) and the Fisher input quantity index
QT: defined by (3.2-6). Diewert (1992b, pp.240-243) shows that the Fisher output and input
quantity indexes equa Mamaquist indexes under a somewhat different assumption about the
nature of the technology from the one required to judify (6.3-1) and (6.3-2). To establish this, the
firm's output disgance function over the rdevant time span must have the functiond form
dt(y,x):st[yTAy(xTCx)'l+at ><ybt xx'lyTth'l]llz. Here T denotes a transpose, the
parameter matrices A and C are symmetric and independent of time t, and the parameter vectors
al and b' and aso the parameter matrix B! can depend on time. The vector x~1 is defined as
consgsting of components that are the reciprocads of the components of the vector x of input
quantities. The parameter matrices and vectors must dso satisfy some additiona redrictions that
are listed in Diewert (1992b, p.241).

It should be noted that the above results do not rely on the assumption of congtant returns
to scde in production. Also, the assumption of revenue maximizing behavior can be dropped if
we know the margina costs in the two periods under condderation, in which case we could
directly evauate the Mamquist indexes. However, usudly we do not know these margina costs.

The Fisher is our preferred TFPG index. However, for measuring nationa productivity,
both the Fisher and the Térnquist indexes should yiedd smilar results*® Both are superlative
index numbers and, as aready noted, Diewert (1976, 1978b) and Hill (2000) established that dl
of the commonly used superlaive index number formulas gpproximate each other to the second
order when each index is evauated a an equa price and quantity point.*® These approximation

42 See Diewert (1978, p.894).

*3 The term superlative means that an index is exact for a flexible functional form. Since the Fisher and the
Tornqvist indexes are both superlative, they will both have the same first and second order partial derivatives with
respect to all arguments when the derivatives are evaluated at a point where the price and quantity vectorstake on
the same value for both period t and period s.

Peter Hill (1993; p. 384) explains current accepted practice as follows: “Thus economic theory suggests that, in
general, a symmetric index that assigns equal weight to the two situations being compared is to be preferred to either
the Laspeyres or Paasche indices on their own. The precise choice of superlative index—whether Fisher, Térngvist
or other superlative index—may be of only secondary importance as al the symmetric indices are likely to
approximate each other, and the underlying theoretic index fairly closely, at least when the index number spread
between the Laspeyres and Paasche is not very great.” Robert Hill (2000) showed that whereas the approximation
result of Diewert (1978b) which the remarks of Peter Hill (1993) quoted above are based on and which have found
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results, and aso Diewert's (1978b) result for the Paasche and Laspeyres indexes, hold without
the assumption of optimizing behavior and regardless of whether the assumptions made about
the technology are true. These are findings of numerica rather than economic andysis.

7. COST FUNCTION BASED MEASURES

In this section, we define another st of theoreticd output and input growth rate and
TFPG measures based on the true underlying cost function instead of the production function as
in section 6. We give conditions under which these indexes equa the Laspeyres and the Paasche
indexes. For the two output case, we dso show how the Laspeyres and Paasche indexes relate to
the Mamaquist indexes defined in the previous section.

Recdl from (520 tha the peiod t (t=01,...,T) cog function
ct(yl, Y2, 0 YM» W1, Wo, ..., Wy ) iS the minimum cost of producing the given quantities
Y1,Y2,...,Yp Of the M output goods usng the input quantities Xq,X»,..., X purchased a the
unit prices wq,Wo,...,wpyn and usng the period t technology summarized by the production
function congtraint yq = f'(yo, .., YM o X1, X2 - Xy ). I this section, we assume that the
period s and period t cogt functions, ¢ and ¢!, are known and we examine theoretical outpuit,
input and productivity indexes that can be defined using these cost functions.

Under the assumptions of perfect information and cost minimizing behavior on the part
of the production unit, the actual period t tota cost equals the period t cost function evauated a
the period t output quantities and input prices. Thus for the period t cost function, ct (yt,wt), we
have

(7-1) ctiyt, wh = é,’}'zl thxtn ow! xxto ct,

(As in the above expresson, for convenience weighted sums will sometimes be represented as
inner products of vectors in addition to, or as an dternative to, the representation of these sums
usng summation Sgns) The cog function in (7-1) is assumed to be differentiable with respect to
the components of the vector y a the point (yt, Wt). Under the assumed conditions, the ith
marginal cost for period t, denoted by mc,t , isgiven by

(7-2) met o ety wh /qyi,  i=12..M.

their way into the manuals of statistical agencies around the world do indeed apply to all of the commonly used
superlative indexes including the Fisher, Tornqvist, and implicit Térnqvist, the approximation can be poor for some
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Margina costs for period s are defined analogoudly.

Just as the output unit prices were used as weights for the period s and period t quantities
in the formulas for the Laspeyres and Paasche quantity indexes given in section 3, here the
margina cost vectors, mc® and mc!, are used to define theoretical Laspeyres and Paasche type
output and input quantity indexes. These indexes are given by

(7-3) g © meSxyt /meSxy®
and
(7-4) gp © metxyt /met xS,

When we have no reason to prefer g over gp, we recommend using as a theoretical measure of
the output growth rate the geometric mean of g and gp; thet is, we recommend using

(7-5) 9° [g.gplV 2.

With price taking, profit maximizing behavior, the observed output quantity vector yt is
determined as the solution to the first order necessry conditions for the period t profit
maximization problem and economic theory implies that pt =mc! for t=041...,T.If thisis the
case, then g defined in (7-3) equals the usua Laspeyres output index, Q) , defined in (3.2-2),
and gp defined in (7-4) equas the usual Peasche output index, Qp, defined in (3.2-1).
Moreover, in this case g defined in (7-5) equals the usud Fisher output index, Qp, defined in
(3.2-3).

With just two outputs and under the assumptions of price taking, profit maximizing
behavior, the differences between the new theoretical output indexes goand g and the
Mamauist output indexes a S and al canbeillugrated using Figure 4.

other superlative indexes.
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Figure 4: Alternative price based theoretical output indexes

Y2

(0,0) A B C D E F

The lower curved line in Fgure 4 is the peiod s=0 output posshilities s,
{(y1,¥2)1y1 =1%(y2,xO)}. The higher curved line is the period t=1 output possibilities set,
{(ypY2) 1 y1 =f1(yo.xH} . The draight line ending in D is tangent to the period O output
possibilities set at the observed period 0 output vector y° © [y9,y3], and the straight line ending
in C is tangent to the period 1 output posshilities set a the observed period 1 output vector
y1° [yl, ylz]. The margind costs for period O and period 1 are denoted by rnt:i0 and rncil for
outputs i=1,2. The tangent line through yo, the output quantity vector for period O, has the dope
- (rncf / rncg) and the tangert line through y1 the period 1 output quantity vector, has the
dope - (mci/mc%). The draght line ending in E passes through y1 and the draght line
ending in F passes through alyo. Both of these lines are pardld to the line ending in D: the
tangent to the period O output possibility set at the point (y9,y3). Similady, the sraight line
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ending in A passes through yo, the draight line ending in B passes through y1 / ao, and both
arepadld to theline ending in C.**

For the theoreticd output indexes defined dbove, we will dways have
g =OE/OD<OF/OD =al and gp = OC/ OA >0C/ OB =aY. Although the four
output indexes can be quite different in magnitude as illudrated in Fgure 4, the geometric
averageof g and ge should be reasonably close to the geometric average of a%and al.

