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ABSTRACT 

 A model in which purposive agents self-organize into teams is demonstrated to 

closely reproduce empirical data on the population of U.S. firms. There are 

increasing returns within teams and agents move between teams or start new teams 

when it is in their self-interest. Nash equilibria of the team formation game exist but 

are unstable. Dynamics are studied using agent-based computing at full-scale with 

the U.S. private sector (120 million agents). There arise stationary distributions of 

team sizes, growth rates, ages, output, productivity, income, and job tenure, growth 

rates that decline with age, growth rate variance that falls with size and age, and 

approximately constant returns to scale at the aggregate level. Job-to-job flows, 

hiring, unemployment and other labor market phenomena occur for microeconomic 

reasons, without resort to external shocks. The model quantitatively reproduces a 

large number of important regularities associated with firms and labor markets. 

Keywords: endogenous firm formation, increasing returns, bounded rationality, 

unstable Nash equilibria, labor market dynamics, power law firm size distribution, 

heavy-tailed firm growth rate distribution, agent-based model, non-equilibrium 

economics, path-dependence, economic complexity, evolutionary economics 
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1 Introduction 
A model is described in which coalitions self-organize within a large, 

heterogeneous population of boundedly rational agents, who interact locally in 

team production environments, out of equilibrium. The resulting agent coalitions, 

it will be shown, can have a variety of statistical properties characteristic of firms. 

The model is extremely simple, with many familiar features: purposive agents who 

have well-defined preferences and choose their behavior; production functions that 

generate more (less) output when inputs are increased (decreased); and Nash 

equilibrium of the associated team formation game. Stationary distributions of firm 

sizes and growth rates, output and ages, job tenure and agent incomes are 

generated by the model and are demonstrated to closely resemble empirical data on 

the population of U.S. firms. The model achieves these results using somewhat less 

familiar concepts and methodology, including agent-level disequilibrium (Nash 

equilibria exist but are dynamically unstable), the emergence of firms as meta-

stable meso-structures (between the agent and aggregate levels), and so-called 

agent-based computing for generating transient, finitely-lived firms. Specifically, 

the model is individual-based and I eschew the notion of a firm as a unitary 

actor—if a firm consists of ten people then the behaviors of all ten are explicitly 

modeled.1 Among the surprising results of this model is that no exogenous shocks 

are necessary to generate realistic levels of firm volatility and employment 

variability. Rather, the (deterministic) processes of (a) agents adjusting their work 

efforts and occasionally migrating between jobs, (b) each firm’s output fluctuating 

as a result of the changing inputs to production and its ever-varying pool of 

employees, and (c) firm birth and death as a result of entrepreneurial decision-

making are, taken together, demonstrated to be sufficient to yield realistic (1) firm 

growth rate variability, (2) job turnover, and (3) firm entry and exit rates. That is, 

purely microeconomic motivations and behaviors are able to generate empirical 

                                                
1 Our firms are multi-agent systems (e.g., Minar et al. 1996; Jennings et al. 1998; Ferber 1999; Weiss 1999; 
d'Inverno and Luck 2001; Liu 2001; Wooldridge 2002; Deguchi 2004; Shoham and Layton-Brown 2009). 
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levels of aggregate economic variability. Other surprising phenomena that arise in 

this model are large firms that have little or no explicit internal structure. That is, 

even though management hierarchies are not part of the model it is possible to get 

quite large firms to arise. Specifically, for model realizations with 120 million 

agents, roughly the size of the U.S. private sector work force, the largest firm is 

O(106) agents, in reasonable agreement with the size of the largest American firm. 

In some ways the model developed here is more realistic than existing models 

from industrial organization, since agent rationality is bounded, workers can 

migrate between firms, firm sizes fluctuate, and all these dynamics are internally-

generated. In other ways the model is unrealistic, as it lacks physical capital, uses 

only very simple compensation systems, models behavior as one-dimensional 

(basically, deciding how hard to work), completely neglects prices, disregards 

social norms of work effort, and so on. As to whether this model represents 

progress over previous approaches, this is an empirical question. If the model can 

do a reasonable job reproducing the data then it has much to recommend it. If its 

output cannot be empirically-grounded then it is of little interest. We shall see that 

the model can be made to match literally dozens of data on U.S. firms, while the 

best competitor model seems capable of explaining a couple of empirical facts at 

most. Therefore, independently of how much one does or does not like the model 

specifications, the very strong empirical character of the output seems to argue that 

the model should be taken seriously. 

 The point of departure for this model is to treat firms as multi-agent systems. 

Indisputably, most firms are composed of multiple agents. However, theories of 

the firm typically neglect its multi-agent character, a point forcefully made by 

Winter (1993).2 A model in which realistic firms emerge from the interactions of 

individuals could shed substantial light on which elements of the received theories 

are essential and which are of secondary importance. Such a model could also help 

                                                
2 Early analyses of the firm as composed of multiple agents are the Carnegie School’s behavioral theory of the 
firm (Cyert and March 1963) and the Marschak-Radner theory of teams (1972). While these are neglected 
today, each prefigured modern developments, computational in the former case, game theoretic in the latter. 
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to distinguish descriptive from normative elements in extant theories. For example, 

are theoretical claims about the core organizing forces of firms, such as transaction 

costs, statements of necessity or sufficiency? What happens as agent rationality 

assumptions are progressively relaxed—as complete rationality gives way to 

bounded rationality and finally to mere purposiveness, do firm-like multi-agent 

groups form more easily or with more difficulty? Are extant theories of the firm 

even sufficiently well-specified that one can build more or less complete 

microeconomic models of them?3 A working model, in which some firms grow 

and prosper while others do not, could serve as a laboratory for experimentation. 

Or it might do much more, leading to new conceptualizations of the firm. 

 Another motivation for modeling firm formation within a population of agents 

is to open up employment dynamics to a more methodologically individualist 

perspective. While it is conventional to talk about labor markets from the point-of-

view of individual workers and firms (e.g., job creation and job destruction), 

models in labor economics are aggregate, written in terms of unemployment pools, 

vacancy rates, and search intensity (Pissarides 2000; Shimer 2010). A model in 

which individual agents are explicitly represented within firms, and which captures 

individual worker migration between firms as agents seek better opportunities, has 

endogenous labor market dynamics, without the need for shocks coming from 

outside the economy, whether structural or idiosyncratic. 

A further goal of treating the firm as a multi-agent system is to contribute to 

the development of agent-based computing in the social sciences (cf., Hillebrand 

and Stender 1994; Epstein and Axtell 1996; Tesfatsion 2002), specifically agent-

based economics. Creation of agent models in software requires explicit 

specification of individual behavior at the micro-level. Such models are spun 

forward in time and patterns and structures emerge. Today, much is known about 

how to model markets using software agents (cf. Palmer et al. 1994; Chen and Yeh 

1997; Kirman and Vriend 2000; LeBaron 2001; Axtell 2005; Cont 2006). Too, 

                                                
3 Models without explicit dynamics constitute, at best, partial explanations (Simon 1976). 
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computational organization theory has progressed as a modeling discipline, 

typically by taking organizational forms as given (Carley and Prietula 1994; 

Prietula et al. 1998; Lomi and Larsen 2001). However, little is known about how to 

get multi-agent organizations to form endogenously.4 Dynamic multi-agent firms 

are an important step on the road to the creation of an agent-based macroeconomy 

in software (Axtell 2006; Delli Gatti et al. 2008).5 

 These distinct motivations—to test the extant theory of the firm, to make labor 

market dynamics endogenous, and to add to the methodology of agent modeling—

are intrinsically related. On one hand, any model of firm formation must have 

foundations that reside in the decisions of individuals. On the other hand, the 

dynamics of team formation can be studied via agent computing. 

 Realizations of our agent model will be compared to data on the universe of 

U.S. firms. Over the past decade, driven largely by advances in information 

technology, there have appeared increasing amounts of micro-data on U.S. 

businesses. The model described below is capable of reproducing many important 

features of the empirical data: firm size, age and growth rate distributions, 

including joint and conditional distributions involving these variables and their 

moments, distributions of job tenure and wages across agents, certain network 

properties, and a few other quantities. For most of these data the best explanations 

today are largely phenomenological in nature, with little economic content. 

Concerning firm sizes, for example, from the early work of Gibrat (1931)6 and 

continuing in the efforts of Simon and co-workers (Simon 1955; Simon and Bonini 

1958), stochastic growth models have been shown to yield skew firm sizes, 

following lognormal, Pareto, Yule or similar ‘thick-tailed’ distributions (Stanley 

and al. 1995; Kwasnicki 1998; Hashemi 2000; Cabral and Mata 2003; Gabaix and 

                                                
4 Padgett (1997) has modeled the formation of networks of complementary skills within an agent population. 
Luna (2000) investigates problem-solving by teams of neural nets and interprets the results in terms of firms. 
5 Building an entire artificial economy from agents was described by Arthur (in Waldrop [1992]) and Lane 
(1993; 1993); also Lewin (1997). An early model is Basu and Pryor (1997), where firms are unitary actors. 
6 For reviews of Gibrat’s contributions see Steindl (1965) and Sutton (1997). 
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Ioannides 2004; de Wit 2005; Saichev et al. 2010).7,8 An early attempt to add some 

microeconomics to these stochastic process stories is due to Lucas (1978), who 

derived Pareto-distributed firm sizes from a Pareto distribution of managerial 

talent. More recently, Luttmer obtains Zipf-distributed firm sizes in a variety of 

general equilibrium settings, driven by skewed productivity distributions (Luttmer 

2007), or by innovation (Luttmer 2010), or by replication of organizational capital 

(Luttmer 2011), always mediated in some subtle way by firm entry, and always 

driven by exogenous shocks. He has attempted to explain, with less empirical 

success, firm ages (Luttmer 2007) and growth rate variability (Luttmer 2011). 

Overall, today there do not exist models with microeconomic foundations that can 

explain substantial portions of the emerging microdata on firms. Thus my main 

empirical goal here is to develop just such a model. 

 There are four streams of thought among theories of the firm that are most 

relevant to the model described below. The first is team production (Alchian and 

Demsetz 1972; Holmstrom 1982; Holmstrom and Tirole 1988), in which 

increasing returns to scale are treated as the origin of incentive problems by virtue 

of the difficulty of paying agents their marginal products. Second is the general 

equilibrium view (Kihlstrom and Laffont 1979; Laussel and LeBreton 1995; 

Prescott and Townsend 2006), closely related to the coalition formation 

perspective (e.g., Ray 2007). Here, agents are treated as heterogeneous, each with 

unique preferences and abilities. A firm is then a (stable) coalition of such agents. 

The formation of such coalitions can be considered endogenous (Hart and Kurz 

1983; Ray and Vohra 1999) and dynamic (Roth 1984; Seidmann and Winter 1998; 

Konishii and Ray 2003). However, the number of coalition structures is so vast 

that it is implausible any realistic firm formation process could ever realize 

                                                
7 A generation ago Simon caustically critiqued the inability of the neoclassical theory of the firm—with its U-
shaped cost functions and perfectly informed and rational managers—to plausibly explain the empirical size 
distribution (Ijiri and Simon 1977: 7-11, 138-140; Simon 1997). The transaction cost (e.g., Williamson 1985) 
and more game theoretic theories of the firm (e.g., Hart 1995; Zame 2007) are also ambiguous empirically, 
placing few restrictions on size and growth rate distributions, for example. 
8 Sutton’s (1998) game theoretic models of bound the extent of intra-industry concentration, constraining the 
shape of size distributions. He has also studied how growth rate variance depends on size (Sutton 2002). 



 

 6 

anything like an optimal firm structure (De Vany 1993a; De Vany 1993b; De Vany 

1996a; De Vany 1996b).9 The third stream of relevant literature is the economics 

of information processing within organizations, where the firm is modeled as a 

network of communicating agents (Radner 1993; DeCanio and Watkins 1998; Van 

Zandt 1998; Van Zandt 1999; Miller 2001). The comparative efficiency of firms 

having alternative incentive and organizational structures is the primary object of 

study. The related view of organizations as communication networks is found in 

Dow (1990) and Bolton and Dewatripont (1994). Fourth, the firm plays a central 

role within the broad field of evolutionary economics, where it is viewed neither as 

a production function, nor a nexus of contracts, but as a set of operating rules and 

heuristics (Nelson and Winter 1982; Klepper and Graddy 1990; Hodgson 1993; De 

Vany 1996; Kwasnicki 1996; Mazzucato 2000; Potts 2000; Bowles 2003). Instead 

of interpreting firm behavior as optimizing, the evolutionary approach treats firm 

behavior as adaptive and profit seeking. 

 The model described below draws together various threads from these 

competing theoretical literatures. From the neoclassical tradition the notion of a 

production function is preserved, albeit in a modified form. The model is written at 

the level of individual agents and incentive problems commonly studied in the 

principal-agent literature manifest themselves. The agents in the model work in 

perpetually novel environments, so contracts are incomplete and transaction costs 

are implicit. Each firm is a coalition of agents, so the general equilibrium approach 

is relevant. Finally, the ways in which agents make decisions, and firms grow and 

decline, is in the spirit of evolutionary economics. 

Specifically, my model of firm formation consists of a heterogeneous 

population of agents with preferences for income and leisure. There are increasing 

returns, so agents who work together can produce more output per unit effort than 

by working alone. However, agents act non-cooperatively:10 they select efforts that 

                                                
9 Work on the computational complexity of optimal coalitions can be viewed as impossibility results (cf. 
Shehory and Kraus 1993; Klusch and Shehory 1996; Klusch and Shehory 1996; Sandholm et al. 1998). 
10 For a cooperative game theoretic view of firms see Ichiishi (1993). 
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improve their individual welfare, and may migrate between firms or start-up new 

firms when advantageous. Analytically, Nash equilibria can be unstable in this 

environment. Large firms are not stable because each agent’s compensation is 

imperfectly related to its effort level, making free-riding possible. Highly 

productive agents eventually leave large firms and such firms eventually decline. 

Agent computing is used to study the non-equilibrium dynamics, in which firms 

are perpetually forming, growing and perishing. For essentially all of the agents 

the non-equilibrium regime provides greater welfare than equilibrium. 

 Although the model is situated conceptually within existing theories of the 

firm, the main results are developed using agent-based computation (Holland and 

Miller 1991; Vriend 1995; Axtell 2000; Tesfatsion 2002). In agent computing, 

software objects representing individuals are instantiated along with behavioral 

rules governing their interactions. The model is then marched forward in time and 

regularities—often at the macro-level—emerge from the interactions (e.g., Grimm 

et al. 2005). The shorthand for this is that macro-structure “grows” from the 

bottom-up. No equations governing the macro level are specified. Nor do agents 

have either complete information or correct models for how the economy will 

unfold. Instead, they glean data inductively from the environment and their social 

networks—i.e., through direct social interactions—and make imperfect forecasts of 

economic opportunities. (Arthur 1994). This methodology facilitates modeling 

agent heterogeneity, non-equilibrium dynamics, local interactions (Follmer 1974; 

Kirman 1997), and bounded rationality (Arthur 1991). As we shall see, aggregate 

stationarity is attained in the model despite perpetual behavioral adjustments and 

changing employment arrangements at the agent (microeconomic) level. Thus, 

agent-level equilibria are not the focal point of the analysis. Pragmatically, this is 

because microeconomic equilibria are not achieved, but there is a deeper reason as 

well. In section 4 we will see that the variations that bring the model near agent-

level (static) equilibria essentially sever its close connection to data. Indeed, 

maintaining empirical relevance seems to demand a systematic break from agent-

level equilibrium notions, although this is not to say that agents are not ‘intendly 
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rational’—they respond to incentives, are always looking for utility gains, and so 

on.11 The apparent need for microeconomic disequilibrium is perhaps why theories 

of the firm have had vague empirical relevance. Whether this irrelevance result 

applies to other branches of economics and finance remains to be seen. In section 5 

I argue it likely applies to macroeconomics, and that the search for microeconomic 

equilibrium foundations for macro may be quixotic, although micro-foundations in 

general remain a laudable goal. 

2 Team Production and Team Formation 
 Holmström (1982) formally characterized the equilibria that obtain in team 

production. These results have been extended in various ways (e.g., Watts 2002). I 

model a group of agents engaged in team production, each agent contributing a 

variable amount of effort, leading to variable team output and team instability.12 

 Consider a finite set of agents, A, |A| = n, each of whom works with an effort 

level ei∈Α ∈ [0, ωi]. The total effort of the group is then E ≡ Σi∈Aei. The group 

produces output, O, as a function of E, according to O(E) = aE + bEβ, β > 1. This 

represents the group’s production function.13 For b > 0 there are increasing returns 

to effort, while b = 0 amounts to constant returns.14 Increasing returns in 

production means that agents working together can produce more than they can as 

individuals.15 To see this, consider two agents having effort levels e1 and e2, with β 

= 2. As individuals they produce total output O1 + O2 = a(e1 + e2) + b(e1
2 + e2

2), 

while working together they make a(e1 + e2) + b(e1 + e2)2. Clearly this latter 

quantity is at least as large as the former since (e1 + e2)2 ≥ e1
2 + e2

2. As a 

compensation rule let us first consider agents sharing total output equally: at the 
                                                
11 This state of affairs is roughly comparable to a key finding of the original artificial agent financial market 
model (Arthur et al. 1997)—the configuration of the model that generated rational expectations equilibria is far 
from configurations that yield agent dynamics closely reproducing financial market data. 
12 The model is similar to Canning (1995), Huberman and Glance (1998) and Glance et al. (1997). 
13 While O(E) relates inputs to outputs, like a standard production function, the inputs are not explicit choices 
of a decision-maker, since E results from autonomous agent actions. Thus, O(E) cannot be made the subject of 
a math program, as in conventional production theory, although, it does describe production possibilities. 
14 Increasing returns at the firm level goes back at least to Marshall (1920) and was the basis of theoretical 
controversies in the 1920s (Sraffa 1926; Young 1928). Recent work on increasing returns is reprinted in 
Arthur (1994) and Buchanan and Yoon (1994). Colander and Landreth (1999) give a history of the idea. 
15 Increasing returns are justifiable via 'four hands’ problems and other ways; these will not be pursued here. 
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end of each period all output is sold for unit price and each agent receives an O/N 

share of the total output.16 Agents have Cobb-Douglas preferences for income and 

leisure.17 All time not spent working is spent in leisure, so agent i’s utility can be 

written as a function of its effort, ei, and the effort of other agents, E~i ≡ E – ei as 

 . (1) 

2.1 Equilibrium of the Team Formation Game 
 Consider the individual efforts of agents to be unobservable. From team output, 

O, each agent i determines E and, from its contribution to production, ei, can figure 

out E~i. Agent i then selects effort . For β = 2, in 

symbols, (θi, ωi, E~i) = 

.(2) 

Note that e* does not depend on n but does depend on E~i—the effort put in by the 

other agents. To develop intuition for the general dependence of  on its 

parameters, we plot it for a = b = ωi = 1 in figure 1, as functions of E~ i and θi. 

 
Figure 1: Dependence of  on E~i and θ for a = b = ωi = 1 

The optimal effort level decreases monotonically as 'other agent effort,' E~i, 

increases. For each θi there exists some E~i beyond which it is rational for agent i to 
                                                
16 The model yields roughly constant total output, so in a competitive market the price of output would be 
nearly constant. Since there are no fixed costs, agent shares sum to total cost, which equals total revenue. The 
shares can be thought of as either uniform wages in pure competition or equal profit shares in a partnership. 
17 In the appendix a more general model of preferences is specified, yielding qualitatively identical results. 

Ui ei;θi ,ω i ,E~i ,n( ) = O ei;E~i( )
n

⎛
⎝⎜

⎞
⎠⎟

θi

ω i − ei( )1−θi

ei
* θi ,ω i ,E~i ,n( ) = argmaxei Ui ei( )

ei
*

max 0,
−a − 2b E~i −θiω i( ) + a2 + 4bθi

2 ω i + E~i( ) a + b ω i + E~i( )⎡⎣ ⎤⎦
2b 1+θi( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

ei
*

ei
*
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put in no effort. In the case of constant returns,  decreases linearly with slope θi 

– 1. 

 Equilibrium in a group corresponds to each agent working with effort  from 

equation 2, using  in place of E~i such that . This leads to: 

Proposition 1: Nash equilibria exist in any group. 

Proof: From the continuity of the RHSs of (2) and (3) and the convexity and 

compactness of the space of effort levels, a fixed point exists by the Brouwer 

theorem. Each fixed point is a Nash equilibrium, since once it is established no 

agent can make itself better off by working at some other effort level.    � 

Proposition 2: There exists a set of agent effort levels that Pareto dominate the 

Nash equilibrium, as well as a subset that are Pareto optimal. These solutions all 

(a) involve larger amounts of effort than the Nash equilibrium, and (b) are not 

individually rational. 