Moving to the input side, the theoretical input quantity indexes are given by*

(7-6) dy © cl(yt, wS) 7 cS(y®, wd)
and
(7-7) dp© c(y', wh /c3(yS wh.

In the case of two inputs and under the assumptions of price taking, profit maximizing
behavior, the differences between d| and dp on the one hand and the Mamauist indexes b®
and bt on the other hand can be illustrated as in Figure 5. The lower curved line is the period
s=0 st of combinations of the two input factors that can be used to produce y0 under 0. The
upper curved line is the period t=1 set of input combinations that can be used to produce y1
under .

The draight line ending a the point E in Fgure 5 is tangent to the input possbilities
curve for period 1 a the observed input vector xt o [x%, x%]. This tangent line has dope
- (wi / w12) and, by condruction, the lines ending in A, B, and C have this same dope. The
lineending a point C passes through the period O observed input vector x0 o [x?, xg] . Theline
ending a B passes through x* /b® © [x1/b°,x} /0] . Findly, the line ending a A is tangent
to the period O input possibilities .

Smilaly, the draght line ending a the point D in Figure 5 is tangent to the period O
input possibilities set a the point x°. The dope of this tangent line is - (W /w5) and, by
condruction, the lines ending in F, G, and H have this same dope. The line ending a H passes
through x*. The line ending a G passes through bix0 o [blxo, blxg], and the line ending a F

4 Note that the y1 intercept of aline with the slope of the relevant price ratio -- i.e., the yq intercept of aline with

the slope of the tangent to the designated production possibilities frontier -- equal s the revenue from the designated
output vector denominated in equivalent amounts of good 1.

“5|f thereis only one output and if S=d , then d|_ and dp reduce to indexes proposed by Allen (1949, p.199).
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is tagent to the peiod 1 input posshiliies curve. It can be shown that
d_ =OF/OD <0G /OD = bl anddp = OE/ OA > OE / OB =04

Figure 5: Alternative price based economic input indexes

X2

%6 The tangency relation follows using Shephard’'s (1953, p.11) Lemma: x? = ‘I]co(yo, wf , Wg) / w1 and
xcz) = 'ﬂco(yo, w(lj, wg) / fwo. Similarly, the fact that the tangent line ending at E has slope equal to W% / le
followsfrom X% = ﬂcl(yl, w%, W12) / w4 and X]2' = 'ﬂcl(yl, W%, W]2') / fwo . Note that the X1 intercept of aline
with the slope of -(ngwg), as is the case for the lines ending in D, F, G or H, or of a line with the slope of

- (W%/W]é) , as is the case for the lines ending in A, B, C or D, is equal to the cost of the stated input vector

denominated in units of input factor 1.
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8. THE DIEWERT-MORRISON PRODUCTIVITY MEASURE
AND DECOMPOSITIONS

In section 5, we used the period t production function f' to define the period t cost
function, ct. The period t production function can dso be used to define the period t (net)
revenue function:

(8-1)
r'(p,x) maxy{p¥y:y° (y1,¥2,.-..ym) y1 =f Yy, yMiX}; t=0L.., T

where p° (py,...,Py ) iS the output price vector that the producer faces and X © (Xg,---,XN) IS
the input vector.*” Diewert and Morrison (1986) use revenue functions for period t and the
comparison period sto define another family of theoretica productivity growth indexes:

(8-2) RG(p,x) ° ri(p,x)/r(p,x).

This index is the raio of the net vaue of the output that can be produced using the period t
versus the period s technology but holding the inputs condant a the quantities given in some
reference net input quantity vector X and the prices condant a some reference unit price vector,
p. This is a different gpproach to the problem of controlling for total factor input utilization in
judging the success of the period t versus the period s production outcomes.

Two specid cases of (8-2) are of interest:

(8-3)
RGS° RG(p®, x%) = r(p%, x%) / r3(p%, x®) and RG' © RG(pt, x!) =rt(pt, x4 /3 (pt, x!).

The firs of these, RG>, is the theoretica productivity index obtained by letting the reference
vectors p and x take on the observed period s values. The second of these, RG!, isthe theoretica
productivity index obtained by Etting the reference vectors be the observed period t output price
vector p! and input quantity vector x*.*

Under the assumption of revenue maximizing behavior in both periods, we have:

47 |f y is positive (negative), then the net output m is an output (input). We assume that all output prices pmare
positive. We assume that all input quantities %, are positive and if the net input n is an input (output), then w;, is
positive (negative).

“8 This approach can be viewed as an extension to the general N-M case of the methodology used in defining the
output based measures of technical progress given in (6.1-7) and (6.1-8).
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(8-4) ptyt =rt(ph,xt) and pPxy® =rS(p°,x%)

If these equalities hold, this means we observe vaues for the denominator of RG® and the
numerator of RG'. However, we cannot directly observe the terms, rf(p® x%) and rS(pt,x!).
The firg of these is the hypotheticd revenue that would result from using the period t technology
with the period s input quantities and output prices. The second is the hypothetical revenue that
would result from using the period s technology with the period t input quantities and output
prices. These hypothetica revenue figures can be inferred from observable data if we know the
functiond form for the period t revenue function and it is associated with an index number
formula that can be evauated with the observable data. Suppose, for example, that the revenue
function has the following trandog functiona form:

69 i (px) © ag+ 8 fgam/MPm +& N bh/my + (U 2)8 118 (L3 M
-5
+@/2aN,a E\lzlbnjﬁnx nfnX; +a M_AN g fmpmimx

where apy =ajm and by =bj, and the parameters satisfy various other redtrictions b ensure
that r '(px) is linearly homogeneous in the components of the price vector p.*° Note that the
coefficient vectors ab,a}n and bl can be different in each time period but that the quadratic
coefficients are assumed to be congtant over time.

Diewert and Morrison (1986; p. 663) show tha under the above assumptions, the
geometric mean of the two theoreticad productivity indexes defined in (8-3) can be identified
using the observable price and quantity data that pertain to the two periods; i.e., we have

(8-6) [RGSRG!TY2 =a/bc

where a, b and c are given by

(8-7) a° pxy/p®xys,
(8-8) b a8 M W 2Ly Py + (P /P Xy ) en(pty /PR , and
(8-9) tre = & N (U 2I(Waxp /p° %) + (Whxh /p" 3y ) en(xh 1 X3,)

If we have constant returns to scale production functions 5 and f!, then the value of outputs
will equa the vaue of inputsin each period and we have

%9 These conditions can be found in Diewert (19744, p. 139). The derivation of (6.3-1) and (6.3-2) also required the
assumption of atranslog technology.



(8-10) p'xyt =w!xx!,

The same result can be derived without the constant returns to scae assumption if we have a
fixed factor that absorbs any pure profits or losses, with this fixed factor defined as in (5-18) in
section 5.

Substituting (8-10) into (8-9), we see that expresson ¢ becomes the Tornqvist input index
Q’-}. By comparing (8-8) and (3.8-2), we see dso that b is the Térnqvist output price index Pr.
Thus a/b isan implicit Térnqvist output quantity index.

If (8-10) holds, then we have the following decompostion for the geometric mean of the
product of the theoretical productivity growth indexes defined in (8-3):

(8-11) [RGRG'IY2 =[p' %'/ p> %] R QT],

where Pt is the Torngvist output price index defined in (3.8-2) and er is the Tornquigt output
quantity index defined andogoudy to the way in which the Térnqvig output quantity index is
defined in (3.8-1). Diewert and Morrison (1986) use the period t revenue functions to define two
theoretical output price effects which show how revenues would change in response to a change
in asingle output price:

(812) P5° r3(p3.....Phm- 1P Pines-- PN X3 I15(p%,x5), m =1,..., M,
and

(8-13) PL o rt(ptxH/rt e, ph 1P Pt PR XY, M =1, M

More specificdly, these theoretica indexes give the proportional changes in the vaue of output
that would result if we changed the price of the mth output from its period s levd pj, to its
period t leve p}n holding congtant al other output prices and the input quantities at reference
levels and using the same technology in both Stuations. For the theoretical index defined in (8-
12), the reference output prices and input quantities and technology are the period s ones,
wheress for the index defined in (8-13) they are the period t ones. Now define the theoretica
output price effect by, asthe geometric mean of the two effects defined by (8-12) and (8-13):

(8-14) by, ° [PSPLIY2, m=1....M.

Diewert and Morrison (1986) and Kohli (1990) show that the by, given by (8-14) can be
evduated by the following observable expression, provided that conditions (8-4), (8-5) and (8-
10) hold:
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(8-15) ¢nbpy, = (1/ 2[(PrYen/ P° %) + (OmYm/ P* %y N(Pm/Pin), M=1,...,M .

Comparing (8-8) with (8-15), it can be seen that we have the following decompaosition for b

(8-16) b=OM_ b, =Pr.

Thus the overdl Tornquvigt output price index, Py, can be decomposed into a product of the
individua output price effects, by, .

Diewert and Morrison (1986) dso use the period t revenue functions in order to define
two theoretica input quantity effects asfollows

(8-17) QnSOrS(pS,xf,...,xf}_l,x}],xﬁﬂ,...,xf'\l)/rS(pS,xS),n:1,...,N
ad
(8-18) Q' °© rt(pt,xt)/rt(pt,xi,...,x%_l,x%,xtnﬂ,...,xtN),n:1,...,N.

These theoretical indexes give the proportiond change in the value of output that would result
from changing input n from its period s levd x3, to its period t leve XL, holding congant Al
output prices and other input quantities at reference levels and using the same technology in both
gtuaions. For the theoreticd index defined by (8-17), the reference output prices and input
quantities and the technology are the period s ones, whereas for the index given in (8-18) they
arethe period t ones.

Now define the theoreticd input quantity effect c,, as the geometric mean of the two
effects defined by (8-17) and (8-18):

(8-19) ¢, ° [QrSQH Y2, n=1,...,N.

Diewert and Morrison (1986) show that the c,, defined by (8-19) can be evaluated by the
following empiricaly observable expresson provided that assumptions (8-4) and (8-5) hold:

(8-20) (nc, = (U 2[(Wix /p*y%) + (wixp/ phxy)n(xp /x3)

(8-21) = @/ 2[(WSxS 1w xS) + (whxt /w b en(xt 1x3) .

The expresson (8-21) follows from (8-20) provided that the assumptions (8-10) aso hold.
Comparing (8-20) with (8-9), it can be seen that we have the following decomposition for c:

(8-22) c=0ONc,
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(8-23) =QT,

where (8-23) follows from (8-22) provided that the assumptions (8-10) aso hold.

Thus if assumptions (8-4), (8-5) and (8-10) hold, the overal Torngvist input quantity
index can be decomposed into a product of the individud input quantity effects the c,, for
n=1...,N..

Having derived (8-16) and (8-22), we can substitute these decompositions into (8-6) and
rearrange the terms to obtain the following very useful decomposition:

(8-24) o3yt 1 p°xy° = [RGRG'TM2OM_ b, ON. ¢,

This is a decompostion of the growth in the nomind vaue of output into the productivity growth
term [RGSRGt]ll 2 times the product of the output price growth effects the by, times the
product of the input quantity growth effects the c,,. All of the effects on the right-hand Sde of
expression (8-24) can be cdculated usng only the observable price and quantity data pertaining
to the two periods.>®

An interesting specia case of (8-24) results when there is only one input in the x vector
and it is fixed. Then the input growth effect c¢; is unity and varigble inputs gppear in the y vector
with negative components. In this specid case, the left-hand sde of (8-24) becomes the pure
profits ratio that is decomposed into a productivity effect times the various price effects (the

bm)-

9. THE DIVISIA APPROACH

In the discrete time approaches to productivity measurement, the price and quantity data
are defined only for integer values of t where each vaue that the index t takes on denotes a
particular discrete unit time period. Indexes have been defined for this discrete time data that
reflect change from some comparison period s to some current period t. In contradt, in Divisa's
(1926; 40) approach to the measurement of aggregate input and output, the data are regarded as
continuous time variables® To emphasize the continuous time fedture of the Divisa approach,
in this section the price and quantity of output m at time t are denoted by pp,(t) and y,(t) for
goods m =1,2,...,M and the price and quantity of input n at time t are denoted by w(t) and

%0 See Morrison and Diewert (1990) for decompositions for other functional forms besides the translog. Kohli (1990)
and Fox and Kohli (1998) use (8-24) to examine the factors behind the growth in the nominal GDP of severa
countries.

®1 See Hulten (1973). For acomprehensive review of the Divisiaapproach, see also Balk (2000).
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Xp(t) for factors N=12,...,N. It is assumed that these price and quantity functions are
differentiable with respect to time over theinterva O£ t £1.
Revenue and cost can be represented as

(9-1) R(t)° a m=1 Pm(t) Ym(t)
and
(9-2) C(t) © & N2y Wi () xn(t) .

Differentiating both sdes of (9-1) with respect to time and dividing by R(t), we obtain

9-3)
R'(®) /RE) =[&M_ pm® ym® + &M, pm(®) ym®] /R(®)
=AM [Pm®)/Pm®] [Pm(®) Ym(®) / R()]
+ AN Iy ® 7 ym®] [Pm(®) Ym (®) / RO
(9-4) =AM P/ Pm OISR O+ M [ym®) / ym(®)] sR(1),

where a prime denotes the time derivative of a function and erf](t)0 [Pm@®) ym(®] / R(t) isthe
revenue share of output m a time t for m =1, 2, ..., M. The left-hand sde of (9-4) is R'(t) / R(t)
which is the (percentage) rate of change in revenue & timet.

The firg st of terms on the right-hand side of (9-4) is a revenue share weighted sum of
the rates of growth in the prices Divida (1926, p.40) smply defined this sum to be the
percentage rate of change of an aggregate output price a time t, P(t).>? Tha is, Divisa defined
the aggregate price growth rate to be

(9-5) P'(t) / P(t) © &M_; [Pm(t) / pm(®ISR (1) .

The second set of terms on the right-hand sde of (9-4) is a revenue share weighted sum
of the rates of growth for the output quantities of the individuad output goods Divisa defined
these terms to be the percentage rate of change of an aggregate quantity at time t, Y (t). That is,
Divisa defined the aggregate output quantity growth rate to be

(9-6) Y'(O/Y®)° 8 [ym®/ym®lsR ).

Substituting (9-5) and (9-6) into (9-4) yidds

®2 This is much like declaring the Tornquist output index to be a measure of output price growth, since it is a
weighted aggregate of the growth rates for the prices of theindividual output goods.
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(9-7) R'(t) / R(t) = P'(t) | P(t) + Y'(1) 1 Y (1).