Proof: To see (a) note that , since the 

first term on the RHS vanishes at the Nash equilibrium and 

 . 

For (b), each agent’s utility is monotone increasing on the interval [0, ), and 

monotone decreasing on ( , ωi]. Therefore, . � 

This effort region that Pareto-dominates Nash equilibrium is where firms live. 

Example 1: Graphical depiction of the solution space, two identical agents 

 Consider two agents having θ = 0.5 and ω = 1. Solving (2) for e* with E~i = e* and a 

= b = 1 yields e* = 0.4215, corresponding to utility level 0.6704. Effort deviations by 

either agent alone are Pareto dominated by the Nash equilibrium. For example, decreasing 

the first agent's effort to e1 = 0.4000, with e2 at the Nash level yields utility levels of 

0.6700 and 0.6579, respectively. An effort increase to e1 = 0.4400 with e2 unchanged 

produces utility levels of 0.6701 and 0.6811, respectively, a loss for the first agent while 

the second gains. If both agents decrease their effort from the Nash level their utilities fall, 

while joint increases in effort are welfare-improving. There exist symmetric Pareto 

ei
*

ei
*

    

� 

E~i
*

    

� 

E~i
* = e j

*
j≠ i∑

dUi ei
*;θi ,E~i

* ,n( ) = ∂Ui

∂ei
dei +

∂Ui

∂E~i
dE~i > 0

∂Ui

∂E~i
=

θi a + 2b ei + E~i( )⎡⎣ ⎤⎦ ω i − ei( )1−θi

nθi ei + E~i( ) a + b ei + E~i( )( )⎡⎣ ⎤⎦
1−θi

> 0

ei
*

ei
*

    

� 

∂U i ∂ei < 0∀ei > ei
*,E~i > E~i

*
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optimal efforts of 0.6080 and utility of 0.7267. However, efforts exceeding Nash levels are 

not individually rational—each agent gains by putting in less effort. 

 Figure 2 plots iso-utility contours for these agents as a function of effort. The 'U' 

shaped lines are for the first agent, utility increasing upwards. The 'C' shaped curves refer 

to the second agent, utility growing to the right. The point labeled 'N' is the Nash 

equilibrium. The 'core' shaped region extending above and to the right of 'N' is the set of 

efforts that Pareto-dominate Nash. The set of efforts from 'P' to 'P' are Pareto optimal, with 

the subset from ‘D’ to ‘D’ being Nash dominant. 

 
Figure 2: Effort level space for two agents with θ = 0.5 and a = b = ω = 1; colored lines are iso-
utility contours, 'N' designates the Nash equilibrium, the heavy line from P-P are the Pareto optima, 
and the segment D-D represents the Pareto optima that dominate the Nash equilibrium 

 For two agents with distinct preferences the qualitative structure of the effort space 

shown in figure 2 is preserved, but the symmetry is lost. Increasing returns insures the 

existence of solutions that Pareto-dominate the Nash equilibrium. For more than two 

agents the Nash equilibrium and Pareto optimal efforts continue to be distinct. 

Singleton Firms 

 The E~i = 0 solution of (2) corresponds to agents working alone in single agent 

firms. For this case the expression for the optimal effort level is 

 . (3) 

In the limit of θ = 0, (3) gives e* = 0, while for θ = 1 we have e* = ω. For θ ∈ (0, 1) 

it can be shown that the optimal effort is greater than for constant returns. 

e* θ,ω( ) = −a + 2bθω + a2 + 4bθ 2ω a + bω( )
2b 1+θ( )
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Example 2: Nash equilibrium in a team with free entry and exit 

 Four agents having θs of {0.6, 0.7, 0.8, 0.9} work together with a = b = ωi = 1. 

Equilibrium, from (2), has agents working with efforts {0.15, 0.45, 0.68, 0.86}, 

respectively, producing 6.74 units of output. The corresponding utilities are {1.28, 1.20, 

1.21, 1.32}. If these agents worked alone they would, by (3), put in efforts {0.68, 0.77, 

0.85, 0.93}, generating outputs of {1.14, 1.36, 1.58, 1.80} and total output of 6.07. Their 

utilities would be {0.69, 0.80, 0.98, 1.30}. Working together they put in less effort and 

receive greater reward. This is the essence of team production. 

 Now say a θ = 0.75 agent joins the team. The four original members adjust their effort 

to {0.05, 0.39, 0.64, 0.84}—i.e., all work less—while total output rises to 8.41. Their 

utilities increase to {1.34, 1.24, 1.23, 1.33}. The new agent works with effort 0.52, 

receiving utility of 1.23. Joining is individually rational for this agent since its singleton 

utility is 0.88. 

 Imagine that another agent having θ of 0.75 joins the group. The new equilibrium 

efforts among the original 4 group members are {0.00, 0.33, 0.61, 0.83}, while the two 

newest (twin) agents each put in effort of 0.48. The total output rises to 10.09. The 

corresponding utilities are {1.37, 1.28, 1.26, 1.34} for the original agents and 1.26 for each 

of the twins. Overall, even though the new agent induces free riding, the net effect is a 

Pareto improvement. 

 Next, an agent with θ = 0.55 (or less) joins. Such an agent will free ride and not affect 

the effort or output levels, so efforts of the extant group members will not change. 

However, since output must be shared with one additional agent, all utilities fall. For the 4 

original agents these become {1.25, 1.15, 1.11, 1.17}. For the twins their utility falls to 

1.12. The utility of the θ = 0.9 agent is now below what it can get working alone (1.17 vs 

1.30). Since agents may exit the group freely, it is rational for this agent to do so, causing 

readjustment to a new equilibrium: the three original agents work with efforts {0.10, 0.42, 

0.66}, while the twins put in effort of 0.55 and the newest agent free rides. Output is 7.52, 

yielding utility of {1.10, 0.99, 0.96} for the original three, 0.97 for the twins, and 1.13 for 

the free rider. Unfortunately for the group, the θ = 0.8 agent now can do better by working 

alone—utility of 0.98 versus 0.96, inducing further adjustments: the original two work 

with efforts 0.21 and 0.49, respectively, the twins put in effort of 0.61, and the θ = 0.55 

agent rises out of free-riding to work at the 0.04 level; output drops to 5.80. The utilities of 
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the originals are now 0.99 and 0.90, 0.88 for the twins, and 1.07 for the newest agent. Now 

the θ = 0.75 agents are indifferent to staying or starting new singleton teams. 

Homogeneous Groups 

 It is interesting to consider a group composed of agents of the same type 

(identical θ  and ω). In a homogeneous group each agent works with the same 

effort in equilibrium, determined from (2) above by substituting (n-1)  for E~i, 

and solving for e*, yielding: 

 .

 (4) 
These efforts are shown in figure 3a as a function of θ, with a = b = ω = 1 and 

various n. Figure 3b plots the utilities for θ  ∈ {0.5, 0.6, 0.7, 0.8, 0.9} versus n. 

 
Figure 3: Optimal effort (a) and utility (b) in homogeneous groups as functions of θ and n, with a = b = 

ω = 1 

Note that each curve in figure 3b is single-peaked, so there is an optimal group size 

for every θ. This size is shown in figure 4a for two values of ω.  

 
Figure 4: Optimal size (a) and utility (b) in homogeneous groups as functions of θ; a = b = 1; ω = 1, 10 
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Optimal group sizes rise quickly with θ  (note log scale). Utilities in such groups 

are shown in figure 4b. Gains from being in a team are greater for high θ agents.18 

2.2 Stability of Nash Equilibrium and Dependence on Team Size 
 A unique Nash equilibrium always exists but for sufficiently large group size it 

is unstable. To see this, consider a team out of equilibrium, each agent adjusting its 

effort. As long as the adjustment functions are decreasing in E~i then one expects 

the Nash levels to obtain. Because aggregate effort is a linear combination of 

individual efforts, the adjustment dynamics can be conceived of in aggregate 

terms. In particular, the total effort level at time t + 1, E(t+1), is a decreasing 

function of E(t), as depicted notionally in figure 5 for a five agent firm, with the 

dependence of E(t+1) on E(t) shown as piecewise linear. 

E(t+1)

  E(t) 
Figure 5: Phase space of effort level adjustment, n = 5 

The intersection of this function with the 45° line is the equilibrium total effort. 

However, if the slope at the intersection is less than –1, the equilibrium will be 

unstable. Every team has a maximum stable size, dependent on agent θs. 
 Consider the n agent group in some state other than equilibrium at time t, 

described by the vector of effort levels, e(t) = (e1(t), e2(t), ..., en(t)). Now suppose 

that at t + 1 each agent adjusts its effort level using (2), a 'best reply' to the 

previous period's value of E~i,19 

                                                
18 For analytical characterization of an equal share (partnership) model with perfect exclusionary power see 
Farrell and Scotchmer (1988); an extension to heterogeneous skills is given by Sherstyuk (1998). 
19 All effort adjustment functions yield qualitatively similar results when they are decreasing in E~i and 
increasing in θi; see appendix A. While this is a dynamic strategic environment, agents make no attempt to 
deduce optimal multi-period strategies. Rather, at each period they myopically ‘best respond’. This simple 
behavior is sufficient to produce very complex dynamics, making anything like sub-game perfection 
unreasonable in such an environment.. 
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. 

Each agent adjusts its effort level, resulting an n-dimensional dynamical system, 

and: 

Proposition 3: All teams are unstable for sufficiently large group size. 

Proof: Stability is assessed from the eigenvalues of the Jacobian matrix:20  

 ,(5) 

while Jii = 0. Since each θi ∈ [0, 1] it can be shown that Jij ∈ [-1,0], and Jij is 

monotone increasing with θi,. The RHS of (5) is independent of j, so each row of 

the Jacobian has the same value off the diagonal, i.e., Jij ≡ ki for all j ≠ i. Overall, 

 , 

with each of the ki ≤ 0. Stability of equilibrium requires that this matrix’s dominant 

eigenvalue, λ0, have modulus strictly inside the unit circle. It will now be shown 

that this condition holds only for sufficiently small group sizes. Call ρi the row 

sum of the ith row of J. It is well-known (Luenberger 1979: 194-195) that mini ρi ≤ 

λ0 ≤ maxi ρi. Since the rows of J are comprised of identical entries 

 . (6) 

Consider the upper bound: when the largest ki < 0 there is some value of n beyond 

which λ0 < -1 and the solution is unstable. Furthermore, since large ki corresponds 

to agents with high θi, it is the most productive members of a group who determine 

its stability. From (6), compute the maximum stable group size, Nmax, by setting λ0 

= -1 and rearranging: 

                                                
20 Technically, agents who put in no effort do not contribute to the dynamics, so the effective dimension of the 
system will be strictly less than n when such agents are present. 
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 , (7) 

where ⎣z⎦ refers to the largest integer less than or equal to z. Groups larger than 

nmax will never be stable, that is, (7) is an upper bound on group size.   � 

 For either b or E~i » a, such as when a ~ 0, ki ≈ (θi -1)/(θi +1). Using this 

together with (7) we obtain an expression for nmax in terms of preferences 

 . (8) 

The agent with highest income preference thus determines the maximum stable 

group size. Other bounds on λ0 can be obtained through the column sums of J. 