In words, (9-7) says that revenue growth at time t is equa to aggregate output price growth plus
aggregate output quantity growth at time t. Equation (9-7) is the Divisa index counterpart to the
output side product test decomposition.

A decompostion smilar to (9-7) can be derived in the same way for the (percentage) rate
of growth in cog a timet, C'(t)/ C(t). Differentiating both sdes of (9-2) with respect to t and
dividing both Sdesby C(t) yieds

C'(t) / C(t) =[& pog W'n () X () + & hg Wn(t) X' (D] 7 C(1)

(9-8) | .
= &N wn @ 1 wa@1s§ ) + &N [xn() 1 xn (]S (1)

Here W'n(t) is the rate of change of the nth input price, x'n(t) is the rate of change of the nth
input quantity, and sﬁ (t) ° [wp (1) x,(1)] / C(t) istheinput n share of total codt @ timet.

Let W(t) and X(t) denote the Divisa input price and input quantity aggregates evauated
a time t, where their proportiond rates of change are defined by the two cost share weighted
sums of the rates of growth of the individua microeconomic input prices and quantities:

(9-9) W' (t) / W) © &N [wn(t) / wp (]SS (1)
ad
(9-10) X'(8) 1 X(t) ° &N [Xn(t) / Xn (B]SS (D).

Subgtituting (9-9) and (9-10) into (9-8) yields te following input side verson of equation

(9-7):
(9-11) C'(t) / C(t) = W'(t) / W(t) + X'(t) / X(t).

In words, (9-11) says that the rate of growth in cost is equal to aggregate input price growth plus
aggregate input quantity growth at time t. Equation (9-11) is the Divisa ndex counterpart to the
input side product test decomposition in the axiomatic gpproach to index number theory.

Jorgenson and Griliches (1967, p.252) define the Divisa TFPG index a time t as the rate
of growth of the Divisia output index minus the rate of growth of the Divisiainput index,>*

(9-12) TFPG(t) © [Y'(t) / Y (t)] - [X'(t) / X(1)],

%3 Note that the Divisia productivity measure is defined as a difference in rates of growth whereas our previous
productivity definitions al involved taking a ratio of growth rates. However, the log of aratio equals the difference
of thelogs, so this distinction is not necessarily important.
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where Y'(t) / Y (t) isgivenby (9-6) and X'(t) / X(t) isgiven by (9-10).

For the one output, one input case when t = O, we let Y(t)=y(t) =y(t) and
X(t) =x4(t) = x(t). In order to operationalize the continuous time approach, we approximate the
derivatives with finite differences as follows

(9-13) Y'(0) =y'(0) @) - y(0) =y*- y°
and
(9-14) X'(0) = x'(0) @x(1) - x(0) = x* - x°.

Substituting these gpproximations into (9-12) yields
(9-15) TFPG(0)=[y'(0) / y(Q)] - [x'(0) / x(0)] ,

which isthe Divisa agpproach counterpart to (2.1-3).

Returning to the generd Divisa productivity measure defined by (9-12), Jorgenson and
Griliches (1967, p.252) develop an andogous result for the general N input, M output case under
the additional assumption that costs equa revenue a each point in time. In this case we have
R'(t) / R(t) = C'(t) / C(t) and hence the right-hand sdes of (9-7) and (9-11) can be equated.
Rearranging the resulting equation and applying (9-12) yidds.

(9-17) [W'(t) / W(t)] - [P'(t) / P()] =[Y'(t) 1 Y(t)] - [X'(t) / X(t)] ° TFPG(t).

Thus, under assumption (9-16), the Divisa TFPG measure equas the Divisa input price growth
rate minus the Divisa output price growth rate.

The Divisa productivity index defined by (9-12) was related to measures of production
function shift by Solow (1957) in the case of one output and two inputs, and by Jorgenson and
Griliches (1967) in the N input, M output case. Solow and aso Jorgenson and Griliches adopted
this framework in their early growth accounting sudies, as we shal discuss in section 10. These
authors assumed congtant returns to scade, so ther andyss cannot be agpplied directly to
dtuations where this assumption is inappropriate. However, Denny, Fuss and Waverman (1981,
pp.196-199) relate the Divisa TFP measure defined by (9-12) to shifts in the cogt function
without assuming congant returns to scae. Here we summarize the andyss of Denny, Fuss and
Waverman using dightly different notation than they did.

Up to this point, our discusson of the Divida indexes has made no mention of cost
minimizing behavior. The agpproach of Denny, Fuss and Waverman requires us to assume that
the productive unit continuoudy minimizes cods for O£t£1. The production unit's cost
function is c(y,w,t) where y(t)° [yy(t),...,ym(t)] denotes the vector of outputs and
w(t) © [wy(t),..., wy(t)] denotes the vector of input prices. (The t varigble in c(y,w,t) is
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viewed as representing the fact tha the cost function is continuoudy changing due to technicd
progress over time) Under the assumption of cost minimizing behavior for 0 £ t £ 1, we have®

(9-18) C(1) © &Ng Wi (1) X () = cly(D), w(t), t].

We define the continuous time technical progress measure as minus the (percentage) rate
of increesein cos e timet:

(9-19) TP(t) © - {fdy(t), w(t), t] / 18 / dy(t), w(t), t].

Shephard's (1953, p.11) Lemma implies that the partid derivative of the cost function
with respect to the nth input price equas the cost minimizing demand for input n, given by:
(9-20) Xn (1) = 1dy(t), w(t), t]/ Twp,, n=1,2.., N.
Differentiating both ddes of (9-18) with respect to t, dividing both sdes of the resulting equation
by C(t), and using (9-19) and (9-20), we obtain
(9-21) C'(t)/ C(t) © & m=g {1y (1), W(t), t]/ Tym} [y'm (1) 7 C(1)]

+ &N Xn (O IW'y () / COT - TP(Y)
= &AMy em®) [y m (0 / ym®] + &N sy (1) [wn (1) / wi (D] - TP(Y),

where eq, (1) ° {Tc[y(t), w(t), t] / Tym}/ {cly(t), w(t), t] / ym (1)} is the dadticity of cogt with
respect to the mth output quantity and sﬁ (t) © [wq(t) xn (0] / C(t) isthenth input cost share.

Denny, Fuss, and Waverman (1981, p.196) define the rate of change of the continuous
time output aggregate, Q(t), asfollows.

(9-22) QM/ QM) ° &M=t em®[Y'm M)/ ym®]1/ &1 & (V).

Recdl| that the Divida expresson for the output growth rate given in (9-6) weghts the individud
output growth rates, y'y, (t)/ ym(t), by the revenue shares, S,Ff](t). Alternatively, in (9-22),
Y'm(t) / ym(t) is weighted by the mth cost dadticity share, e, (t)/ &=, &(t). It can be shown

*To reconcile the notation used here with the notation used in previous sections, note that
cP(y0, w0) = cfy(0), w(0), 0] and (v}, wh) = c[y(®), w(®), J with y(t) © y' and w(t) © w! fort=0,1.
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that § i'\ﬂl e;(t) is the percentage incresse in cost due to a one percent increase in scale for each
output.>® We define the reciproca of this sum to be amessure of (local) returnsto scale:

(9-23) RS(t) °[aM; et .

Now equate the right-hand side of (9-11) to the right-hand side of (9-21). Using (9-9), (9-
22), and (9-23), we obtain the following decompostion of the technicad progress measure in
terms of returnsto scae, output growth and input growth:

(9-24) TP(t) =[RS(H]™H[Q' (1) / QOI- [X' (1) / X(1)].

In order to relate the technica progress measure TP(t) defined by (9-19) to the Divisa
productivity measure TFPG(t) defined by (9-12), we use equation (9-12) to solve for
X'(t) X() =[Y'()/ Y(t] - TFPG(t) and use equation (9-25) to solve for X'(t)/ X(t).
Equating these two expressionsfor X'(t)/ X(t) and rearranging termsyidds

(925 TFPG(t) =[Y'(t)/ Y(1)] - [RS(] * [Q'(1) / QO] + TP(1)

(9-26) = TP(t) +{Q'(1)/ QWL - [RSM] 1 H{[Y'(®) / Y()] - [Q'(t) / Q(OI} -

Equation (9-25) is due to Denny, Fuss, and Waverman (1981, p.197). This equation says that the
Divida productivity index equas the technicd progress measure TP(t) plus the margind cost
weighted output growth index, Q'(t)/ Q(t), times a term that depends on the returns to scale
term, {1- [RS(t)]‘l}, that will be pogtive if and only if the loca returns to scae measure RS(t)
is greater than 1, plus the difference between the Divisa output growth index, Y'(t)/Y(t), and
the margina cost weighted output growth index, Q'(t) / Q(t) .

Denny, Fuss, and Waverman (1981, p.197) interpret the term Y' (1) /Y (1) - Q'(t)/ Q(t) as
the effect on TFPG of nonmargind cost pricing of a nonproportiond variety. Their argument
goes like this. Suppose that the mth margind cost is proportiona to the period t sdling price
Pm(t) form=1, 2, ..., M. Let the common factor of proportiondity be | (t) Thenwe have:

(9-27) fely (), wt), 1]/ ym =1 (£) pm(t) m=1,2, .., M.

%5 The elasticity of cost with respect to a scale variable k is defined as {1/ c[y(t), w(t), t]} times the following
derivative evaluated at k = 1:

Tfky (1), w(t), t] / Tk =aM_ v () Te(y(®), w(t), t) / Tym = cly(), wt), 1 aM_ ep, (1)
where the last equality follows from the definition of eq,(t) below (9-21). Therefore, the elasticity of cost with

respect to scale equals {1/ dy(t), w(t), tTHdy(t), w(t), yI} &M_, e, () =aM_ e (1).
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Using (9-27) together with the definitions of e, (t) and S,qu(t) , we find that

(9-28) en(t) = sﬁq(t) [ (t) R(t) / C(t) m=12,..,M.
Substituting (9-28) into (9-21) and using (9-6) yidds

(9-29) Y'(1) 7Y(1)=Q(1) / Q1)

Hence, if margind costs are proportional to output prices’® (i.e, if (9-27) holds), then the term
Y'(t) /Y (t)- Q'(t)/ Q(t) vanishes from (9-26). Note dso that if there is only one output good,
then (9-28) and (9-29) will automaticaly hold.

In this case, (9-26) can be rewritten asfollows:

(9-30) TFPG(t) = TP(t) +[1- 1/ RS(E)] [Y'(t) / Y (1)].

Equation (9-30) is andogous to equation (6.1-11) where, for the one input, one output
case, we decomposed TFPG into the product of a technical progress term and a returns to scae
term. In both of these equations, if output growth is postive and returns to scae are grester than
one, then productivity will exceed technica progress.

Since the continuous time agpproach to productivity measurement due to Divida (1926)
and Jorgenson and Griliches (1967) is judtified without the assumption of optimizing behavior on
the part of the producer, it provides a continuous time counterpart to the discrete time product
tet decompostion. However, in that approach, congant returns to scde and marginad cost
pricing were assumed. On the other hand, the continuous time approach to productivity
measurement due to Denny, Fuss and Waverman (1981) relies on the assumption of optimizing
behavior, but without the assumption of congtant returns to scae and dlowing for nonmargind
cost pricing. This second gpproach provides a continuous time counterpat to the economic
approaches to productivity measurement developed in previous sections.

We conclude this section with brief comments on the problems associated with the
continuous time gpproaches discussed in this section.

Fird, as dready noted, in order to make operational any continuous time approach to
productivity measurement, it is necessary to replace derivatives such as y'm(t) by finite
differences such as yp(t+1) - yy(t) or ym(t) - ym(t- 1). The apparent precision of the
Divisa approach vanishes when we consder these discrete data approximation problems.

%% |t can be shown that if the firm (i) maximizes revenues holding constant its utilization of inputs and (ii) minimizes
costs holding constant its production of outputs, then marginal costs will be proportional to output prices; i.e., we

obtain pt/ pt >yt =mcl/ mct>yt. Hence prices in period t, pt, are proportional to marginal costs, met. 1t should
be noted that assumptions (i) and (ii) above are weaker than the assumption of overall profit maximizing behavior.
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Diewert (1980, pp.444-446) shows that there are a wide variety of discrete time approximations
to the continuous time Divisa indexes. More recently, Bak (2000) shows how virtudly al mgor
bilatera index number formulas can be derived usng various discrete gpproximations to the
Divida continuous time index. Second, as we make the period of time shorter and shorter, price
and quantity data for purchases and sdes become “lumpy” and it is necessary to smooth out
these lumps. There is no unique way of doing this smoothing. Third, producers do not optimize
a each ingant of time. In addition, price and more importantly, quantity data are not available on
acontinuous time basis.

10. GROWTH ACCOUNTING

Growth accounting provides a resduad measure of TFPG. Despite the differences in
terms and presentation between the growth accounting and index number literatures, the growth
accounting measure of productivity growth is, in fact, an index number. The form of the growth
accounting TFPG index depends on the functiona form of the production function used in
specifying the growth accounting framework.>’

Because the growth accounting measure of TFPG is an index number, dl of the materid
in earlier sections of this chapter is rdevant to growth accounting as well. Hence, our trestment
of this gpproach is limited to illudrating how the growth accounting framework is constructed,
noting where important assumptions enter, and outlining issues concerning the measurement of
the quantity and price variables that enter into a growth accounting study and the meaning of the
resulting TFPG measure: issues that are rdevant to the empiricad implementation of al measures
of national TFPG.

" The correspondences that can be worked out between the particular functional forms for the selected production
function and the resulting growth accounting TFPG measure are part of the exact approach to index numbers,
outlined in section 5.



10.1  Solow’s 1957 Paper®

Solow’s classic 1957 paper, “Technicd Change and the Aggregate Production Function,”
provides a convenient context for introducing the basics of growth accounting. This sudy aso
influenced many of the subsequent growth accounting studies. As in most dudies of this sort,
Solow begins with a production function:

(10.1-1) Y =F(K,L;t).

Y denotes an output quantity aggregate, K and L are aggregate measures for the capital and labor
inputs, and t denotes time>® Solow states that the varigble t “for time” appears in the production
function F “to dlow for technica change” However, having introduced t in this way, he goes on
to observe that this operationd definition in no way singles out the adoption of new production
technologies. Indeed, he notes that “dowdowns, speed-ups, improvements in the education of the
labor force, and al sorts of thingswill appear as ‘technica change.””