Noting the ith column sum by γi, we have mini γi ≤ λ0 ≤ maxi γi, which means that 

 . (9) 

These bounds on λ0 can be written in terms of the group size by substituting n  

for the sums. Then an expression for nmax can be obtained by substituting λ0 = 1 in 

the upper bound of (9) and solving for the maximum group size, yielding 

 . (10) 

The bounds given by (7) and (10) are the same (tight) for homogeneous groups.  

Example 3: Onset of instability in a homogeneous group 
 Consider a group of agents having θ = 0.7, with a = b = ω = 1. From (8) the maxi-

mum stable group size is 6. Consider how instability arises as the group grows. For an 

agent working alone the optimal effort, from (3), is 0.770, utility is 0.799. Now imagine 

two agents working together. From (4) the Nash efforts are 0.646 and utility increases to 

0.964. Each element of the Jacobian (5) is identical; call this k. For n = 2, k = -0.188 = λ0. 

For n = 3 utility is higher, and λ0 = -0.368. The same qualitative results hold for group 

sizes 4 and 5, with λ0 approaching -1. At n = 6 efforts again decline but each agent’s utility 

is lower. For n = 7 λ0 is -1.082: the group is unstable—any perturbation of the Nash 

equilibrium creates dynamics that do not settle down. This is summarized in table 1. 
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n e* U(e*) k λ0 = (n-1)k 
1 0.770 0.799 not applicable not applicable 
2 0.646 0.964 -0.188 -0.188 
3 0.558 1.036 -0.184 -0.368 
4 0.492 1.065 -0.182 -0.547 
5 0.441 1.069 -0.181 -0.726 
6 0.399 1.061 -0.181 -0.904 
7 0.364 1.045 -0.180 -1.082 

Table 1: Onset of instability in a group having θ = 0.7; Nash eq. in groups larger than 6 are unstable 

Groups of greater size are also unstable in this sense. For lesser θ instability occurs at 

smaller sizes, while groups having higher θ can support larger numbers. 

 These calculations are performed for all θ in figure 7. The maximum stable 

size is shown (green), with the smallest size at which instability occurs (red). 

 
Figure 6: Unstable Nash equilibria in homogeneous groups having income parameter θ 

The lower line (magenta) is the optimal group size (figure 4a), very near the 

stability boundary, meaning optimally-sized firms could be destabilized by the 

addition of a single agent. This is reminiscent of the ‘edge of chaos’ literature, for 

systems poised at the boundary between order and disorder (Levitan et al. 2002). 

Unstable Equilibria and Pattern Formation Far From Equilibrium 

 Unstable equilibria may be viewed as problematical if one assumes agent level 

equilibria are necessary for social regularity.21 But games in which optimal 

strategies are cycles have long been known (e.g., Shapley 1964; Shubik 1997). 
                                                
21 Osborne and Rubinstein (1994: 5) seem to suggest that any empirical regularity is necessarily an 
equilibrium. They cite Binmore (1987; 1988), who describes Simon’s distinction between substantive and 
procedural rationality and admits that the former notion is a static one. He then distinguishes eductive and 
evolutive ways that players might arrive at equilibrium, claiming each is “a dynamic process by means of 
which equilibrium is achieved,” (Binmore 1987: 184). 
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Solution concepts can be defined to include such possibilities (Gilboa and Matsui 

1991). Agent level equilibria are sufficient for macro-regularity, but not necessary. 

When agents are learning or in combinatorially rich environments, as here, fixed 

points seem unlikely. Non-equilibrium models in economics include Papageorgiou 

and Smith (1983) and Krugman (1996).22 

 Firms are inherently dynamic. As they age, agent dynamics shift, some agents 

leave, new ones arrive, hard work and shirking coexist.23 Indeed, there is vast 

turnover: of the largest 5000 U.S. firms in 1982, in excess of 65% of them no 

longer existed as independent entities by 1996 (Blair et al. 2000)! ‘Turbulent’ is 

apropos for such volatility (Beesley and Hamilton 1984; Ericson and Pakes 1995). 

3 Computational Implementation with Software Agents 
 The motivation for a computational version of the model is simple. Since 

equilibria of the team formation game are unstable, what are its non-equilibrium 

dynamics? Do the dynamics contain firm formation patterns that are recognizable 

vis-a-vis actual firms? Such patterns can be difficult to discern analytically, 

leaving computational models as a practical way of studying them.24 In what 

follows we find that such patterns do exist and they are closely related to data. 

3.1 Set-Up of the Computational Model 
 In the analytical model above the focus is a single group. In the computational 

model many groups will form within the agent population. The computational set-

up is just like the analytical model. Total output of a firm consists of both constant 

and increasing returns. Preferences, θ, are heterogeneous across agents. When 

agent i acts it searches over [0, ωi] to find the effort that maximizes its next period 

utility. Each agent now has a social network consisting of νi other agents, assigned 

randomly (Erdös-Renyi graph), and repeats this effort calculation for (a) starting 

                                                
22 Non-equilibrium models are better known and well-established in other sciences, e.g., in mathematical 
biology the instabilities of certain PDE systems are the basis for pattern formation (Murray 1993). 
23 Arguments against firm equilibrium include Kaldor (1972; 1985), Moss (1981) and Lazonick (1991). 
24 Turbulent flow involves transient phenomena on multiple length and time scales. Turbulence has resisted 
analysis despite the equations being well known. Today computational techniques are the tools of choice. 
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up a new firm in which it is the only agent, and (b) joining νi other firms—i.e., it 

engages in a job search using its social network (Granovetter 1973; Montgomery 

1991). The agent chooses the option that yields greatest utility. Since agents 

evaluate only a small number of firms their information is limited. We use 120 

million agents, roughly the size of the U.S. private sector workforce. One period 

consists of about 5 million agents being activated, and corresponds to one calendar 

month, calibrated by job search frequency (Fallick and Fleischman 2001). Each 

agent starts working alone, thus120 million firms initially. The model’s ‘base case’ 

is table 2.25 

Model Attribute Value 
number of agents 120,000,000 

constant returns coefficient, a Uniform on [0, 1/2] 
increasing returns coefficient, b Uniform on [3/4, 5/4] 
increasing returns exponent, β Uniform on [3/2, 2] 
distribution of preferences, θ Uniform on (0, 1) 

endowments, ω 1 
compensation rule equal shares 

number of neighbors, ν Uniform on [2,6] 
agent activations per period 4,800,000 or 4% of total agents 

time calibration: one model period one month of calendar time 
initial condition all agents in singleton firms 

Table 2: 'Base case' configuration of the computational model 

The model’s execution can now be summarized in pseudo-code: 
• INSTANTIATE agents and firms, INITIALIZE time, statistical objects; 
• WHILE time < finalTime DO: 

o FOR each agent, activate it with 4% probability: 
§ Compute e* and U(e*) in current_firm; 
§ Compute e* and U(e*) for starting up a new firm; 
§ FOR each firm in the agent’s social network: 

• Compute e* and U(e*); 
§ IF current_firm is not best choice, leave current 

firm; 
• If start-up firm is best: form start-up; 
• If another firm is best: join other firm; 

o FOR each firm: 
§ Sum agent inputs and then do production; 
§ Distribute output; 

o IF in stationary state collect monthly statistics; 
o INCREMENT time and reset periodic statistics; 

• Collect final statistics. 

                                                
25 For model attributes with random values, each new agent or firm is given a realization having that 
specification. 
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Over time multi-agent firms form, grow and perish and there emerge stationary 

distributions of firm sizes, firm growth rates, firm ages, job tenure and so on. The 

essential feature of this model is that it is specified at the level of individuals, thus 

it is ‘agent-based’. It is important to emphasize that it is not a numerical model: 

there are no (explicit) equations governing the macrosystem; the only equations 

present are for agent decision-making. “Solving” an agent model amounts to 

iterating it forward and observing the patterns produced at the individual and 

aggregate levels (cf. Axtell 2000). 

3.2 Aggregate Dynamics 
 Agents work alone initially. As each is activated it discovers it can do better 

working with another agent to jointly produce output. Over time some groups 

expand as agents find it welfare-improving to join them, while others contract as 

their agents discover better opportunities elsewhere. New firms are born as 

discontented agents form start-ups. Overall, once an initial transient passes, an 

approximately stationary macrostate emerges. 

Number of Firms and Average Firm Size 

 The number of firms varies over time, due both to firm entry—agents leaving 

extant firms for start-ups—and the demise of failing firms; figure 7 is typical.  

 
Figure 7: Typical monthly time series for the total number of firms (blue), new firms (green), and 

exiting firms (red) over 25 years (300 periods); note higher volatility in exits. 

About 6 million firms in the U.S. have employees. A comparable number are 

shown in figure 7. There are about 100K startups with employees in the U.S. 

monthly (Fairlie 2012), quite close to the green line in figure 7. Note that there is 

more variability in firm exit than entry. Since the agents are fixed and the number 
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of firms is almost constant, average firm size does not vary much, as in figure 8. 

 
Figure 8: Typical time series for average firm size (blue) and maximum firm size (magenta) 

The average firm in the U.S. has about 20 employees, as in figure 8. Also shown 

there is the size of the largest firm at each time, which fluctuates. 

Typical Effort, Output, Income and Utility Levels 

 Agents who work together can improve upon their singleton utility levels with 

reduced effort. This is the essence of firms, as shown in figure 9. 

 

 
Figure 9: Typical time series for (a) average effort level in the population (blue) and in the largest firm 

(magenta), (b) total output (blue) and of the largest firm (magenta), (c) average income (blue) and 
income in the largest firm (magenta), and (d) average utility (blue) and in the largest firm (magenta) 

While efforts in large firms fluctuate, the average effort level is quite stable (figure 

9a). Much of the dynamism in the ‘large firm’ time series is due to the identity of 
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the largest firm changing. Figure 9b shows that overall output is quite stable over 

time (blue line) while output of the largest firm (red line) varies considerably. 

Figure 9c shows that the average income in the population overall (blue) is usually 

exceeded by that in the largest firm (red). Figure 9d shows the same is true of 

average utility. 

Labor Flows 

 In real economies people change jobs with, what is to some, “astonishingly 

high” frequency (Hall 1999: 1151). Job-to-job switching, also known as employer-

to-employer flow, represents 30-40% of labor turnover, substantially higher than 

unemployment flows (Davis et al. 1996; Fallick and Fleischman 2001; Davis et al. 

2006; Faberman and Nagypál 2008; Nagypál 2008; Davis et al. 2012). Moving 

between jobs is the main agent decision in our model. In figure 10 the level of 

monthly job changing occurring in the run of the model described in figures 7-9 is 

shown in blue, along with measures of jobs created (red) and jobs destroyed 

(green). Job creation occurs in firms with net monthly hiring, while job destruction 

takes place when firms lose workers over a month. Note the higher volatility in the 

job destruction series. 

 
Figure 10: Typical time series for monthly job-to-job changes (blue), job creation (red) and 

destruction (green) 

Overall, figures 7-10 develop intuition about typical dynamics of firm 

formation, growth and dissolution. They are a 'longitudinal' picture of typical 

micro-dynamics in the co-evolving populations of agents and firms. We now turn 

to cross-sectional properties. 
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3.3 Firms in Cross-Section: Sizes, Ages and Growth Rates 
 Firms clearly emerge in this model. When one runs it and watches individual 

firms form, grow, and die, the human eye immediately picks up the ‘lumpiness’ of 

the output, with a few big firms, more medium-sized ones, and lots and lots of 

small ones.26 

Firm Sizes (by Employees and Output) 

 At any instant there exist distributions of firm sizes in the model. Since firms 

are of unit size at t = 0 there is a transient period over which firm sizes reach a 

stationary, skew configuration, with a few large firms and larger numbers of 

progressively smaller ones. Typical output from the model is shown in figure 11 

for firm size measured two ways. 

 
Figure 11: Stationary firm size distributions (probability mass functions) by (a) employees and (b) 

output 

The modal firm size is 1 employee, the median is between 3 and 4, and the mean is 

20. Empirical data on U.S. firms have comparable statistics. Specifically, for firm 

size S, the complementary cumulative Pareto distribution function, FS
C(s) is 

 . (11) 

where s0 is the minimum size, unity for size measured by employees. The U.S. data 

are well fit by α ≈ -1.06 (Axtell 2001), the line in figure 11a. The Pareto is a power 

law, and for α = 1 is known as Zipf’s law. A variety of explanations for power 

laws have been put forward.27 Common to these theories is the idea that systems 
                                                
26  Movies  areavailable at www.css.gmu.edu/rob/research.html. 
27 For instance, Bak (1996: 62-64), Marsili and Zhang (1998), Gabaix, (1999), Reed (2001), and Saichev et al. 
(2010). 

Pr S ≥ si( ) ≡ FSC s;α, s0( ) = s0
s
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described by (11) are far from (static) equilibrium at the microscopic level. Our 

model is non-equilibrium at the agent level with agents regularly changing jobs. 

Note that power laws well fit the entire distribution of firm sizes. Simon (1977) 

argued that such highly skew distributions are so odd as to constitute extreme 

hypotheses. That our simple model reproduces this peculiar distribution is strong 

evidence it captures some essence of basic firm dynamics.28 

Labor Productivity 
 Firm output per employee is productivity. Figure 12 is a plot of average firm 

output as a function of firm size. Fitting a line by several distinct methods indicates 

that output scales linearly with size, implying constant returns to scale. 

 
Figure 12: Essentially constant returns at the aggregate level, despite increasing returns at the 

micro-level 

Approximately constant returns is also a feature of the U.S. output data; see Basu 

and Fernald (1997). That constant returns occur at the aggregate level occurs 

despite increasing returns at the micro-level suggests the difficulties of making 

any inferences across levels. An explanation of why this occurs is apparent. As the 

increasing returns-induced advantages that accrue to a firm with size are consumed 

by free riding behavior, agents migrate to more productive firms. Each agent who 

changes jobs acts to ‘arbitrage’ the returns across firms. Since output per worker 

represents wages in our simple model it is clear there is no wage-size effect here 

(Brown and Medoff 1989), a phenomenon that seems to be fading in the real world 

(Even and Macpherson 2012). 

                                                
28 At the very least it is preferable to models of identical firms (e.g., Robin 2011) or unit size firms (e.g., 
Shimer 2005). 
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 While average labor productivity is constant across firms, there is substantial 

variation in productivity, as given by the distribution in figure 13. 

 
Figure 13: Labor productivity distribution 

Average productivity is about 0.7 with a standard deviation of 0.6, but clearly there 

are some firms with extreme productivities. In the semilog coordinates of figure 13 

labor productivities are approximately exponentially-distributed, at least the larger 

ones, not Pareto-distributed as has become a fashionable specification among 

theorists (Helpman 2006). Interestingly, small and large firms have about the same 

productivity distribution. 

Firm Ages 

 Using data from the BLS Business Employment Dynamics program, figure 14 

gives the age distribution (pmf) of U.S. firms, in semi-log coordinates, with each 

colored line representing the distribution in a recent year. Model output is overlaid 

on the raw data as points and agrees reasonably well. While the exponential 

distribution (Coad 2010) is a rough approximation, the curvature (i.e., the 

departure from exponential) is important, indicating that failure probability is a 

function of age. 

 
Figure 14: Firm age distributions (pmfs), U.S. data 2000-2011 (lines) and model output (points); 

source: BLS (www.bls.gov/bdm/us_age_naics_00_table5.txt) and author calculations 

In these figures average firm lifetime ranges from 16-18 years, which is also the 
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approximate standard deviation. 

Joint Distribution of Firms by Size and Age 

With unconditional size and age distributions now analyzed, their joint 
distribution is shown in figure 15, a normalized histogram in log probabilities. 

 
Figure 15: Histogram of the steady-state distribution of firms by log(size) and age 

Note that log probabilities decline approximately linearly as a function of age and 

log firm size. From the BLS data one can determine average firm size conditional 

on firm age. In figure 16a these data are plotted for five recent years, starting with 

2005, each year its own line. To first order there is a linear relation between firm 

size and age: firms that are 10 years old have slightly more than 10 employees on 

average, firms 20 years old have 20 employees, 30 year old firms have roughly 30 

employees, and so on. There must be a cut-off beyond some age but the data are 

censored for large ages. From the model we get approximately the same linear 

effect but a slightly different intercept, figure 16b. 
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Figure 16: (a) Average firm size by age bins in (a) the U.S. for 2005-2009 and (b) the model; 

average firm age by size bins in (c) the U.S. and (e) the model; source: BLS and author calculations 

The conditional in the other direction—the dependence of average age on firm 

size—is shown in figure 16c in semilog coordinates. To first order, average age 

increases linearly with log size: firms with 10 employees are on average 10 years 

old, firms with 100 employees average nearly 15 years of age, and firms with 1000 

employees are roughly 20 years old, on average. The model yields a similar result, 

figure 16d: linearly increasing age with log size. 

Firm Survival Rates 

 If firm ages were exactly exponentially distributed then the survival probability 

would be constant, and independent of age (Barlow and Proschan 1965). The 

departures from exponential in figure 14 indicate that survival probability does 

depend on age. Empirically it is well-known that survival probability increases 

with age (Evans 1987; Hall 1987). In figure 17 firm survival probabilities over 

recent years are shown for U.S. companies (colored lines) with points representing 

model output. 

 
Figure 17: Firm survival probability increases with firm age, U.S. data 1994-2000 (lines) and 

model (points), and firm size; source: BLS and author calculations 

Firm survival rates also rise with firm size in both the U.S. data and the model. 
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Firm Growth Rates 

 Calling a firm’s size at time t, St, a common specification of firm growth rate is 

Gt+1 ≡ St+1/St. This raw growth rate has support on R+ and is right skew, since there 

is no upper limit to how much a firm can grow yet it cannot shrink by more than its 

current size. The quantity gt+1 ≡ ln(Gt+1) has support on R and tends to be roughly 

symmetric. Gibrat’s (1931) proportional growth model—all firms have the same 

growth rate distribution—implies that Gt is lognormally distributed (e.g., Sutton 

1997), meaning gt is Gaussian. In the basic proportional growth model these 

distributions are not stationary as their variance grows with time. Adding firm birth 

and death processes can lead to stationary firm size distributions (see de Wit 

(2005) for a review).  

Gaussian specifications for g were common in IO for many years (e.g., Hart 

and Prais 1956; Hymer and Pashigian 1962), often based on small samples of 

firms. Stanley et al. (1996) reported that data on g for all publicly-traded U.S. 

manufacturing firms (Compustat) were well-fit by the Laplace (double 

exponential) distribution, which is heavy-tailed in comparison to the Gaussian.29 

Subsequently, growth rate data for European pharmaceuticals (Bottazzi et al. 

2001), Italian and French manufacturers (Bottazzi et al. 2007; Bottazzi et al. 2011), 

and all U.S. establishments (Teitelbaum and Axtell 2005) were shown to be 

Laplacian. Schwarzkopf (2011) argues that g is stable. 

Theoretical models of Laplace and stably-distributed firm growth rates are 

based on departures from the standard central limit theorem (Bottazzi and Secchi 

2006). When the number of summands is geometrically distributed the Laplace 

distribution results (Kotz et al. 2001) while heavier-tails yield stable laws 

(Schwarzkopf 2010). 

Empirically, the so-called Subbotin or exponential power distribution is useful 

as it embeds both the Laplace and Gaussian distributions. Its pdf has the form 

                                                
29 For g Laplace-distributed, G follows the log-Laplace distribution, a kind of double-sided Pareto distribution 
(Reed 2001), technically a combination of the power function distribution on (0, 1) and the Pareto on (1, ∞). 
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 , (12) 

where  is the average log growth rate, σg is proportional to the standard 

deviation, and η is a parameter; η = 2 is the normal distribution, η = 1 the Laplace. 

Semilog plots of (12) vs g yield distinctive ‘tent-shaped’ figures for η ≈ 1, 

parabolas for η = 2. Empirical estimates often yield η < 1 (Perline et al. 2006; 

Bottazzi et al. 2011), thus even more non-Gaussian than the Laplace.30 Overall, g 

has several empirical characteristics: 

1. Typically, there is more variance for negative g, i.e., firm decline, 

corresponding to more variability in job destruction than job creation 

(Davis et al. 1996), requiring an asymmetric Subbotin distribution (Perline 

et al. 2006). 