In specifying the true production function, Solow assumes tha technica change can be
represented as shifts in the underlying true production function that leave dl margind raes of
subgtitution unchanged and that are associated with the passage of time but not with expenditures
on physica capitd or labor. Under these assumptions, the production function in (10.1-1) can be
rewritten as

(10.1-2) Y = A1) F(K,L).

That is, under the stated assumptions the production function can be decomposed into atime
vaying multiplicative technicd change tem and an aemporad production function.®® The
multiplicative factor, A(t), in (10.1-2) represents the effects of shifts over time after controlling
for the growth of K and L.

Solow re-formulates the output and capital input variables as (Y/L)=y and (K/L)=k. He
assumes that the production function is homogeneous of degree one (congtant returns to scale),
and that capita and labor are paid their margina products so that total revenue equas the sum of
dl factor costs. Making use of these assumptions and the Divisa methodology, Solow arives at
the following growth accounting equetion:

°8 portions of this section draw on Diewert (1993a, section 3; 1992b, section 5; 1981a, section 7; and 1978b).

%9 A host of index number and aggregation issues are subsumed in the construction of the Y, K and L dataseries.

60 Solow’ s recommendations in his 1957 paper encouraged other researchers to be interested in measuring efficiency
improvement in their econometric studies by the ratio of period t and period s efficiency parameters, asin (5-5), with
the production function for each period specified as the product of a time varying efficiency parameter and an
atemporal production function f, asin (5-4).
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(10.1-3) yly =(AlA)+sc (K/K).

The dots over variables denote time derivatives and sy stands for the national income share of
capitd.® Solow approximates the teem (A/A) in (10.1-3) by (DA/A), uses smilar discrete
gpproximations for the other variables, and rearranges termsto obtain

(10.1-4) (DA/A) = (Dy/y)- s, (Dk/K).

He reports vaues for A(t) for the years of 1910 through 1949. These are obtained by setting
A(1909) =1 and using the formula A(t +1) =A(t)[1+ DA(t)/ A(t)]. He interprets the results in
the following passage:

“The reasoning is this: real GNP per man hour increased from $.623 to $1.275. Divide the latter figure by
1.809, which is the 1949 value for A(t), and therefore the full shift factor for the 40 years. The result is a
‘corrected’ GNP per man hour, net of technical change, of $.705. Thus about 8 cents of the 65 cent increase
can beimputed to increased capital intensity, and the remainder to increased productivity”

(p. 316).

Solow's 1957 dudy built on other attempts by economists to reconcile the forecasting
implications of the early edtimated aggregate production functions with direct messures of the
growth of aggregate product. Abramovitz (1956) had previoudy compared a weighted sum of
labor and capital inputs with a measure of total output and had concluded that to reconcile these,
it was necessxy to invoke a postive role for technica progress over time. He recommended
usng time itsdf as a proxy for productivity improvements. Still earlier, in a 1942 German aticle,
Tinbergen made use of an aggregate production function that incorporated a time trend. His
dtated purpose in doing this was to capture changes over time in productive efficiency.

In section 6 we showed that a TFPG index can be represented as the product of a
technical progress term, TP, and a returns to scade term, RS, With Solow’'s assumption of
congtant returns to scae (i.e, the assumption that RS=1), the technica progress term equds the
TFPG index. Thus, under the assumptions of his modd, Solow’s shift factor estimates could be
thought of as estimates of both TP and TFPG, and this view was adopted in other sudies in this
same tradition.

The growth accounting literature grew phenomendly from 1957 on. The methodology
was extended and gpplied in large scae empirica sudies by Griliches (1960, 1963), Denison
(1967) and Kendrick (973, 1976, 1977) among others. In his Presdential Address ddlivered at
the one-hundred tenth meeting of the American Economic Association, Harberger (1998, p. 1)

%1 Solow assumes that all factor inputs can be classified as capital or labor; hence s| =1- sy isthe national income
share of labor.
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describes growth accounting as an important success story for the economics professon, and
asserts that the work of Jorgenson and Griliches (1967), Jorgenson, Gollop and Fraumeni (1987),
and Jorgenson (1995a, 1995h) has carried growth accounting to the level of a “high art.” Aspects
of the research of Jorgenson and his associates relating to measurement are the subject matter of
the remainder of this section.

10.2 Input Factor Measurement and Jorgenson’s Contributions

Researchers such as Jorgenson have struggled to improve our understanding of the
workings of the aggregate economy by improving the measurement of the capitd and labor
quantity and price variables, and dso our underganding of the returns in enhanced output
resulting from different sorts of input growth. Of course, by better explaning the portions of
output growth that are due to increased use of specific sorts of factor inputs, measured TFPG will
typicdly be reduced. This is so for dl of the TFPG index number formulas that have been
presented. Thus we have the paradoxica result that progress in measuring TFPG can manifest
itsdlf in the form of faling vaues of TFPG over time.

We firg take up issues in the measurement of the labor input, and then turn to related
capital measurement issues.

10.2.1 Measuring the labor input

Jorgenson (1995a) observes that Solow's (1957) definition of invesment is limited to
tangible assets and argues that this narrow definition is one reason why Solow attributed so much
of U.S. economic growth to “resdud” growth in productivity.

According to Jorgenson, in computing the labor aggregate, hours of work of persons with
differing stocks of human capitad should be weighted by ther differing margind products. In a
1967 paper, Jorgenson and Griliches present a congtant qudity index for labor with workers
differentiasted by their educationd attainment.®> More recently, Gollop and Jorgenson (1980,
1983) produced congtant qudity indexes of labor input for 51 indudtria sectors of the U.S.
economy. They disaggregated the labor input for each industry by age, sex, educationd
atainment, dass of employment, and occupation.%® As part of this research effort, they created

%2 |n implementing this approach, he built on earlier research by Griliches and Denison. So-called constant quality
indexes of labor input were developed by Griliches (1960) for U.S. agriculture and by Denison (1962) for the U.S.
economy as awhole.

83 It is important to note that age and sex are not productive attributes. These are proxy variables, totally immutable
by individual effort, that have relationships to productive attributes, moreover, these relationships have been
systematically shifting over time. One argument for the use of these particular proxies is that they give rise to more
stable results than other categorizations that might be used. However, it is also important to guard against
introducing systemic but largely invisible statistical discrimination through the way in which statistical evidence
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an extensve data base of hours worked and hourly compensation for the specified categories of
labor input®® These so-cdled congtant quaity labor input indexes ae sraightforward
goplications of index number theory to the measurement of the quantity of labor, though the
incluson in the labor aggregate of certain segments of the out of work potentid labor force is
controversia and forces consderation of the objectives of TFPG measurement.

For example, Jorgenson and Griliches (1967) included unemployed workers in the labor
input aggregate on the grounds that unemployed machines are included in the stock of capitd.
However, we note that individud firms own physica capitd, but not the persons within whom
the human capitd of the firm is deveoped. A firm must continue paying interes on financid
capital expended on the purchase of physcd capitd. This is so even if the machine is utilized a
less than full cgpacity or Sts unused. However, a firm does not usudly bear ongoing costs for
workers no longer employed by the firm. Of course, most developed countries do incur costs for
unemployed citizens. Unlike the case of worn out or outdated machines, a nation cannot fredy
dispose of workers. However, it is not obvious what wage rate should be used for the
unemployed when including them in the labor aggregate for the nation. Jorgenson and others
including Fraumeni have aso attempted to measure the contributions to the stock of intelectud
capitd due to unpaid learning.®®> The appropriate sdection of input factors to be included in the
input index for a TFPG measure depends on the nature of the productive entity and perhaps aso
on the purpose of the measurement exercise. For ingtance, while it may be reasonable to include
unemployed workers in a nationd TFPG measure, it would not be appropriate to include them in
a TFPG measure for afirm.

about the economy is compiled. For more on alternative approaches to classifying the labor input see Triplett (1990,
1991).