2. While Mansfield (1962), Birch (1981), Evans (1987) and Hall (1987) all 

demonstrate that average growth declines with firm size, or at least is 

positive for small firms and negative for large firms, there is evidence this 

an artifact of the specification of g (Haltiwanger et al. 2011; Dixon and 

Rollin 2012). 

3. Mansfield (1962), Evans (1987), Hall (1987) and Stanley et al. (1996) all 

show that growth rate variance declines with firm size, on average in the 

first three cases, for the full distribution in the latter. This is significant 

insofar as it vitiates Gibrat’s simple growth rate specification: all firms are 

not subject to the same growth rate distribution, as large firms face 

significantly less variable growth. 

4. Average growth falls with age (Haltiwanger et al. 2008; Haltiwanger et al. 

2011). 

5. Over longer time periods g tends to become more normal (Perline et al. 

2006), i.e., η increases with the duration over which firm growth is 

                                                
30 An alternative definition of G is 2(St+1 - St)/(St + St+1), making G ∈[-2, 2] (Davis et al. 1996). Although 
advantageous because it keeps exiting and entering firms in datasets for one additional period, it is 
objectionable on the grounds that it muddies the water in distinguishing Laplace from normally-distributed 
growth rates. 
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measured. 

With this as background, figure 18 shows distributions of g emanating from the 

model for seven classes of firm sizes, with larger firms nested inside the more 

numerous small ones. 

 
Figure 18: Distributions of g annually, as a function of firm size, from the model; sizes 8-15 (blue), 

16-31 (red), 32-63 (green), 64-127 (black), 128-255 (orange), 256-511 (yellow), and 512-1023 
(purple) 

Overall,  is very close to 0.0 (no growth) and figure 19a shows its dependence 

on size (blue). The red line is an alternative definition of G (see footnote 30). 

 
Figure 19: Dependence of the (a) mean and (b) standard deviation of g on firm size, in agreement 

with Dixon and Rollin [2012] for (a) and Stanley et al. [1996] for (b) 

The variability of g clearly declines with firm size in figure 18, and figure 19b 

shows how, with the colors corresponding to those in figure 19a. Stanley et al. 

(1996) find that the standard deviation in g decreases with size like s-τ, and 

estimate τ = 0.16 ± 0.03 for size based on employees (data from Compustat 

manufacturing firms) while we get τ = 0.14 ± 0.02, the blue and red lines. A value 

of τ = 0.5 would mean the central limit theorem applies but clearly this is not the 

case. If τ = 0 all firms would be perfectly correlated and variability would not be a 

function of size. Several explanations for this dependence have been proposed 
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(Buldyrev et al. 1997; Amaral et al. 1998; Sutton 2002; Wyart and Bouchaud 

2002; Klette and Kortum 2004; Fu et al. 2005; Luttmer 2007; Riccaboni et al. 

2008), none particularly relevant to the set-up of the present model. 

Firm growth rates decline with age, as mentioned above. Figure 20 shows 

model output as a smoothed histogram. The insets depict  and standard deviation 

of g vs. age. 

 
Figure 20: Smoothed histogram of firm growth rates as a function of firm age; the dependence of 

the mean and standard deviation of g on firm age are shown in the two insets 

Having explored firms cross-sectionally, we next turn to agents.  

3.4 Agents in Cross-Section: Income, Job Tenure, and Employment 
 In this section agent behavior in the aggregate steady-state is quantified. 

Income Distribution 

 While income and wealth are famously heavy-tailed (Pareto 1971 [1927]) 

wages are less so. A recent empirical examination of U.S. adjusted gross 

incomes—primarily salaries, wages and tips—argues that below about $125K the 

data are well-described by an exponential distribution, while a power law better 

fits the upper tail (Yakovenko and Rosser 2009). In figure 21a the income 

distribution from the model is shown. 
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Figure 21: Income distribution (arbitrary units) 

Since incomes are nearly linear in semi-log coordinates, they are approximately 

exponentially-distributed. Although there is not room to analyze these data further, 

it is the case that incomes increase rapidly with endowments, ω, slowly with 

preferences for income, θ, and are independent of firm size and age. 

Job Tenure Distribution 

 Job tenure in the U.S. has a median of just over 4 years and a mean of about 

8.5 years (BLS Job Tenure 2010). The counter-cumulative distribution for 2010 is 

shown in figure 22a (points) with the straight line being the estimated exponential 

distribution. The model-generated job tenure counter-cumulative distribution is 

shown in figure 22b. 

 
Figure 22: Job tenure (months) is exponentially-distributed (a) in the U.S. and (b) in the model; 

source: BLS and author calculations 

The base case of the model is calibrated to make these distributions coincide. That 

is, the number of agent activations per period is specified in order to bring these 

two figures into agreement, thus defining the meaning of one unit of time in the 

model, here a month. The many other dimensions of the model having to do with 

time—firm growth rates, ages, and so on—derive from this basic calibration. 
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Employment as a Function of Firm Size and Age 

 Because the model’s firm size distribution by employees is approximately right 

(figure 11a), it is also the case that employment as a function of firm size also 

comes out about right. But the dependence of employment on firm age is not 

directly available from analytical manipulations without making certain 

distributional assumptions. In figure 23 we count the number of employees in 

firms as a function of age. About half of American private sector workers are in 

firms younger than 28 years of age. The first panel are the U.S. data, available 

online via BLS BDM, shown as a counter-cumulative distribution of employment 

by firm age, while the second is the same plot using output from the model. 

 
Figure 23: Employment by firm age in years: (a) U.S. data and (b) model output; source: BLS 

These two panels show broad agreement between the model and the data on this 
issue. 

3.5 Agent Welfare in Endogenous Firms 
 Each time an agent is activated it seeks higher utility, which is bounded from 

below by the singleton utility. Therefore, it must be the case that all agents prefer 

the non-equilibrium state to one in which each is working alone—the state of all 

firms being size one is Pareto-dominated by the dynamical configurations studied 

above.  

 To analyze welfare of agents, consider homogeneous groups of maximum 

stable size. Associated with such groups are the utility levels shown in figure 4b 

above. Figure 24 starts out as a recapitulation of figure 4b: a plot of the optimal 

utility for both singleton firms as well as optimal size homogeneous ones, as a 

function of θ. Overlaid on these smooth curves is the cross-section of utilities in 

realized groups. 
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Figure 24: Utility in single agent firms, in optimal homogeneous firms, and realized firms, 

by θ 

The main result here is that most agents prefer the non-equilibrium world to the 

equilibrium outcome with homogeneous groups. 

4 Robustness of the Results 
In this section the base model of table 2 is varied and the effects described. 

One specification found to have no effect on the model in the long run is the initial 

condition. Starting the agents in groups seems to modify only the duration of the 

initial transient. The main lesson of this section is that, while certain behavioral 

and other features can be added to this model and the empirical character of the 

results preserved, relaxation of any of the basic structural specifications of the 

model, individually, is sufficient to break its connection to data. 

4.1 The Importance of Purposive Behavior 
 Against this simple model it is possible to mount the following critique. Since 

certain stochastic growth processes are known to yield power law distributions, 

perhaps the model described above is simply a complicated way to generate 

stochasticity. That is, although the agents are behaving purposively, this may be 

just noise at the macro level. What if agent behavior were truly random, would this 

too yield power law firm sizes? We have investigated this in two ways. First, 

imagine that agents randomly select whether to stay in their current firm, leave for 

another firm, or start-up a new firm, while still picking an optimal effort where 

they end up. It turns out that this specification yields only small firms, under size 

10. Second, if agents select the best firm to work in but then choose an effort level 
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at random, again nothing like skew size distributions arise. These results suggest 

that any systematic departure from (locally) purposive behavior is unrealistic. 

4.2 Effect of Population Size 
While the base case of the model has been realized for 120 million agents, it 

has often been run with fewer agents. Figure 25 gives the largest firm realized vs. 

population size. 

 
Figure 25: Largest firm size realized as a function of the number of agents 

The maximum firm size rises sub-linearly with the size of the population. 

4.3 Effect of the Agent Activation Rule and Rate 
 While it is well-known that synchronous activation can produce anomalous 

output (Huberman and Glance 1993), for the asynchronous activation model there 

can be subtle effects based on whether agents are activated randomly or uniformly 

(Axtell et al. 1996). The same effect has been found here but it primarily affects 

firm growth rates (Axtell 2001). 

4.4 Effect of the Production Parameters 
 Of the three parameters that specify the production function, a, b and β, as 

increasing returns are made stronger, larger firms are realized and average firm 

size increases. For β > 2, very large firms arise; these are ‘too big’ empirically.31 

4.5 Alternative Specifications of Agent Characteristics 
 Preferences are distributed uniformly on (0,1) in the base case. This yields a 

certain number of agents having extreme preferences: those with θ ≈ 0 are leisure 

lovers and those with θ  ≈ 1 love income. Other distributions (e.g., beta, triangular) 

                                                
31 The model can occasionally ‘run away’ to a single large firm for β in this range. 
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were investigated and found to change the results very little. Removing agents with 

extreme preferences from the population can modify the main findings 

quantitatively. If agent prferences are too homogeneous the model output is 

qualitatively different from the empirical data. Finally, CES preferences do not 

alter the general character of the results. Overall, the model is insensitive to 

preferences as long as they are sufficiently heterogeneous. 

4.6 Effect of the Extent and Composition of Social Networks 
 In the base case each agent has 2 to 4 friends. This number is a measure of the 

size of an agent's search or information space, since the agent queries these other 

agents when active to assess the feasibility of joining their firms. The main 

qualitative impact of increasing the number of friends is to slow model execution. 

 However, when agents query firms for jobs something new happens. Picking 

an agent to talk to may lead to working at a big firm. But picking a firm at random 

almost always leads to small firms and empirically-irrelevant model output. 

4.7 Bounded Rationality: Groping for Better Effort Levels 
So far, agents have adjusted their effort levels to anywhere within the feasible 

range [0, ω]. A different behavioral model involves agents making only small 

changes from their current effort level each time they are activated. Think of this 

as a kind of prevailing work ethic within the group or individual habit that 

constrains the agents to keep doing what they have been, with small changes. 