64 One might wonder why sub-aggregates for labor are used rather than just weighting the labor input for each
worker by the wage rate for that person. One reason is that microeconomic data on hours of work and wages or
earnings for a census of workers are not available on an ongoing basis at the national level. Also, however, the
researchers were interested in computing estimates of the contributions to overall economic growth of the observed
growth in the quantities of different sorts of labor. This is a separate, though complimentary, research objective to
computing estimates of TFPG.

% For example, in a 1986 paper, Fraumeni and Jorgenson extended the vintage capital accounting approach
developed by Christensen and Jorgenson (1969, 1970) for physical capital to investments in human capital. In their
1992 study, they find that a major part of the value of the output of educational institutions accruesto studentsin the
form of increases in their lifetime incomes. They treat these increases as compensation for time invested by
individuals in obtaining education, and that time is treated as an input into the education process. Having calculated
the outlays of educational institutions and the estimated value of student time, they allocate the growth of the
education sector to its sources. Finally, they aggregate the growth of the education and noneducation sectors of the
U.S. economy to obtain anew measure of U.S. economic growth.
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10.2.2 Measuring the capital input

Jorgenson emphasizes interna consistency in data construction for growth accounting.®®
He argues that rental rates for capitd services rather than asset prices are the appropriate basis
for estimating property compensation, just as wage rates, interpreted as the rental price for the
accumulated human capital stock, are the appropriate basis for estimating labor compensation.
However, as noted above, the machines are mostly owned. Jorgenson argues that rental values
should be imputed on the basis of estimates of capitd stocks and of property compensation rates,
with the cepitd stock at each point of time represented as a weighted sum of past investmen.
The weights are viewed as measures of the reative efficiencies of capital goods of different ages
and of the compensation received by the owners. In research with a number of others, Jorgenson
continued to move forward his vision of the proper treatment of capitd as a factor of production,
alowing for other factors such as taxation that affect the cost of capital to the producer.®’

While agreeing with the objective of adopting a user cost approach for asset pricing,
nevertheless it is important to note that the theoreticd and empirical basis is dim for many of the
practica choices that must be made in doing this. Substantid differences in the productivity
measurement results can result from different choices about things such as physica depreciation
rates for which empirica or other scientific evidence is largey lacking. For example, Statigtics
Canada has recently used a machinery and equipment depreciation rate of approximately 15%
whereas other countries use something in the 12 to 13% range. These seemingly smal
differences in deprecidion rates have a huge effect on the resulting naionad productivity
estimates.

66 See Jorgenson (1963, 1980, 1995a).
67 See for example Hall and Jorgenson (1967, 1971) and Christensen and Jorgenson (1969, 1970).
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11. CONCLUSIONS

At present, edimates of tota factor productivity growth (TFPG), or what some nationd
detidical agencies like Statisics Canada refer to more redidicdly as multifactor productivity
growth (MFPG), are being produced for Canada, the United States and a number of other
nations. Thee edimaies have become an important input into nationa public policy making.
This chapter has surveyed the index number methods and theory behind the nationd TFPG
numbers.

We began with a statement of four distinct concepts that have been used for TFPG:

The growth rate for the rate of transformation of total input into total output.
Theratio of the output and the input growth rates.
The rate of growth in the red revenue/cost rdio; i.e, the rate of growth in the
revenue/codt ratio controlling for price change.
Therate of growth in the margin after controlling for price change.
It was demondirated that al four of these concepts of TFPG can be measured by the ratio of the
output and the input growth rates when there isjust one input factor and one output good.

Moving to the case of a genera N input, M output production process, the traditiond
definitions for the Laspeyres, Paasche, Fisher, Torngvist and implicit Térngvist indexes as ratios
of output and input quantity indexes were presented dong with the associated definitions of the
Laspeyres, Paasche, Fisher, Tornqvis and implicit Torngvist quantity and price indexes. The
product rule and the definition of an implicit price index were dso introduced. The mahematica
relaionships between quantity, price and TFPG indexes were explained, and then used to
demondrate that the Laspeyres, Paasche and Fisher TFPG index number formulas each give an
equivalent measure of al four concepts of TFPG lised above. However, the different functiond
forms represent different gpproaches to aggregating the inputs and the outputs, and they yidd
different estimates of TFPG. Thisraisestheissue of choosng among them.,

We also showed that the Paasche, Laspeyres and Fisher quantity and TFPG indexes can
be represented as ratios of quantity aggregates that can be readily interpreted as actud or
hypothetica revenue and cost figures for the current and comparison periods (periods t and 9).
Since actud and hypothetical revenue and cost figures play prominent roles in managerid
accounting, their sgnificance can easly be digested by the busness world. The Fisher index,
with its Paasche and Laspeyres subcomponents, provides perhaps the more comprehensve
framework for consdering and controlling for the consequences of changing price conditions,
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since the Laspeyres component shows how revenues would have grown if the “how it was’ price
conditions had continued to prevall while the Paasche pat shows how revenues would have
grown versus costs under the “how it is” price conditions of the current period.

There are two main established gpproaches to choosing among aternative index number
formulas: the axiomatic and the exact index number gpproaches.

We fird reviewed the axiomatic gpproach to index number choice. This has been a long
edablished part of the tradition of index number theory. The tests which comprise the axiomatic
approach are properties that have been asserted to be desirable on common sense grounds and
that are possessed by virtudly dl index numbers in the smplisic case of one input factor and
one output good. An advantage of the axiomatic approach is that it does not depend on
assumptions about optimizing behavior on the pat of producers. Also, it is conceptudly
conggtent with the use of commonly available ex post accounting data.

A somewhat different perspective emerges from the exact index number gpproach to
index number formula choice, an approach rooted in neoclassca economic theory methods and
models. Usng the exact index number approach developed by Diewert (1976), equivalencies can
be worked out between proposed index number formulas and theoreticd measures in optimizing
models of producer behavior. Using these equivalencies, a choice can be made among dternative
formulas based on preferred properties for the functiond form of the producer’s production or
cos or other dua function. The economic approach evauates index number formulas on the
bass of their micro-foundations rather than on the bass of the properties of the index numbers
themselves.

In growth accounting the sdlected aggregate production function is aso used as the bads
for decomposing economic growth into components attributed to growth in the various input
factors. It is noted that the growth accounting residud is an index number measure of TFPG.®®

Arnold Harberger (1998) refers in his Presdentid Address to the American Economics
Association to growth accounting as an important success story for the economics profession.
The modern measures and interpretations of TFPG are a joint creation of economists and index
number theorists. There are few other empiricd measures that economists have helped create,
interpret or bring to the atention of public policy and busness world practitioners that are
routinely produced and used to the extent that TFPG edimates are now. In this sense
Harberger's assessment is surdly correct. Nevertheless, there are some important limitations of

%8 Different choices of functional form for the growth accounting decomposition of economic growth by input factor
can produce very different empirical results. This can be the case even when the associated growth accounting
TFPG estimates for the different formulas are quite similar. The reason for this is that the TFPG estimates are not
necessarily affected by differences among production functions in the restrictions on interactions among input
factors whereas decompositions of growth by input factor are affected by these restrictions.
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these measures and the current data collection and andyss practices associated with the
production and use of these measures. We conclude by listing what we see as some of the more
important of these limitations:

@ The ligt of inputs and outputs considered must remain congtant over the comparison and
current time periods.