Experiments have been conducted for each agent searching over a range of 

0.10 around its current effort level: an agent working with effort ei picks its new 

effort from the range [eL, eH], where eL = max(0, ei - 0.05) and eH = min(ei + 0.05, 

1). This slows down the dynamics somewhat, yielding larger firms. This is because 

as large firms tend toward non-cooperation, sticky effort adjustment dampens the 

downhill spiral to free riding. I have also experimented with agents who ‘grope’ 

for welfare gains by randomly perturbing current effort levels. 

4.8 Effect of Agent Loyalty to Its Firm 
 In the basic model an agent moves immediately to a new firm when doing so 
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makes it better off. Behaviorally, this seems implausible. The idea of agent loyalty 

involves agents not changing jobs right away even when it is ostensibly better to 

do so.32 Imagine an agent counting how many times it should have moved but did 

not. Only when its count exceeds a parameter, µ, does it move to a new firm and 

reset its counter. Setting µ = 0 corresponds to the base model. Increasing µ 

produces larger, longer-lived firms. That is, loyalty is a stabilizing factor, even 

when µ is heterogeneous in the population. 

4.9 Hiring 
One aspect of the base model is very unrealistic: that agents can join whatever 

firms they want, as if there is no barrier to getting hired by any firm. The model 

can be made more realistic by instituting local hiring policies. It turns out that such 

policies have little effect at the aggregate level. 

Let us say that one agent in each firm does all hiring, say the agent who 

founded the firm, or the agent with the most seniority. We will call this agent the 

‘boss’ or ‘residual claimant’. A simple hiring policy has the boss compare current 

productivity to what would be generated by the addition of a new worker, 

assuming that no agents adjust their effort levels. The boss computes the minimum 

effort, φE/n, for a new hire to raise productivity as a function of a, b, β, E and n, 

where φ is a fraction of average effort: 

 . (13) 

For β = 2 this can be solved explicitly for the minimum φ necessary 

 . 

For all values of φ∗ exceeding this level it makes sense to hire the prospective 

worker. For the case of a = 0, (13) can be solved for any value of β: 

; this is independent of b and E. Numerical values for φ∗ as a 

                                                
32 Loyalty is a prominent feature in Tesfatsion’s (1998) models of labor markets, as well as in Kirman and 
Vriend (2000; 2001), where loyalty between buyers and sellers emerges in bilateral exchange markets. 
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function of β and n are show in Table 3. 

n\β     1.0 1.5 2.0 2.5 
1 1.0 0.59 0.41 0.32 
2 1.0 0.62 0.45 0.35 
5 1.0 0.65 0.48 0.38 

10 1.0 0.66 0.49 0.39 
100 1.0 0.67 0.50 0.40 

Table 3: Dependence of the minimum fraction of average effort on firm size and increasing returns 

As n increases for a given β, φ∗ increases. In the limit of large n, φ∗ equals 1/β. So 

with sufficient increasing returns the boss will hire just about any agent who wants 

a job! These results can be generalized to hiring multiple workers at a time. 

Adding this functionality to the computational model changes the behavior of 

individual firms and the life trajectories of individual agents but does not 

substantially alter the overall macrostatistics of the artificial economy. 

4.10 Effort Monitoring, Job Termination and Unemployment 
In the base model, shirking goes completely undetected and unpunished. Effort 

level monitoring is important in real firms, and a large literature has grown up 

studying it; see Olson (1965), the models of mutual monitoring of Varian (1990), 

Bowles and Gintis (1998), and Dong and Dow (1993), the effect of free exit (Dong 

and Dow 1993), and endowment effects (Legros and Newman 1996); Ostrom 

(1990) describes mutual monitoring in institutions of self-governance. 

 It is possible to perfectly monitor workers in our model and fire the shirkers, 

but this breaks the model by pushing it toward static equilibrium. All real firms 

suffer from imperfect monitoring. Indeed, many real-world compensation systems 

can be interpreted as ways to manage incentive problems by substituting reward 

for supervision, from efficiency wages to profit-sharing (Bowles and Gintis 1996). 

Indeed, if incentive problems in team production were perfectly handled by 

monitoring there would be no need for corporate law (Blair and Stout 1999). 

 At any instant of time, some firms are growing and others are declining. 

However, growing firms shed workers and declining firms do some hiring. In 

figure 26 the left panel represents empirical data on the U.S. economy (Davis et al. 

2006), and shows that growing firms have to hire in excess of the separations they 
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suffer, while declining firms keep hiring even when separations are the norm. 

 
Figure 26: Labor transitions as a function of firm growth rate 

In the right panel are data from my model, and clearly firms can both gain and lose 

workers. Note that the ‘hiring’ line in the two figures looks comparable, but the 

‘separations’ line is different, with too few separations in the model. 

 To introduce involuntary separations, imagine the residual claimant knows the 

effort of each agent and can thus determine if the firm would be better off if the 

least hard working one were let go. Opposite calculations of those for hiring yield: 

  

Introducing this logic into the code there results unemployment: agents are 

terminated and do not immediately find another firm to join. Computational 

experiments with terminations and unemployment have been undertaken and many 

new issues are raised, so we leave full investigation of this for future work. 

4.11 Alternative Compensation Schemes 
Agents in a group have so far shared equally. Here alternative compensation 

rules are investigated involving pay in proportion to effort:33 

  

Interestingly, this change, when implemented globally across the entire economy, 

leads to a breakdown in the basic model results, with one giant firm forming. The 

                                                
33 Encinosa et al. (1997) studied compensation systems empirically for team production environments in 
medical practices. They find that “group norms” are important in determining pay practices. Garen (1998) 
empirically links pay systems to monitoring costs. More recent work is Shaw and Lazear (2008). 
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reason for this is that there are great advantages from the increasing returns to 

being in a large firm and if everyone is compensated in proportion to their effort 

level no one can do better away from the one large firm. Thus, while there is a 

certain ‘perfection’ in the microeconomics of this compensation, it completely 

breaks all connections of the model to empirical data. 

 Next consider a mixture of compensation schemes, with workers paid 

partially in proportion to how hard they work and partially based on total output. 

 . 

Parameter f determines whether compensation is more ‘equal’ or ‘proportional’. 

This can be solved analytically for β = 2, but is long and messy. Experiments with 

f ∈ [½, 1] reveal that the qualitative character of the model is not sensitive to f. 

4.12 Finite Lifetimes and Demographics (Population Growth) 
Experiments adding agents progressively to the model over time produces a 

growing economy. Finite lifetimes are a further source of endogenous dynamics in 

the model as retirement and death force firms to seek new workers. 

5 Summary, Discussion and Conclusions 
A microeconomic model of firm formation has been analyzed mathematically, 

studied computationally, and tested empirically. Stable equilibrium configurations 

of firms do not exist in this model. Rather, agents constantly adapt to their 

economic circumstances, changing firms when it is in their self-interest to do so. 

This simple model, consisting of locally optimizing agents in a world of increasing 

returns, is sufficient to generate macro-statistics on firm size, growth rates, ages, 

job tenure, and so on, that closely resemble U.S. data. Overall, firms serve as 

vehicles through which agents realize greater utility than they would otherwise 

achieve. The general character of these results is robust to variations in the model 

specification. However, it is possible to sever connections to empirical data with 

agents who are too homogeneous, too random, or too rational. 
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5.1 The Emergence of Firms, Out of Equilibrium 
 The main result of this research is to connect an explicit microeconomic model 

of team formation to emerging micro-data on the population of U.S. business 

firms. Agent behavior is specified at the micro-level with firms emerging at a 

meso-level, and the population of firms becoming a well-defined statistical entity 

at the aggregate level. This micro-to-macro picture has been created with agent-

based computing, realized at full-scale with the U.S. private sector workforce.34 

However, despite the vast scale of the model, its specification is actually very 

minimal, so spare as to seem quite unrealistic35—no product markets are modeled, 

no prices computed, no consumption represented. How is it that such a stripped-

down model could ever resemble empirical data? 

 This model works because its dynamics capture elements of the real world 

more closely than the static equilibrium models conventional in the theory of the 

firm. This is so despite our agents being myopic and incapable of figuring out 

anything remotely resembling optimal multi-period strategies. Two defenses of 

such simple agents are clear. First, the environments in which the agents find 

themselves are combinatorially too complex for even highly capable agents to 

compute rational behaviors. There are just too many possible coalition structures, 

so each agent finds itself in perpetually novel circumstances.36 Second, the 

strategic environment is dynamically too complex for agents to make accurate 

forecasts, even in the short run:37 agents are constantly moving between firms, new 

firms are forming while others exit, and although the macro-level is stationary 

there is constant flux and adaptation in every agent’s local economy. 

More generally, equating social equilibrium with agent-level equilibrium, 

common throughout the social sciences, is problematical (Foley 1994). While the 

goal of social science is to explain aggregate regularities, agent-level equilibria are 

                                                
34 It is folk wisdom that agent models are ‘macroscopes,’ illuminating macro patterns from the micro rules. 
35 In this it is reminiscent of Gode and Sunder and zero-intelligence traders (Gode and Sunder 1993). 
36 Anderlini and Felli (1994) assert the impossibility of complete contracts due to the complexity of nature. 
37 Anderlini (1998) describes the kinds of forecasting errors that are intrinsic in such environments. 
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commonly treated as necessary when in fact they are only sufficient—that is, the 

micro- and macro-worlds are commonly viewed as homogeneous with respect to 

equilibrium. But macroscopic regularities that have the character of statistical 

equilibria—stationary distributions, for instance—may have two conceptually 

distinct origins. When equilibrium at the agent level is achieved, perhaps as 

stochastic fluctuations about one or more deterministic equilibria (e.g., Young 

1993), then there is a definite sense in which macro-stationarity is a direct 

consequence of micro-equilibrium. But when there do not exist stable agent-level 

equilibria, the assumption of homogeneity across levels is invalid, yet it may 

nonetheless be the case that regularities and patterns will appear at the macro-level. 

Furthermore, when stable equilibria exist but require an amount of time to be 

realized that is long in comparison to the economic process under consideration, 

one may be better off looking for regularities in the long-lived transients. This is 

particularly relevant to coalition formation games in large populations, where the 

number of coalitions is given by the unimaginably vast Bell numbers, making it 

unlikely that anything like optimal coalitions could ever be realized. Perpetual flux 

in the composition of groups must result, leading to the conclusion that 

microeconomic equilibria have little explanatory power. 