This limitation is manly due to a lack of adequate procedures for deding with qudity
change and with new goods® New and improved products and services are constantly being
crested and introduced into the market place.

2 Quantity and either unit price or total vaue information must be available for both the
comparison and the current time periods.

This second limitation is problematic because, in addition to the messurement gaps
associated with the appearance of new goods, if the productive entity is an entire nation, there are
adways many thousands of inputs and outputs. The available data sources do not fully cover these
even in developed nations with well funded detistical agencies. Moreover, researchers involved
in producing TFPG edtimates must often rely on pre-packaged subaggregates. The initia stage of
aggregation should be, but often is not, caried out in a manne tha is condgtent with the
aggregation appropriate for the TFPG index adopted. Also, there are specia problems involved
in obtaining information on purchases of capita inputs, with these problems being most severe
for the vast numbers of smdl vaue capitd inputs for which there are often no separate records.

3 Some sort of user costs or renta prices must be collected or congtructed for dl included
capital inputs (i.e, for dl durable inputs whose initial cost theoreticaly should be spread
over the multi-period life of the good).

This third limitation of current index number TFPG measurement is problematic because
of unresolved conceptual issues concerning the measurement of user cods for durable inputs. For
ingance, when a durable input is purchased, on economic theory grounds it seems clear that the
purchase price should be spread over its useful lifetime. Cost accounting depreciation alowances
atempt to do this but the traditiond accounting trestment of depreciation in an inflationary
environment is unsatisfactory and there is disagreement on how this traditiond practice should

69 See Diewert (1987, 1995, 19983, 1998b, 1999a, 2001), Diewert and Fox (1999), Wolfson (1999), Nordhaus
(1997), Greenstein (1997), and Baldwin, Despres, Nakamura and Nakamura (1997), as well as other papers and the
Introduction in Bresnahan and Gordon (1997).
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be dtered. For ingance, what interest rate should be used in determining the vaue of financid
capitd tied up in the ownership of durable goods? Should imputed equity interest cods be
included too? There are dso more basic unresolved conceptua problems associated with the
measurement of capitd inputs. For example, should the quantity of the capitd services provided
by a machine during each accounting period be treasted as congant (that is, should it be measured
as an average per unit time period) over the lifetime of the machine, or should the quantity be
reduced each period by a deterioration factor to reflect the decline in efficiency of the machine?
The first view leads to a gross capita services concept and the second to a net capita services
concept. These two views can lead to Sgnificantly different measures of capitd services input
and, hence, to significantly different measures of productivity.”

4 The differences between ex ante expected prices and ex post reaized prices must be
treated as negligible.

This fourth limitation is problematic because during inflationary time periods subgtantid
differences can develop between ex ante and ex post prices. Many ceapitd inputs cannot be
adjusted ingantaneoudy (i.e, they cannot be bought or sold instantaneoudy); therefore, a cost
minimizing producer would be expected to form a priori expectations about the purchase and
disposd prices as wdl as future interest rates, depreciation rates, and tax rates in order to
cdculate the ex ante user cost of capitd inputs. However, as researchers, we can only observe ex
post prices, interest rates, depreciation rates, and tax rates;, thus we can only caculate ex post
user costs. If the expectations about future prices and rates are not redlized, then the ex ante user
costs -- the prices which theoreticdly should appear in our cost functions or in the exact index
number formulas -- may differ sgnificantly from the ex post user costs.

) The models that economigts use to interpret TFPG estimates typicaly rule out most of the
ways in which business and government leaders try to raise productivity.

The economic agpproach is built, to date, on a neoclassca foundation assuming perfect
compstition, perfect information and, in most sudies, congtant returns to scale. In recent years,
economists have become increesngly aware of the prevdence of monopolistic markets,
asymmetric information, and pervasve nonconvexities These devdopments have the potentid
to contribute to a more fruitful rapport between economists and business and government leaders

® For discussions on the measurement problems associated with capital, see Jorgenson (1963), Jorgenson and
Griliches (1967, pp.254-260; 1972), Diewert (1980, pp.470-486; 1992a), Diewert and Lawrence (2000), and the
references in those papers.
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on the subject of productivity. The leaders of firms and nations drive to cepitdize on market
mispricing, information advantages, and opportunities to regp increesing returns to scde --
indeed, they view the returns to these activities that result in faling unit costs as productivity
improvements.”*

It is true that in a world where al factor inputs are paid their margind products and there
is no potentid for regping increasing returns to scade, then the only way in which growth in
output could occur would be through increased input use or through changes in externd
circumstances.”? This is the world assumed by Solow (1957) and many others. For such a world,
after removing al factor costs in computing TFPG, we would be left with only revenue growth
dueto purely external factors. It isfrom this perspective that Jorgenson (1995a) writes:

“The defining characteristic of productivity as a source of economic growth is that the
incomes generated by higher productivity are external to the economic activities that
generate growth” (p. xvii).

However, this definition of productivity growth seems unlikdy to satisfy Harberger's (1998, p.
1) recommendation that we should approach the measurement of productivity by trying to “think
like an entrepreneur or a CEO, or a production manager.” The perspective of the CEO could be
better accommodated by dlowing for a fuller range of market imperfections, common goods
incduding spillovers from the R&D invetments of other producers, increasing returns to scae,
and the information investments that aid busnesses in taking advantage of these other factors
that are assumed away in many empirica studies. " Doing this is not a odds with the objective
of messuring the contributions of the factor inputs to production as fully and accurately as
possible, which has been the central thrust of the research of Jorgenson and his associates.

At present, there is a serious conceptua gulf between the economic approach to the
interpretation of TFPG measures and the popular perception of what productivity growth is. The
chdlenge for index number theorists is to develop models that incorporate rather than assume
away what economic practitioners view as some of the main means by which total factor
productivity improvement is accomplished.

. For the management perspective see, for instance, Armitage and Atkinson (1990) and Kendrick (1984). One-time
changes in organization or management practices that reduce waste or the need for inventories -- these are
essentially investments in the infrastructure of an organization that have resource costs too -- are also usually viewed
as productivity improvement in the business world. Economists who have struggled with the problems of
incorporating some of these factors include Berndt and Fuss (1986), Berndt and Khaled (1979), Diewert and
Morrison 1990), Morrison (1986, 1988), Nakamura and Vertinsky (1994), and Olley and Pakes (1996).

"2 Thisis the world assumed by Solow (1957) and many other economists.

3 studies of TFPG focusing explicitly on externalities such as R&D spillovers include Bernstein and Nadiri (1989),
Bernstein (1996), Jaffe (1986), and Gera, Wu and Lee (1999). Bernstein (1998) and Bernstein and Mohnen (1998)
extend the theory and empirical treatment of spillover effects on productivity growth to an international context.
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