5.2 Theories of the Firm Versus a Theory of Firms 
Extant theories of the firm are steeped in this kind of micro-to-macro 

homogeneity. They begin innocuously enough, with firms conceived as being 

composed of a few actors. They then go on to derive firm performance in response 

to strategic rivals, uncertainty, information processing constraints, and so on. But 

these derivations interpret the overall performance of many-agent groups and 

organizations in terms of a few agents in equilibrium.38 I suggest that 

preoccupation with equilibrium notions is largely responsible for the neglect of the 

gross empirical regularities of industrial organization in textbooks.39 There do not 

                                                
38 Least guilty of this charge is the evolutionary paradigm. 
39 For example, neither Shy (1995) nor Cabral (2000) make no mention of size and growth rate distributions! 



 

 43 

exist microeconomic explanations for most of these regularities, from firm age to 

job tenure. Indeed, it has been conjectured that power laws are generically not the 

result of perturbations about static configurations. If so then it may be that no 

equilibrium theory can ever reproduce heavy-tailed firm size and growth rate data. 

 There are two senses in which our model is a theory of firms. First, from a 

purely descriptive point of view, the model reproduces many facts. Theories of the 

firm able to explain more than a few of these facts do not exist.40 Nor are most 

theories sufficiently explicit to be operationalized in software—although stated at 

the microeconomic level, the focus on equilibrium leaves behavior away from 

equilibrium unspecified.41 In the language of Simon (1976), these theories are 

substantively rational, not procedurally so. Or, if micro-mechanisms are given, the 

model is not quantitatively related to data (e.g., Kremer 1993; Rajan and Zingales 

2001), or else the model generates the wrong patterns (e.g., Cooley and Quadrini 

(2001) get exponential firm sizes). The second sense in which my model is a 

theory of firms is that agent models always are explanations of the phenomena 

they reproduce.42 In the philosophy of science an explanation is defined with 

respect to a theory.43 A theory has to be general enough to permit many 

instantiations—to provide explanations of whole classes of phenomena—while not 

being so vague that it can rationalize all phenomena. Each parameterization of an 

agent-based model is an instantiation of a more general agent ‘theory’. Executing 

an instance yields patterns and regularities that can be compared to data, thus 

making the instance, the model and the theory all falsifiable.44 

 My ‘explanation’ for firms is simply this: purposive agents in increasing 

returns environments form transient coalitions; freedom of movement between 

                                                
40 A variety of models target one of these desiderata, often the firm size distribution (e.g., Kwasnicki 1998). 
41 I began this work with the expectation of drawing heavily on extant theory. While I did not expect to be 
able to turn Coase’s elegant prose into software line-for-line, I did expect to find significant guidance on the 
micro-mechanisms of firm formation. These hopes were soon dashed on the shoals of equilibrium theorizing. 
42 According to Simon (Ijiri and Simon 1977: 118): “To ‘explain’ an empirical regularity is to discover a set 
of simple mechanisms that would produce the former in any system governed by the latter.” 
43 This is the so-called deductive-nomological (D-N) view of explanation; see Hempel (1966). 
44 In models that are intrinsically stochastic, multiple realizations must be made to find robust regularities. 
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such coalitions ‘arbitrages’ away super linear returns and induces firms to compete 

for talent, Suitably parameterized, empirically-salient firms result. Someday a 

mathematical derivation from the micro (agent) level to the macro (firm 

population) level—through the meso (firm) level—may appear, but for now we 

must be content with the discovery that the latter result from the former. 

Real-world organizations provided economics with the important concept of 

bounded rationality.45 Now micro-data on organizations are re-shaping our ideas 

about firms. It is hoped that the present work will provide impetus for the 

development of heterogeneous agent, non-equilibrium theories in economics. If so, 

computational methods will be as useful as analytical ones, at least if other 

branches of science are any guide. It is sometimes said that physics owes more to 

the steam engine than the steam engine owes to physics. Perhaps someday the 

same will be said of economic theory and firms. 

5.3 Agent-Based Economics 
 This model is a first step toward a more realistic, dynamical theory of the firm, 

one with explicit micro-foundations. Clearly this approach yields empirically rich 

results. These results are produced computationally. Typical uses of computers by 

economists today are to numerically solve equations (Judd 1998) or mathematical 

programs, to run regressions (Sala-i-Martin 1997), or to simulate stochastic 

processes—all complementary to conventional theorizing. The way computer 

power is being harnessed here is different. Agent computing facilitates 

heterogeneity, so representative agents are not needed (Kirman 1992). It 

encourages use of behavioral specifications featuring direct (local) interactions, so 

networks are natural (Kirman 1997). Agents possess a limited amount of 

information and are of necessity boundedly rational, since full rationality is 

computationally intractable (Papadimitriou and Yannakakis 1994). Aggregation 

happens, just like in the real world, by summing up numerical quantities, without 

concern for functional forms (of utility and production functions). Macro-

                                                
45 Simon’s early work on organizations (1947) led him to question optimizing models of human behavior.. 
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relationships emerge and are not limited a priori by what the ‘armchair economist’ 

(Simon 1986) can first imagine and then write down mathematically. There is no 

need to postulate the attainment of equilibrium since one merely interrogates a 

model’s noiseless output for patterns, which may or may not include stable 

equilibria. Indeed, agent computing is a natural technique for studying economic 

processes that are far from (agent-level) equilibrium. The present work has just 

scratched the surface of the pregnant interface between agent computing and the 

theory of the firm. Much work remains. 

Appendix A: Existence and Instability of Nash Equilibria 
 Relaxing the functional forms of §2, each agent has preferences for income, I, 

and leisure, Λ, with more of each preferred to less. Agent i's income is monotone 

non-decreasing in its effort level ei as well as that of the other agents in the group, 

E~i. Its leisure is a non-decreasing function of ωi - ei. The agent's utility is thus 

Ui(ei; Ei) = Ui(I(ei; E~i), Λ(ωi -ei)), with ∂Ui/∂I > 0, ∂Ui/∂Λ > 0, and ∂I(ei; E~i)/∂ei > 

0, ∂Λ(ei)/∂ei < 0. Furthermore, assuming Ui(I = 0, .) = Ui(., Λ = 0) = 0, U is single-

peaked. Each agent selects the effort that maximizes its utility. The first-order 

condition is straightforward. From the inverse function theorem there exists a 

solution to this equation of the form  = max [0, ζ(E~i)]. From the implicit 

function theorem both ζ and  are continuous, non-increasing functions of E~i. 

Team effort equilibrium corresponds to each agent contributing its optimal 

effort, , assuming that the other agents are doing so as well, i.e., substituting 

 for E~i. Since each  is a continuous function of E~i so is the vector of 

optimal efforts, e* ∈ [0, ω]N, a compact, convex set. By the Leray-Schauder-

Tychonoff theorem an effort level fixed point exists. Furthermore, such a solution 

constitutes a Nash equilibrium, which is Pareto-dominated by effort vectors having 

larger amounts of effort for all agents. 
 An upper bound on size exists for effort adjustments ei(t+1) = hi(E~i(t)), s.t. 

 , (A.1) 

 for all j ≠ i. Under these circumstances the Jacobian matrix retains the structure 
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described in § 2.3, where each row contains N-1 identical entries and a 0 on the 

diagonal. The bounds on the dominant eigenvalue derived in section 2.3 guarantee 

that there exists an upper bound on the stable group size, as long as (A.1) is a strict 

inequality, thus establishing the onset of instability above some critical size. 

Appendix B: Empirical Data 
 Table 4 summarizes the firm data to which the model outputs are compared. 

Data that are conceptually similar are colored similarly. Note that because many of 

the moments do not exist for several of the distributions considered, modal and 

median quantities are sometimes used as bases for comparison. 

 Datum or data compared Source In text 
1 Size of the U.S. workforce: 120 million U.S. Census Table 2 
2 Number of firms with employees: 6 million U.S. Census Figure 7 
3 Number of new firms monthly: 100 thousand Kauffman Foundation Figure 7 
4 Number of exiting firms monthly: 100 thousand Kauffman Foundation Figure 7 
5 Variance higher for exiting firms to new firms Davis, Haltiwanger and Schuh Figure 7 
6 Average firm size: 20 employees/firm U.S. Census Figure 8 
7 Maximum firm size: 1 million employees Forbes 500 Figure 8 
8 Number of job-to-job changes monthly: 3-4 million Fallick and Fleischman Figure 10 
9 Number of jobs created monthly: 2 million Davis, Haltiwanger and Schuh Figure 10 
10 Number of jobs destroyed monthly: 2 million Davis, Haltiwanger and Schuh Figure 10 
11 Variance higher for jobs destroyed than jobs created Davis, Haltiwanger and Schuh Figure 10 
12 Modal firm size (employees): 1 U.S. Census Figure 11a 
13 Median firm size (employees): 3-4 U.S. Census Figure 11a 
14 Firm size distribution (employees): Pareto U.S. Census Figure 11a 
15 Pareto exponent: near 1 (so-called Zipf distribution) Axtell Figure 11a 
16 Firm size distribution (output): Pareto Axtell Figure 11b 
17 Pareto exponent of output distribution: near 1 Axtell Figure 11b 
18 Aggregate returns to scale: constant Basu and Fernald Figure 12 
19 Productivity distribution: exponential various Figure 13 
20 Firm age distribution: exponential with mean 18 years Bureau of Labor Statistics Figure 14 
21 Joint dist. of firms, size and age: linear in age, log size various Figure 15 
22 Average firm size vs age: increasing linearly in age Bureau of Labor Statistics Figure 16ab 
23 Avg. firm age vs size: increasing linearly in log size Bureau of Labor Statistics Figure 16cd 
24 Firm survival probability: increasing with age Bureau of Labor Statistics Figure 17 
25 Log firm growth rate distribution: heavy-tailed Stanley et al. [1996] Figure 18 
26 Mean log firm growth rate: 0.0 Stanley et al. [1996] Figure 18 
27 Mean log firm growth rate vs size: sensitive to def’n Dixon and Rollin Figure 19a 
28 Std. dev. log firm growth rate vs firm size: exp = 0.14 Stanley et al. Figure 19b 
29 Mean log firm growth rate vs firm age: decreasing Dixon and Rollin Figure 20 
30 Std. dev. log firm growth rate vs firm age: decreasing Dixon and Rollin Figure 20 
31 Income distribution: exponential Yakovenko Figure 21 
32 Job tenure dist.: exponential with mean 80 months Bureau of Labor Statistics Figure 22 
33 Employment vs age: exp. with mean 1000 employees Bureau of Labor Statistics Figure 23 
34 Florence median: 500 employees U.S. Census  
35 Large firm vs workforce size: increasing sublinearly historical Forbes 500 Figure 25 
36 Simultaneous hiring and separation Davis, Faberman and Haltiwanger Figure 26 

Table 4: Empirical data to which the model is compared 
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